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Downregulation of IncRNA CCDC26 contributes to
imatinib resistance in human gastrointestinal stromal
tumors through IGF-1R upregulation
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Abstract

Imatinib is the first line of therapy for patients with metastatic or gastrointestinal stromal tumors (GIST). However, drug
resistance limits the long-term effect of imatinib. Long non-coding RNAs (IncRNAs) are emerging as key players in regulating
drug resistance in cancer. In this study, we investigated the association between IncRNA CCDC26 and IGF-1R in GIST and their
involvement in drug resistance. Considering the key role of IncRNAs in drug resistance in cancer, we hypothesized that IGF-1R
is regulated by IncRNAs. The expression of a series of reported drug resistance-related IncRNAs, including CCDC26, ARF,
H19, NBR2, NEAT1, and HOTAIR, in GIST cells treated with imatinib H19 was examined at various time-points by qRT-PCR.
Based on our results and published literature, CCDC26, a strongly down-regulated IncRNA following imatinib treatment, was
chosen as our research target. GIST cells with high expression of CCDC26 were sensitive to imatinib treatment while
knockdown of CCDC26 significantly increased the resistance to imatinib. Furthermore, we found that CCDC26 interacted with
c-KIT by RNA pull down, and that CCDC26 knockdown up-regulated the expression of IGF-1R. Moreover, IGF-1R inhibition
reversed CCDC26 knockdown-mediated imatinib resistance in GIST. These results indicated that treatments targeting CCDC26-
IGF-1R axis would be useful in increasing sensitivity to imatinib in GIST.
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Introduction

Imatinib is the only approved first-line drug for gastro-
intestinal stromal tumor (GIST) patients, especially for
patients with advanced or metastatic tumors (1,2). Imatinib
has significantly improved the prognosis of end-stage
patients. Disease control ranges from 70 to 85%, median
progression-free survival is 29 months, and median overall
survival is 57 months (3-5). GIST patients treated with
imatinib are confronted with primary and secondary drug
resistance. The drug resistance limits the long-term curative
effect of imatinib (6—8). However, the underlying molecular
mechanisms of imatinib resistance in GIST have not been
fully elucidated.
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Long non-coding (Inc) RNAs are non-protein coding
RNAs functionally defined as transcripts >200 nucleotides
in length. These account for at least 80% of transcripts in
the genome (9,10). Previous studies demonstrated that
IncRNAs are involved in the regulation of drug resistance
in many cancers (11). Some well-studied IncRNAs,
including H19, NBR2, ARF, HOTAIR (HOX transcript
antisense RNA), and NEAT1, have been shown to act
as oncogenes or tumor suppressor genes, which are also
correlated with drug resistance (12-16). For example, H19
regulates cisplatin resistance in human lung adenocarci-
noma cells and NBR2-GLUT1 axis regulates cancer cell
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sensitivity to biguanides (12,13). Furthermore, HOTAIR
inhibition results in higher sensitivity to imatinib by
regulating MRP expression (15). Knockdown of INcRNA
NEAT1 could promote imatinib-induced apoptosis by
regulating c-Myc (16).

IncRNA CCDC26, located on chromosome 8qg24.21,
was first reported as a retinoic acid-dependent modulator
of myeloid differentiation; it is also called RAM (17). Previous
studies have concentrated on CCDC26 polymorphism
related to glioma risk (18,19). Very few reports characterize
the function of CCDC26 in other cancers. In acute myeloid
leukemia, CCDC26 controls growth of myeloid leukemia
cells through the regulation of KIT (20). In pancreatic
cancer, CCDC26 was labeled as a novel oncogene and
is responsible for the growth and apoptosis of cancer
cells by regulating PCNA and Bcl2 expression (20,21).
However, there are no reports on the biological function
of CCDC26 in imatinib resistance in GIST.

In this study, we investigated the role of CCDC26 in
the sensitivity of GIST cells to imatinib and revealed a
potential mechanism.

Material and Methods

Cell culture and transfection

Human GIST cell lines GIST-882 and GIST-T1 were
purchased from the Chinese Academy of Science Cell
Bank (China), and maintained in RPMI medium (Gibco,
USA) supplemented with 10% fetal bovine serum (Gibco)
and 1% penicillin/streptomycin (Gibco) at 37°C and 5%
CO,. IGF-1R and CCDC26 siRNA were synthesized by
GenePharma (China) using the following sequences:
CCDC26 siRNA: sense: 5-CCUACCACACAACCACUU
UTT-3', antisense: 5-AAAGUGGUUGUGUGGUAGGTT-
3’; IGF-1R siRNA: sense: 5-CCAAGCUAAACCGGCU
AAATT-3', antisense: 5-UUUAGCCGGUUUAGCUUGG
TT-3'. The transfection was conducted using lipofecta-
mine 2000 (Invitrogen, USA) according to the manufac-
turer’s instructions.

CCK-8 assay

A colorimetric assay using CCK-8 (Dojindo Labora-
tories, Japan) was used to assess cell viability. Briefly,
5000 cells from each group were plated in 96-well plates
in 200 L of RPMI 1640 culture medium containing 10%
FBS. Then, the cells were cultured with different treat-
ments for 48 h. Ten microliters of CCK-8 in 100 pL medium
was added to each well and incubated for 2 h according
to the manufacturer’s instructions. An MRX Il microplate
reader (Dynex, USA) was used to measure the absor-
bance value at 450 nm.

EDU assay

Cell proliferation of GIST cells was assayed using
the Click-iTEdU Imaging kit (Invitrogen) according to the
manufacturer’s protocol. Hoechst®™ 33342 solution was
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used to stain nuclei. EDU-stained cells were mounted and
imaged by fluorescence microscopy.

Flow cytometric analysis of apoptosis

Apoptosis of GIST cells was detected using annexin
V-FITC Apoptosis Detection kit (Abcam, USA) according
to the manufacturer’s protocol. Apoptosis rates were
measured using a flow cytometer (LSRII, BD Biosciences,
USA). Cells in the Q2 and Q3 quadrants were considering
as apoptotic.

Western blot

Treated GIST cells were washed in phosphate-buffered
saline (PBS) twice before proteins were extracted and
quantified using a BCA kit (Thermo scientific, USA). Then,
40 pg of protein in each group was separated on a SDS/
PAGE gel, transferred onto a PVDF membrane, and
subjected to immunoblot analysis. The primary antibodies
against IGF-1R (diluted: 1:1000, ab39398) and GAPDH
and the corresponding secondary antibodies (diluted:
1:2000, ab7090) were obtained from Abcam.

Quantitative real-time PCR

Total RNA was extracted using the TRIzol reagent
(Invitrogen) according to manufacturer’s instructions.
Reverse transcription was performed to obtain the first
strand cDNA using the PrimeScript® RT reagent kit
(Takara, China). The relative expressions of CCDC26,
ARF, H19, NBR2, NEAT1, and HOTAIR were normal-
ized to B-actin. The relative expression of IGF-1R was
normalized to the internal reference GAPDH. All gRT-
PCR reactions were performed using an ABI Prism 7500
(Applied Biosystems, USA). The results were analyzed
using the 2724°' method. CCDC26: forward primer:
5'-GGAUAUGUCAAUCUCACAATT-3’; reverse primer:
5-UUGUGAGAUUGACAUAUCCTT-3'. Negative siRNA
forward primer: 5-UUCUCCGAACGUGUCACGUTT-3;
reverse primer: 5-ACGUGACACGUUCGGAGAATT-3'.
IGF1-R siRNA forward primer: 5-AGTGGAGAAATCTG
CGGGC-3; reverse primer: 5-ACTCGGTAATGACCGT
GAGC-3'. GAPDH forward primer: 5-UGACCUCAACUA
CAUGGUUTT-3'; reverse primer: 5-AACCAUGUAGUUG
AGGUCATT-3'.

RNA pull-down assay

RNA pull-down was performed using a Magnetic RNA-
Protein Pull-Down kit (Pierce, USA) in accordance with the
manufacturer’s instructions. Briefly, CCDC26 RNA or anti-
sense CCDC26 RNA was labeled with magnetic beads.
Proteins extracted from GIST cells were mixed with
magnetic beads labeled RNA. The associated proteins
were resolved by SDS-PAGE.

Statistical analysis
All data are reported as means + SE. Statistical anal-
yses were performed with Student’s t-test (parametric) or


http://dx.doi.org/10.1590/1414-431X20198399

Downregulation of Inc CCDC26 enhanced imatinib resistance

Mann-Whitney (non-parametric) test, and one-way analy-
sis of variance followed by Tukey’s post hoc test using
SPSS 18.0 software (IBM, USA). P <0.05 was considered
significant.

Results

IGF-1R knockdown sensitized GIST cells to imatinib
IGF-1R was previously shown to be upregulated in
wild-type GISTs, which were insensitive to imatinib (22).
It was also reported that IGF-1R is involved in imatinib
resistance in GIST (23). In this study, the mRNA and protein
level of IGF-1R was reduced in a time-dependent manner in
GIST cells cultured with imatinib (Figure 1A and B). To further
explore the role of IGF-1R on imatinib resistance in GIST,
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IGF-1R siRNA was employed. The interfering efficiency was
confirmed by western blot (Figure 1C). Following transfec-
tions of IGF-1R siRNA or negative siRNA, cells were
exposed to different concentrations of imatinib for 48 h.
Then, cell viability was assessed by CCK8 assay. Down-
regulation of IGF-1R resulted in decreased cell viability
following imatinib treatment in GIST cells (Figure 1D). These
results indicated that overexpression of IGF-1R, which was
observed in imatinib-treated cells, was responsible for the
development of imatinib resistance in GIST cells.

Expression of INcRNAs in GIST cells treated with
imatinib

The results of gPCR showed that the expression
of CCDC26 decreased in a time-dependent manner
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Figure 1. A, mRNA level of IGF-1R in GIST-T1 and GIST-882 cells treated with imatinib (GIST-T1, 41.97 uM; GIST-882, 56.90 uM)

at different time-points by real time PCR. Data are reported as means £ SE. **P<0.01,

***P <0.001 vs control (one-way analysis

of variance followed by Tukey’s post hoc test). B, Protein level of IGF-1R in GIST-T1 and GIST-882 cells treated with imatinib at different
time-points by western blot. C, The interfering efficiency of IGF-1R confirmed by western blot. D, Cell viability of GIST-T1 and GIST-
882 cells with or without IGF-1R knockdown in the presence of different concentrations of imatinib.
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Figure 2. GIST-T1 and GIST-882 cells were treated with imatinib (GIST-T1, 41.97 uM; GIST-882, 56.90 uM) and RNA extracted for real
time PCR. A, Expression of CCDC26, ARF, and H19 assayed by real time PCR. B, Expression of NBR2, NEAT1, and HOTAIR assayed
by real time PCR. U6 was used as the internal control. Data are reported as means + SE. *P <0.05, **P<0.01, ***P<0.001 vs control

(one-way analysis of variance followed by Tukey’s post hoc test).

after culture with imatinib in both GIST-T1 and GIST-
882 cells, and expression of NEAT1 increased in a time-
dependent manner. However, the expression of ARF,
H19, NBR2, and HOTAIR did not change significantly in
the two GIST cell lines (Figure 2A and B). Considering
the opposing regulation of CCDC26 and IGF-1R in GIST
cells treated with imatinib, it is possible that CCDC26 could
increase the sensitivity of GIST cells to imatinib.

Knockdown of CCDC26 was sufficient for imatinib
resistance in GIST cells

GIST-882 cells expressed lower CCDC26 compared
to GIST-T1 cells (Figure 3A). However, the CCK-8 assay
indicated that GIST-882 cells were more resistant to
imatinib than GIST-T1 cells (Figure 3B). Furthermore,
CCDC26 knockdown significantly increased GIST cell
viability in the presence of imatinib (Figure 3D). The
interfering efficiency of CCDC26 siRNA was confirmed by
gPCR (Figure 3C). Cell proliferation was also increased
in si-CCDC26-transfected GIST cells treated with imatinib
compared to si-NC-transfected controls (Figure 3E). Flow
cytometry demonstrated that CCDC26 knockdown gradu-
ally decreased the imatinib-induced apoptosis of GIST cell
(Figure 3F). These results revealed that CCDC26 knock-
down enhanced the imatinib resistance of GIST cells.
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CCDC26 knockdown induced imatinib resistance by
regulating IGF-1R expression in GIST cells.

Considering the opposing expression and role of
CCDC26 and IGF-1R in GIST cells, we hypothesized that
CCDC26 could interact with IGF-1R. To support this,
we performed an RNA pull down experiment. Our results
demonstrated that CCDC26 RNA could pull down IGF-1R
protein (Figure 4A). Furthermore, we found that CCDC26
knockdown up-regulated IGF-1R (Figure 4B). To further
investigate the relationship between CCDC26 and IGF-
1R, we tested cell viability in GIST cells after transfection
with CCDC26 siRNA or negative siRNA, which were
pretreated with IGF-1R siRNA. The result revealed that
IGF-1R knockdown abolished CCDC26 inhibition-mediated
imatinib resistance (Figure 4C). These results indicated that
CCDC26 knockdown induced imatinib resistance in GIST
cells through IGF-1R interaction.

Discussion

GIST is the most common sarcoma of the gastro-
intestinal tract (24,25), and it is defined as a potentially
malignant gastroenteric tumor, causing impairments to
patients (26,27). In recent years, anti-cancer drug resis-
tance remains one of the most significant challenges to
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Figure 3. Knockdown of CCDC26 induced imatinib resistance in gastrointestinal stromal tumors (GIST) cells. A, Expression of CCDC26
in GIST-T1 and GIST-882 cells by real time PCR. ***P <0.001 vs GIST-T1. B, Cell viability of GIST-T1 and GIST-882 cells in the
presence of different concentrations of imatinib by CCK-8 assay. C, The interfering efficiency validation of CCDC26 siRNA by real time
PCR. **P<0.01, ***P<0.001 vs Negative siRNA (Student’s t-test). D, CCK-8 assays were performed to determine the cell viability
of GIST-T1 and GIST-882 cells treated with CCDC26 siRNA or control siRNA in the presence of different concentrations of imatinib.
E, EDU assay was employed to examine cell proliferation in GIST-T1 and GIST-882 cells cultured with imatinib (GIST-T1, 41.97 uM;
GIST-882, 56.90 uM) and treated with CCDC26 or control siRNA ( x 200 magnification; bars: 100 uM). The number of EDU positive cells
was counted. **P <0.01 vs imatinib (Student’s t-test (parametric); Mann-Whitney test (non-parametric)). F, Flow cytometric analysis of
apoptotic GIST-T1 and GIST-882 cells transfected with control or CCDC26 siRNA and treated with imatinib for 48 h, **P <0.01 vs
imatinib (Student’s t-test (parametric); Mann-Whitney test (non-parametric)).

successful treatment of cancer (28). Although the mechan-
ism of drug resistance has not been fully elucidated, many
studies have demonstrated that INcRNAs might be a key
regulator in drug resistance and showed potential in clinical
application (29,30). Furthermore, up to now, there are few
reports on the functions of IncRNAs in GIST progression
and imatinib resistance. In this study, we explored the role
and mechanism of IncRNA CCDC26 in imatinib resistance
in GIST cells and demonstrated for the first time that
CCDC26 enhanced imatinib sensitivity by downregulating
IGF-1R expression.

It had been revealed that IncRNAs might play an
important function in cancer by regulating a series of critical
biological functions, including cell proliferation, apoptosis,
and drug resistance (9,31). For example, IncRNA CPS1-IT1
could significantly reduce cell proliferation, migration, and
invasion capacities, and accelerate cell apoptosis by sup-
pressing epithelial-mesenchymal transition (32). IncUCA1
overexpression and miR-27b inhibition increased ADR,
DDP, and 5-FU resistance and reduced ADR-induced cell
apoptosis in gastric cancer cells (33). The functional roles
of IncRNAs in GIST indicate its potential employment as
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biomarkers and therapeutic targets in GIST (34). Upregula-
tion of HOTAIR is associated with GIST malignancy (35). In
the present study, we firstly screened six IncRNAs involved
in drug resistance in previous studies in GIST cells following
imatinib treatment. We found that the level of CCDC26,
which was rarely studied, was reduced in a time-dependent
manner in two GIST cell lines cultured with imatinib. To
obtain insight on the role of CCDC26 on imatinib resistance
of GIST, we examined cell viability and proliferation, and
apoptosis activity demonstrating that CCDC26 knock-
down induced GIST imatinib resistance and decreased
the imatinib-induced apoptosis of GIST compared with
the imatinib alone treatment group. These results
indicated CCDC26 could regulate imatinib resistance
of GIST, which could be a target to reversing imatinib
resistance.

IGF-1R is a receptor tyrosine kinase, binds to its ligand
IGF1 and IGF2, and regulates Ras-Raf-ERK-MAPK and
PIBK-AKT-mTOR signaling pathways (36). IGF-1R is
implicated in many cancers and plays an essential role
in cancer development and progression (37). In a previous
study, IGF-1R was upregulated in a subset of GISTs and
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concentrations of imatinib for 48 h.

over-expressed in wild type and pediatric GISTs (22). IGF-
1R inhibitors were shown to have a potential for combined
approaches in patients with pediatric GIST and adult wild
type GIST (38). In our study, we also demonstrated IGF-
1R upregulation in GIST cells following imatinib treatment.
Knockdown of IGF-1R significantly improved sensitivity
to imatinib in GIST cells. Though the definite role of IGF-
1R in imatinib resistance in GIST has not yet been fully
elucidated, it has been reported that some IncRNAs could
regulate IGF-1R (39,40). However, there was no report
about CCDC26 and IGF-1R. In this study, we first revealed
that CCDC26 interacted with IGF-1R, which could pull
down IGF-1R protein, and CCDC26 knockdown up-
regulated IGF-1R. Moreover, we demonstrated that IGF-
1R knockdown reversed CCDC26 inhibition-mediated
imatinib resistance. These results indicated that IGF-1R
was a modulator of CCDC26 mediated sensitivity altera-
tion. Therefore, we demonstrated a CCDC26/IGF-1R axis
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