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NSD1- and NSD2-damaging mutations define a
subset of laryngeal tumors with favorable
prognosis
Suraj Peri1, Evgeny Izumchenko2, Adrian D. Schubert 2,6, Michael J. Slifker1, Karen Ruth1, Ilya G. Serebriiskii3,

Theresa Guo2,4, Barbara A. Burtness5, Ranee Mehra2,4, Eric A. Ross1, David Sidransky2,4 & Erica A. Golemis 3

Squamous cell carcinomas of the head and neck (SCCHN) affect anatomical sites including

the oral cavity, nasal cavity, pharynx, and larynx. Laryngeal cancers are characterized by high

recurrence and poor overall survival, and currently lack robust molecular prognostic bio-

markers for treatment stratification. Using an algorithm for integrative clustering that

simultaneously assesses gene expression, somatic mutation, copy number variation, and

methylation, we for the first time identify laryngeal cancer subtypes with distinct prognostic

outcomes, and differing from the non-prognostic laryngeal subclasses reported by The

Cancer Genome Atlas (TCGA). Although most common laryngeal gene mutations are found

in both subclasses, better prognosis is strongly associated with damaging mutations of the

methyltransferases NSD1 and NSD2, with findings confirmed in an independent validation

cohort consisting of 63 laryngeal cancer patients. Intriguingly, NSD1/2 mutations are not

prognostic for nonlaryngeal SCCHN. These results provide an immediately useful clinical

metric for patient stratification and prognostication.
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Squamous cell carcinomas of the head and neck (SCCHN)
are highly heterogeneous, arise from multiple anatomical
sites, and are characterized by aggressive local invasion and

overall poor prognosis. While oropharyngeal SCCHN is sub-
classified into human papillomavirus-initiated (HPV+) and HPV-
negative (HPV−) disease, most HPV– cases arise from the oral
cavity and larynx, with a smaller number of cases originating
from the hypopharynx and oropharynx. Tobacco use and alcohol
consumption are major risk factors for laryngeal carcinomas,
which account for nearly 25% of SCCHN and are associated with
high recurrence after treatment and limited overall survival (OS).
Patients who are candidates for organ preservation are typically
treated with a combination of chemotherapy and radiation,
whereas those with high T stages often undergo surgery followed
by adjuvant treatment.

Because treatments can be associated with significant mor-
bidity, there is intense interest in identifying prognostic bio-
markers and defining tumor subtypes that more accurately
identify high-risk patients who may benefit from intensified
therapy or novel targeted therapy trials. Molecular characteriza-
tion of SCCHN to identify tumor subclasses associated with
clinical outcomes1, 2, using mutation3, 4, epigenomic5, 6, and
expression profiling1, 7, including The Cancer Genome Atlas
(TCGA)8, has focused on tumors of the oral cavity and oro-
pharynx, and the biology of HPV+ vs. HPV– disease1, 2, 9, 10. The
TCGA analysis identified laryngeal cancer subclasses, of atypical,
classic, basal, and mesenchymal types based on mRNA profiling.
However, these subclasses were not prognostic. Other studies
using TCGA data have shown prognostic differences in SCCHN
subtypes, including larynx, based on differences in intratumor
heterogeneity10. However, no comprehensive analyses have
identified prognostic molecular differences informative for the
mechanism.

In this study, we analyzed data for SCCHN using a recently
developed integrative clustering approach11 that simultaneously
assesses DNA mutation, copy number variation (CNV), methy-
lation, and gene expression, for 256 cases of SCCHN for which
complete data for these parameters and clinical prognosis are
available in the TCGA. This analysis identified two distinct
clusters of laryngeal cancer, associated with strong prognostic
value, and showed that mutations in the genes NSD1 and NSD2
entirely segregated to the cluster with favorable prognosis. Sub-
sequent validation in an independent set of 63 laryngeal cancer
samples again demonstrated that mutations in NSD1 or NSD2 are
independent favorable prognostic biomarkers for laryngeal
cancer.

Results
Integrative clustering of SCCHN. Using the methods recently
described by Mo et al.11, we performed integrative analysis for
256 cases of SCCHN for which complete data on DNA mutation,
CNV, methylation, and gene expression were available in the
TCGA. This distinguished 5 clusters that segregate tumors by
disease site and HPV status (Fig. 1a; Supplementary Data 1, 2,
and 3), and are associated with differences in OS (Fig. 1b).
Overall, 73% (25/34) of HPV+ tumors, predominantly derived
from the oropharynx, fell in cluster 5, marked by better prognosis
(2-year OS 87%, 95% CI 68.8–95.0%), as has been previously
reported for this disease type8, 9. The 152 HPV– oral cavity
tumors were found predominantly in clusters 1 (39%) and 2
(37%), with the remaining 24% distributed throughout clusters 3,
4, and 5. While TP53 mutations were predominant in oral and
laryngeal clusters, mutation of TP53 was low in cluster 5 (27%),
reflecting the high incidence of HPV + oropharyngeal tumors,
where TP53 is inactivated posttranslationally by the virally
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Fig. 1 Integrative clustering of 256 SCCHN tumors. a The top three rows indicate TP53 mutation (black), HPV status (purple=HPV–; yellow=HPV + ; and
gray= unknown), and tumor site. Mutation panels indicate individual mutations in the top 25% most commonly mutated genes; note the marked
mutational burden in clusters 3 and 4. CNV indicates the heatmap of chromosomal gains (red) and losses (blue). For gene expression, the heatmap
indicates overexpression (red) or underexpression (blue) of genes; specific gene IDs are provided in Supplementary Data 1, and gene ontology (GO)-
enriched categories are provided in Supplementary Data 2. For methylation, a heatmap plots β values of the probes as unmethylated (blue) or methylated
(red). Genes corresponding to probes and enriched GO categories for methylation are listed in Supplementary Data 1 and 3, respectively. b Kaplan–Meier
(KM) overall survival (OS) curves for all clusters identified in a. The p-value (log-rank test) indicates a strong evidence against the null hypothesis that the
risk of death is similar across all SCCHN clusters. c. KM OS curves for clusters 3 and 4
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encoded E6 oncoprotein2. The recently described prognostic
3pdel/TP53 subclass12 (Supplementary Fig. 1) is common in all
HPV– clusters except cluster 2 (6%).

Most laryngeal tumors segregated to clusters 3 (25%) and 4
(39%), with the remaining 36% distributed evenly across the
other clusters. SCCHN tumors in cluster 3 were associated with
significantly higher OS vs. those in cluster 4 (2-year OS: 81.6%
(95% CI 63.3–91.3%) vs. 54.6% (95% CI 37.9–68.5%); log-rank
test: p= 0.001; Fig. 1c). This marked survival difference between

laryngeal tumors in clusters 3 and 4 was intriguing, because the
existence of two different laryngeal subtypes of prognostic value
based on molecular profiles has not been previously described.

Identification of prognostic laryngeal cancer clusters. Given
that laryngeal tumors were distributed into two major clusters
with differences in OS, we repeated integrative clustering analysis
focusing solely on the 69 laryngeal tumors, resulting in two
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Fig. 2 Integrative clustering of 69 laryngeal tumors. a The top panel shows larynx L1 (red) and L2 (blue) clusters. Mutation count for each sample is
provided as a color gradient. NSD1 and TP53 bars indicate mutations in these genes (black). Smoking status (red= current smoker; pink= former
smoker< 15 years; cyan= former smoker> 15 years; blue= lifelong nonsmoker; gray= status unavailable) and HPV status (purple=HPV–; yellow=HPV
+; gray= unknown) are indicated. Also see Fig. 1 Legend and Methods. b Kaplan–Meier curves depicting OS of L1 and L2 clusters (p-value from log-rank
test). c Mutation grid map of genes commonly mutated in L1 and L2. Each vertical bar represents a patient; black dot= truncating mutation; green=
missense mutation. d KM curves for 116 laryngeal samples with NSD1 mutation impact determined by MutationAssessor39, Polyphen, and other function
prediction algorithms. e KM curves for higher-stage laryngeal tumors (clinical stage 3 and 4) based on the presence or absence of predicted damaging
mutations in NSD1 or NSD2
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distinct clusters, L1 and L2 (Fig. 2a). These clusters had a sig-
nificant difference in survival, with a 2-year recurrence-free sur-
vival (RFS) probability of 77.5% (95% CI 50.1–91%) vs. 44.7%
(95% CI 29.6–58.7%; log-rank test: p= 0.010), and OS probability
of 77.5% (95% CI 50.1–91%) vs. 53% (95% CI 37–66.7%; log-rank
test: p= 0.047) (Fig. 2b and Supplementary Fig. 2a). No sig-
nificant differences in age, gender, race, TNM stage, or reported
smoking or alcohol status distinguished the clusters (Supple-
mentary Data 4, 5, 6, and 7). Cluster L2, associated with poor
outcome, differed from cluster L1 in methylation (Supplementary
Data 8 and 9) and gene expression (Supplementary Data 8 and
10), as well as lower mutation burden (mean 169.4 vs. 258.9 per
tumor; Wilcoxon rank sum test: p= 0.014), but not copy number
changes. Among the genes reported as most commonly mutated
in laryngeal cancer (including TP53, CDKN2A, PIK3CA, DNAH5,
NOTCH, FAT1, NFE2L2, and NSD1), most of them were mutated
at similar frequencies in L1 and L2 (Fig. 2c). However, NSD1 was
a striking exception, with inactivating mutations limited to L1
(Fisher’s exact test: p< 0.001) (Fig. 2a, c and Supplementary
Fig. 3a), and 15 of 21 tumors displaying such mutations. Further
analysis of inactivating NSD1 mutations across the 5 SCCHN
clusters indicated that these mutations concentrate in cluster 3
(Supplementary Data 4 and 5). Although NSD1 mutations were
detected in oral tumors (Supplementary Data 11), the association
of NSD1 mutation with better OS and RFS was specific to lar-
yngeal tumors, suggesting a biological difference between tumor
subsites (Supplementary Figs. 2b and 3b).

Damaging mutations in NSD1 and NSD2 are prognostic of OS.
We therefore analyzed the mutational profile of NSD1 in the
complete TCGA set of 116 laryngeal tumors for which at least
mutational data were available among a total of 526 SCCHN cases
(Supplementary Data 4 and 5). Among NSD1 mutations in these
tumors, 30 were predicted to be highly damaging based on
multiple algorithms (Supplementary Data 5). In this expanded
cohort, a significant association with improved OS (log-rank test:
p= 0.018) was seen for high-impact NSD1 mutations (2-year OS:
87.7%; 95% CI 66.3–95.9%) in comparison to low-impact or no
NSD1 mutations (2-year OS 59.6%; 95% CI 47.1–70%) (Fig. 2d).
We further extended this analysis, restricting investigation of OS
to stage 3 and 4 tumors to increase specimen homogeneity, and
also including consideration of the less-frequently mutated NSD1
paralog NSD2. This resulted in a striking increase in association
between NSD1/2 mutation and OS, with a median OS of
95 months for patients with either gene mutated (2-year OS: 92%;
95% CI 71.6–97.4%), vs. 32.5 months for those with both genes of
wild type (2-year OS: 59.4%; 95% CI 45.6–70.8%; log-rank test: p
= 0.002) (Fig. 2e). In contrast, similar analysis of highly damaging
NSD1 and NSD2 mutations in HPV– oral, oropharynx, and
hypopharynx tumors did not reveal a significant association with
OS (Fig. 3a). No significant association was observed between
NSD1 or NSD2 mutational status and tumor stage in larynx
(Fisher’s exact test: p= 0.35; Table 1) and oral tumors (Fisher’s
exact test: p= 0.3). The results were specific to mutation rather
than altered gene expression, as among cases with NSD1 and
NSD2 wild-type alleles in oropharynx and hypopharynx tumors
(Fig. 3b) and laryngeal tumors (Fig. 3c), NSD1 mRNA expression
levels did not predict survival. Altogether, these observations that
indicated loss-of-function mutations in NSD1 or NSD2 are
associated with better prognosis specifically in laryngeal cancer.

To validate these results, we compiled a set of 63 previously
unstudied laryngeal tumors from surgical resections obtained
before any treatment, including chemotherapy or irradiation
(Table 1). Using Fluidigm amplification and Illumina sequencing,
we identified damaging mutations for NSD1 (21/63) (Fig. 4a) or

NSD2 (3/63) (Fig. 4b) in 24 of the 63 cases, with nonsense (38%)
and missense (29%) mutations predominating. In addition to
these, we identified nine patients with gene variants predicted to
be nondamaging, with several known to be nonrare variants based
on data in the Exome Aggregation Consortium (ExAC)13: we
considered these as benign (Supplementary Data 12). The 24
patients with damaging NSD1 or NSD2 mutations had extended
OS (2-year OS: 87.5%; 95% CI: 66.1–95.8%) vs. the 39 with benign
or no mutations (2-year OS: 61.5%; 95% CI: 44.5–74.7%) (log-
rank test: p< 0.001) (Fig. 4c). In extended comparison of the 116
TCGA specimens and of the 63 validation specimens with defined
NSD1/NSD2 mutation status (Table 1), no significant differences
in race, nodal status, or clinical stage distinguished patients with
laryngeal tumors with or without these mutations. No significant
association was found with age and gender in the TCGA cohort;
interestingly, in the validation cohort, which contained a number
of patients diagnosed at an earlier age, NSD1/2 mutation was
associated with earlier diagnosis (Wilcoxon rank sum test: p<
0.001) and gender (Fisher’s exact test: p= 0.022).
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Fig. 3 Kaplan–Meier curves for overall survival (OS) based on NSD1/NSD2
mutation and NSD1 expression status in nonlaryngeal and laryngeal tumors,
based on TCGA data. a Kaplan–Meier curves showing OS for nonlaryngeal
HPV– (including oral, oropharynx, and hypopharynx) SCCHN. Red and blue
curves show NSD1- and NSD2- mutated, and NSD1/NSD2 wild-type cases,
respectively; OS differences are not significant (p-value from log-rank test).
b Kaplan–Meier curves showing OS differences for patients with NSD1 wild-
type oral cancers trichotomized based on low (< or 15% quantile),
intermediate (>15% and <85% quantiles), or high (>85% quantile) NSD1
expression. c Kaplan–Meier curves showing OS for patients with NSD1/
NSD2 wild-type laryngeal cancers, with NSD1 expression trichotomized as in
b
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One study has suggested a relationship between NSD1
depletion, DNA hypomethylation, and differential expression of
some miRNAs8, including enriched expression of miR-200a/b,
which is involved in epithelial–mesenchymal transition (EMT)14.
However, that work analyzed a combined set of oral and laryngeal
tumors. Considering only the laryngeal tumor set, we find several
miRNAs to be differentially expressed between L1 and L2 (Fig. 5a).
However, no selective enrichment for miRNAs associated with
EMT distinguished these clusters. Further, enrichment analysis for
an EMT15 mRNA signature showed comparable enrichment in L1
and L2 (Fig. 5b, c), likely reflecting the advanced stage of most
laryngeal specimens in the TCGA. These results bear further
investigation in an extended laryngeal cohort for which mRNA
and miRNA data are available, since as an important caveat, the
lack of significant association might, in part, represent the limited
statistical power available when considering only laryngeal cases.
However, extending our analysis, we carried out Gene Set
Enrichment Analysis (GSEA)16 comparing genes differentially
expressed between L1 and L2 (differing by 775 genes with DESeq2
Wald test17: p< 0.001; Supplementary Data 13). Interestingly, this
identified several gene sets (Supplementary Fig. 4 and Supple-
mentary Data 14) involved in stem cell maintenance and hypoxic
response that are elevated in L2, compatible with the poorer
overall survival of patients in this class.

Discussion
Management of laryngeal cancer is complex where therapeutic
resistance contributes to significant morbidity. Moreover, in
patients that are candidates for total laryngectomy have decreased
quality of life. Therefore, prognostic biomarkers for therapeutic
intensity and predictive biomarkers for radiosensitivity (and thus
suitability for larynx preservation) are urgently needed. Using
integrative clustering of four different genomic data of SCCHN
including mutation, copy number, gene expression, and methy-
lation obtained from TCGA, we identified a novel laryngeal cluster
with a significant difference in OS where the prognostic laryngeal
cancer subtype is associated with mutations in NSD1 and NSD2.

Inherited mutations in NSD1 cause Sotos syndrome18, and are
implicated in a number of cancers19, as is mutation of NSD220. As
lysine methyltransferases, NSD1 and NSD2 influence gene
expression by methylating specific histone sites (H3K36, H4K20)
and nonhistone targets such as NF-κB19, 21, 22. Mutations in NSD1
have been associated with extensive demethylation of DNA in
CpG islands at promoters, as well as intergenic regions8, 23,
compatible with the significantly lower levels of methylation
observed in cluster L1 (Fig. 2a, Supplementary Data 15 and 16).
Using germline DNA from Sotos syndrome patients, it has been
shown that loss of NSD1 function is associated with extensive
DNA hypomethylation24. H3K36 methylation is known to induce

Table 1 Results from statistical analyses for association between clinical characteristics and NSD1 and NSD2 (NSD) mutation
status for laryngeal samples in the discovery (TCGA) and validation cohorts

TCGA Validation

NSD1/2 mutated,
n= 32

Wild type,
n= 84

p-value* NSD1/2 mutated, n= 24 Wild type, n= 39 p-value*

n % n % n % n %

Patient Characteristics
Age, yrs Median (range) 61.5 (38–80) 62 (39–83) 0.51 51.5 (36–86) 65 (44–83) <0.001
Age, yrs group 0.49 <0.001

36–49 4 12.5 7 8.3 11 45.8 2 5.1
50–69 24 75.0 59 70.2 10 41.7 25 64.1
70–86 4 12.5 18 21.4 3 12.5 12 30.8

Gender 1.00 0.022
Female 5 15.6 15 17.9 9 37.5 4 10.3
Male 27 84.4 69 82.1 15 62.5 35 89.7

Race 0.15 0.88
Black 2 6.3 17 20.2 5 20.8 7 17.9
White 29 90.6 62 73.8 18 75.0 31 79.5
Other/unknown 1 3.1 5 6.0 1 4.2 1 2.6

Smoking status 0.34
Current 19 59.4 39 46.4 smoking data unavailable
Former 13 40.6 36 42.9
Never 0 0.0 6 7.2
Unknown 0 0.0 3 3.6

Alcohol use 0.75 alcohol data unavailable
Yes 23 71.9 53 63.1
No 9 28.3 29 34.5
Unknown 0 0.0 2 2.4

Tumor Characteristics
Clinical stage 0.35 0.72

Stage I,II 4 12.5 12 14.3 5 20.8 12 30.8
Stage III 11 34.4 16 19.1 7 29.2 7 18.0
Stage IV 16 5.0 53 63.1 10 41.7 17 43.6
Stage unknown 1 3.1 3 3.6 2 8.3 3 7.7

Node status 0.67 0.58
Node Neg (N0) 18 58.1 39 49.4 12 54.5 23 63.9
Any positive (N+) 13 41.9 40 50.6 10 45.5 13 36.1
Unknowna 1 5 2 3

*p-value is from Fisher’s exact test for categorical variables or Wilcoxon rank- sum test for age (continuous)
aNodal status “unknown” excluded from comparison by mutation status
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localized activity of DNA methyltransferases25–27; for example,
the de novo DNA methyltransferase DNMT3B is recruited to
gene body regions that are enriched for H3K36me3 by SETD225,
28. Interestingly, a recent publication that showed decreased
dimethylation of lysine in H3 histones (H3K36me2) in cases of
SCCHN was associated with damaging NSD1 mutations29,
although this study did not identify a prognostic role for NSD1
mutations, consider a possible role for NSD2, or assign prognostic
value specifically to tumors of the larynx. While they have been
reported as tumor suppressive in neuroblastoma and glioma30,
amplification and overexpression of NSD1 have been reported as
oncogenic in some settings, suggesting context-dependent
action31. While other studies1, 3, 4, 8 have cataloged distinct
prognostic molecular features for HPV + and oral tumors, this
work for the first time distinguishes molecular subclasses of lar-
yngeal tumors with markedly different prognosis, with a positive
outcome specifically associated with mutation of NSD1 and
NSD2. This classification markedly differs from earlier TCGA

analyses, which segregated laryngeal tumors into non-prognostic
“classical” and “atypical” subclasses lacking the separation of
NSD18 (Fig. 6; Table 2). Developmentally, the larynx differs sig-
nificantly from the oral cavity, with the larynx, trachea, and lung
arising from the endoderm and a common lung bud, while the
oral cavity and hypopharynx arise from a complex interplay of
ectodermal and endodermal lineages32. Such lineage differences
may underlie distinct activities of NSD1 and NSD2 in these
SCCHN settings.

The fact that mutations associated with hypomethylation of
histones and DNA is provocative for laryngeal cancer, given the
emergence of DNA demethylating agents such as azacitidine (5-
aza-CR) and decitabine (5-aza-CdR) as promising agents in clin-
ical trials33. Our data suggest that demethylating agents and EZH2
inhibitors may be particularly effective in tumors lacking NSD1 or
NSD2 mutations, and clinical trials seeking to establish survival
benefits for these drugs in patients with laryngeal tumors should
restrict study populations to those with NSD wild-type tumors.
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Fig. 4 Validation of NSD1 and NSD2 mutations in an independent laryngeal cancer cohort. a Plot indicates the location of nonsense (black), frameshift
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Also of potential clinical relevance, the methyltransferase
EZH2 selectively methylates H3K27, and several clinical trials are
evaluating the efficacy of EZH2 inhibition in treating solid tumors
and hematologic malignancies34, 35. Although the use of EZH2
inhibitors in the context of NSD mutations has not been studied,
one recent report suggested a promising mechanism for applica-
tion of EZH2 inhibitors in NSD2-overexpressing myeloma cells36.

Our study suggests that NSD mutation status may play an
important role in the efficacy of such inhibitors in patients with
laryngeal cancer. Finally, although no significant association
between clinical parameters (i.e., tumor stage and nodal status)
and NSD1/2 mutation status was observed in either the discovery
or validation sets, further evaluation in additional independent
cohorts is required. In sum, this work nominates NSD1 and NSD2
as rapidly exploitable prognostic biomarkers and targets for
functional scrutiny in laryngeal cancers.

Methods
Clustering of molecular data for all SCCHN cases. Molecular data sets
describing somatic mutations, CNV, gene expression based on RNA-seq, and
methylation for 256 SCCHN cases were obtained from the TCGA data portal
(https://tcga-data.nci.nih.gov/tcga/) (August 2014 data freeze) and The Cancer
Genome Atlas Genome Data Analysis Center (GDAC) Firehose website (https://
confluence.broadinstitute.org/display/GDAC/). To maintain coherency of analysis
across different data layers and cancer types, we used normalized data classified as

levels 2 and 3 in the TCGA data hierarchy37 as the starting point of our analysis. Of
the 528 samples that are available from TCGA consortium, 256 samples had
profiling data for all 4 genomic data sets (mutations, CNV, gene expression, and
methylation), and were used for integrative clustering.

For somatic mutation data, all genes with nonsynonymous or nonsense variants
from among these 256 cases were identified and used to construct a binary matrix
after applying a 5% mutation frequency cutoff to remove infrequently mutated
genes. For copy number variation data, we applied the strategy described in the
supplement of Mo et al.11 to obtain a set of nonredundant regions and
representative copy number quantifications for each region. Germline copy
number variants and regions from chromosomes X and Y were removed from the
data using standard approaches38. For detailed analysis to identify NSD1 missense
variants as deleterious or benign, we used the MutationAssessor/Functional Impact
Score (FIS)39, Polyphen, and a Grantham score available through SeattleSeq
annotation server (http://snp.gs.washington.edu/SeattleSeqAnnotation138/).
MutationMapper40 was used to display mutations graphically. For analysis of OS
associated with NSD1 mutation in larynx cancer, the full set of 116 laryngeal
tumors present in the 526-specimen SCCHN TCGA collection containing
mutational data was analyzed.

For gene expression data, gene-level RPKM values (reads per kilobase per
million mapped reads) from the TCGA data portal were log2-transformed and
subjected to a variation filter: the 5000 genes with the highest median absolute
deviation (MAD) across all 256 SCCHN specimens were retained. Similarly, level 3
methylation data (β values from the Illumina HumanMethylation450k bead chip)
were filtered to retain 2000 probes with the highest MAD across samples. These β
values were then logit-transformed into M-values41.

The resulting four matrices were used as input to integrative clustering analysis
using iClusterPlus11. A plot relating the percentage of explained variation to the
number of clusters suggested five clusters as an appropriate choice for clustering
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Fig. 5 Enrichment profiles of EMT signatures and microRNAs in L1 and L2. a Heatmap showing miRNAs with significant differences in expression profile
between the L1 and L2 clusters. Blue indicates underexpression, yellow indicates overexpression, and gray indicates expression data not available. b Box
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tumors. X-axis indicates the L1 and L2 clusters, while the Y-axis indicates normalized gene counts of miRNA for both L1 (blue box) and L2 (red box)
samples. c Waterfall plot depicting the enrichment score for each laryngeal tumor against a gene set of 76 genes forming an EMT signature as defined by
Byers et al.15, using the ssGSEA algorithm. Blue and red bars indicate tumors in L1 and L2 clusters, respectively. Y-axis shows the enrichment scores. A
positive enrichment score indicates the extent to which genes in EMT signature are overexpressed in each tumor sample. Similarly, a negative enrichment
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the 256 SCCHN samples (Supplementary Fig. 5a). To analyze segregation of 3p loss
and TP53 mutation among the clusters, a median of the segmentation mean
(MSM) values between chromosome 3p25 and 3p13 was calculated. Cases with
MSMs < −0.342 are identified as cases with 3p loss. These samples were further
segregated into two classes based on the mutant and wild-type status of TP53 gene.

Clustering of data to define L1 and L2 classes. We also applied the methods
described above to cluster the 69 laryngeal samples among the 256 fully char-
acterized SCCHN samples. The processing of the data described above for
expression, CNV, and methylation was applied to larynx samples. A submatrix of
the SCCHN mutation matrix representing the larynx samples was extracted. The
resulting data matrices were analyzed using iClusterPlus; given the relatively small
sample size, a two-cluster solution was selected (Supplementary Fig. 5b). The
resulting data were depicted as a heatmap showing mutation, copy number, gene
expression, and methylation. The mutation counts were shown as a gradient where
red and white indicate maximal (1463) and minimal mutation counts (3) (Fig. 2a).
The mutational burden between L1 and L2 clusters was compared by applying
Wilcoxon rank sum test.

In order to identify methylation differences distinguishing the L1 and L2
laryngeal clusters, we applied the following data-processing steps. First, probes with
all β values less than 0.1 were removed. Next, probes were mapped to 158,848 CpG
islands and 6127 promoter sites, and were aggregated to obtain median M-values
for each such region. These steps were performed in R using the Bioconductor
package wateRmelon43. Subsequently, we applied Wilcoxon rank sum tests to
compare methylation levels between L1 and L2. FDR-adjusted p-values were
calculated with the Benjamini–Hochberg method44, and a 5% FDR cutoff was
applied to select differentially methylated regions.

We identified differentially expressed genes between clusters L1 and L2 using
DESeq217, which models RNA-seq read counts with a negative binomial
distribution. A total of 775 genes were identified as differentially expressed (Wald
test p< 0.001 and log2-fold change > 1 and< −1) and were used for enrichment
analysis with Gene Set Enrichment Analysis (GSEA)16, which was run using default
parameters and ‘classic’ as the enrichment statistic. For NSD1 wild-type SCCHN
tumors, to evaluate whether NSD1 gene expression was associated with survival
differences in laryngeal or oral cancer cases, we used Voom-normalized45 RSEM
(RNA-Seq by Expectation Maximization) expression data. NSD1 expression was
trichotomized into low (<or= 15% quantile), intermediate (>15% and <85%
quantile), or high (> or = 85% quantile), and survival distributions were estimated
and compared using Kaplan–Meier method and log-rank test, respectively, on the
resulting groups.

We evaluated the differential miRNA expression between L1 and L2 clusters
based on miRNA quantification reported as reads per million miRNA mapped,
establishing significance by applying Wilcoxon rank sum tests. FDR-adjusted p-
values were calculated with Benjamini–Hochberg method, and a 5% FDR cutoff
was applied to select differentially expressed miRNAs. To visualize the differentially
expressed miRNAs, we applied hierarchical clustering on miRNA expression data
using average linkage clustering with Pearson’s uncentered correlation as a distance
measure. The resulting clustered data table was used as input to Java TreeView
(http://jtreeview.sourceforge.net) to generate a heatmap. In order to assess the
enrichment of epithelial–mesenchymal transition signatures in L1 and L2 clusters,
we applied single-sample GSEA (ssGSEA)46 using the EMT signatures curated
from Byers et al.15 and the available gene sets from MSigdb resource. The resulting
enrichment scores were depicted as waterfall plots.

The functional significance of genes that contributed to segregation of five
SCCHN and two laryngeal clusters was assessed using enrichment of gene ontology
terms (GO) (biological process and molecular function) present in the DAVID
bioinformatics resources47 (Supplementary Data 2, 3, 8, and 9). To identify and
depict the relationship between tumors from L1 and L2 clusters and gene
expression- derived subtypes defined by TCGA, we obtained 279 tumor class labels
indicating the subtypes from TCGA8. We stratified the relationship between these
two groups using StratomeX tool48. In a StratomeX plot (Fig. 6), columns indicate
TCGA mRNA classification (atypical, basal, classical, and mesenchymal) and
laryngeal L1 and L2 tumors. The bands between these two groups indicate the
intersection of tumor samples between two groups. The width of the band shows
the level of intersection.

Validation of NSD1/2 mutations and prognostic significance. A validation set
for laryngeal tumors was compiled from the biosample registries of Sidney Kimmel
Cancer Center at Johns Hopkins School of Medicine (JH) and Fox Chase Cancer
Center (FCCC) (with clinical characteristics summarized in Table 1). Study pro-
tocols from both institutions were reviewed and approved by the institutional
review board (IRBs) from both institutions, and informed consent was received
from all human patients included in the study. All tumors from JH cohort were
fresh frozen tumors, while FCCC samples were formalin-fixed paraffin embedded
(FFPE). All patients who were treated with chemotherapy or radiotherapy prior to
their surgery were excluded, as were tumor samples from patients with synchro-
nous diseases including esophageal and lung cancers. We included those cases for
which definitive dates for diagnosis, treatment modalities, disease recurrence or
metastasis, and time of death or last contact were available. A total of 99 samples
were identified from both JH (n= 68) and FCCC (n= 31) biosample repositories
for evaluation of NSD1/2 mutation status. Based on exclusion criteria, we excluded
15 and 7 samples from JH and FCCC cohort from the analysis, respectively.
Samples with low DNA yield or quality were eliminated (JH: n = 3; FCCC: n= 11).
After accounting for exclusion and inclusion criteria listed above, we obtained 63
(JH: n = 50; FCCC: n= 13) samples from both institutions. All samples were
reviewed by a pathologist to reconfirm the diagnosis prior to DNA extraction.
Frozen tissues were cut into 5-μm sections, stained with H&E, and examined by
light microscopy. Lesions with a low neoplastic cellularity (<70%) were addition-
ally microdissected to remove contaminating normal cells before DNA extraction.
Paraffin-embedded slides were microdissected to obtain > 70% neoplastic cells.
Neoplastic cellularity was estimated from the sequential slides, which highly reflect
the cellularity of the section used for DNA sequencing.

DNA isolation. Genomic DNA was isolated from fresh frozen samples by the
QIAamp DNA Kit (Qiagen). DNA extractions from FFPE-derived material were
performed using standard protocols as previously described49. All samples were
quantified using a DeNovix NanoDrop spectrophotometer (Wilmington, DE).

NSD1/NSD2 amplification. Primers pairs (91 for NSD1 and 49 for NSD2) were
designed by Fluidigm (San Francisco, USA) to cover all exons of the NSD1/NSD2
genes and exon–intron boundaries. A total of 100 ng of genomic DNA from
neoplastic lesions were used for PCR amplification of target genes using an Access
Array™microfluidic chip according to the manufacturer’s instructions. Each sample
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Fig. 6 Relationship between SCCHN TCGA (mRNA derived) subtypes, and
integrative clustering-derived laryngeal subtypes assigned in this study. The
left column represents the distribution of laryngeal tumors among the 256
SCCHN specimens (laryngeal, oral, oropharynx, and hypopharynx)
assigned by the TCGA as atypical (AT), basal (BA), classical (CL), and
mesenchymal (ME) subtypes. Gray and orange bands indicate the
redistribution of TCGA laryngeal tumors to the L1 and L2 prognostic
clusters defined in this work (right). The plot shows that the majority of
tumor samples in L1 cluster belong to the atypical (52%) and classical
(33%) subtypes, whereas the majority of L2 tumor samples belong to
classical (42%), atypical (27%), and mesenchymal (21%) subtypes

Table 2 Relationship between SCCHN TCGA (mRNA
derived) subtypes, and integrative clustering-derived
laryngeal subtypes assigned in this study

TCGA clusters L1 larynx cluster L2 larynx cluster

Atypical (AT) 11 (52%) 13 (27%)
Basal (BA) 1 (5%) 5 (10%)
Classical (CL) 7 (33%) 20 (42%)
Mesenchymal (ME) 2 (10%) 10 (21%)

Numbers of samples and percentage of intersection between laryngeal clusters and TCGA
clusters
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was combined with primer pairs in a microfluidic chip, and thermal cycling on a
Fluidigm FC1 Cycler was performed. PCR products were then collected using the
integrated fluidic circuit controller and transferred to a 96-well plate. In a separate
PCR, Illumina sequence-specific adaptors and barcodes were attached. Prior to
sequencing, all amplified samples were checked on the Agilent 2100 BioAnalyzer to
determine if the PCR product in the DNA reaction has the expected size. All fresh
frozen samples passed the quality control (QC). Twelve FFPE-derived samples did
not pass the QC and were excluded from sequencing. A total of 50 fresh frozen and
13 FFPE cases were considered for subsequent downstream analysis.

Sequencing. Pooled and indexed PCR products were sequenced on the Illumina
MiSeq instrument following standard protocols with the following modifications:
Illumina-specific sequencing primers were substituted with a mixture of two
Fluidigm-specific primer pairs (FL1 and FL2). Quality and coverage metrics for
MiSeq sequencing data indicated a mean coverage depth of 2000 reads. The
sequencing reads were aligned to human genome (Hg19) using BWA50. The
resulting BAM files were processed using the GATK best-practices pipeline51 with
no mark duplicate step. We applied the Mutect2 algorithm (based on Mutect52)
with default parameters using the tumor samples-only mode. Variants were filtered
at an 8% variant allele fraction53. The resulting VCF files were processed using
ANNOVAR54 for functional annotation of identified variants, and with indepen-
dent variant calling using HaplotypeCaller (GATK) and VarScan55 for comparison.
Most of the NSD1/2 damaging variants were identified by all three variant callers.
In assessing the functional impact of missense variants, we applied a rule that at
least 3 functional impact prediction algorithms (viz. SIFT56, Polyphen257, LRT58,
Mutation Assessor39, and FATHMM59) predict functionally damaging variants.
For predicting overall survival differences among NSD1/2 loss-of-function muta-
tions, we combined benign- and wild-type alleles into one group.

Survival analyses. Clinical information including follow-up and new tumor event
(NTE) data for 526 SCCHN samples (including the 256 samples chosen for clus-
tering) were obtained from the TCGA website (July 2015). OS and RFS distribu-
tions were estimated using Kaplan–Meier methods. OS was based on vital status
and “days to death” (CDE_ID:3165475) from initial pathologic diagnosis. Indivi-
duals who were still alive at the time of the last follow-up were censored. The RFS
outcome included time to first recurrence or death (with an individual censored if
neither event was observed prior to the last follow-up). Recurrence was defined as
the appearance of either “locoregional recurrence” or “distant metastasis”, and time
to first recurrence was estimated from “days to new tumor event after initial
treatment” (CDE_ID: 3392464). As this item starts at the end of initial treatment
rather than the date of pathologic diagnosis, the recurrence-free interval may be
underestimated; data on the interval from diagnosis to initial treatment were not
available in this data freeze. Survival curves were compared with log-rank tests, and
these calculations were done using the R ‘survival’ package60. To test the asso-
ciation between clinical parameters (and the presence of mutations) and cluster
membership, Fisher’s exact or Wilcoxon rank sum tests were used. These tests were
two-sided with 5% type 1 error. Wherever necessary, significance levels of multiple
comparisons were corrected for type 1 error rates using Benjamini–Hochberg false-
discovery rate (FDR) method44. To test the association between clinical parameters
(and the presence of mutations) and cluster membership, or the presence/absence
of damaging mutations of NSD1 or NSD2 genes, two-sided Fisher’s exact and
Wilcoxon rank sum tests were used, and p-values < 0.05 were considered
significant.

Data availability. De-identified patient variant data that support the findings of
this study are available from the corresponding authors upon request, and are
submitted to the database of Genotypes and Phenotypes (dbGaP). Primary results
from data analyses were done using standard R and Bioconductor packages
including iClusterPlus and Survival. R scripts calling routines from these packages
will be available from the corresponding author upon request.
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