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Abstract: Although tryptophan (Trp) and its metabolites, such as serotonin (5-HT) and kynurenines (KYNs), are strong modulators of 
emotional behavior, the metabolic pathway(s) responsible for this physiological modulation is not fully understood. Two of the initial 
rate-limiting enzymes of the kynurenine pathway for Trp metabolism are known: tryptophan 2,3-dioxygenase (TDO) and indoleamine 
2,3-dioxygenase (IDO). Based on our comparison of tdo-deficient (Tdo-/-) mice with their wild-type littermates, we report that TDO 
is the physiological modulator of systemic Trp, brain Trp and serotonin (5-HT), and, therefore, anxiety-related behavior. Tdo-/- mice 
showed increased plasma concentrations of Trp (about 10-fold) and its metabolites 5-hydroxyindoleacetic acid (5-HIAA) and kynure-
nine, as well as increased levels of Trp (about 20-fold), 5-HT and 5-HIAA in the hippocampus and midbrain. The Tdo-/- mice also 
showed anxiolytic modulation in the elevated plus maze and open field tests, and increased neurogenesis during adulthood, as evidenced 
by double staining with 5-bromo-2′-deoxyuridine (BrdU) and neural progenitor/neuronal markers. TDO also plays a role in the mainte-
nance of brain morphology in adult animals by regulating neurogenesis in the hippocampus and subventricular zone. Collectively, our 
results in Tdo-/- mice indicate a direct molecular link between Trp metabolism and mental status in mice. Tdo-/- mice will likely prove 
useful both in identifying the physiological role of Trp metabolism in normal brain function and in psychiatric disorders and in develop-
ing new therapeutic interventions for mental disorders. In addition, the potential role(s) and molecular mechanisms of TDO in metabolic 
mental disease(s) and in emotional behavior are discussed.
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Introduction
Mood and its dysregulation, anxiety-related disorders 
in particular, have become increasingly important 
medical and social issues.1 Although some have pro-
posed that tryptophan (Trp), an essential amino acid, 
plays a role in mood disorders, the molecular mecha-
nisms linking Trp and anxiety-related behavior are 
yet to be fully understood. The association of Trp and 
its metabolites with these conditions suggests that 
regulation and dysregulation of enzyme(s) in the Trp 
metabolic pathways may play a key role in the molec-
ular mechanisms responsible for mood disorders.

Since the isolation of kynurenine (Kyn) by 
Kotake and his colleagues in 1927, Trp metabo-
lism has been extensively studied (Fig. 1). Three 
major Trp metabolic pathways have been described. 
One is the  so-called serotonin pathway, which 
includes serotonin  (5-hydroxytryptamine, 5-HT)2 
and  5-hydroxyindoleacetic acid (5-HIAA) (Fig. 1A). 

The first and rate-limiting enzyme in this path-
way is tryptophan hydroxylase (TPH; tryptophan 
 5-monooxygenase) (EC 1.14.16.4). Fujisawa and his 
colleagues purified two types (isoforms) of TPH from 
the brain and mastocytoma (and the pineal gland), 
TPH2 (brain-specific isoform of tph3) and TPH1, 
respectively, and these two types showed slightly dif-
ferent characteristics.4,5 Loss-of-function-type tph2 
gene mutations reportedly are associated with depres-
sion, and this variation could influence personality traits 
and disorders related to emotional dysregulation.6,7 
The regulatory mechanisms of TPH by aquayamycin 
and phosphorylation of TPH by Ca2+/calmodulin-
 dependent protein kinase II  (CaM-kinase II), cAMP-
dependent protein kinase (PKA) and protein kinase 
C (PKC) have been extensively studied by Hayaishi, 
Fujisawa and his colleagues.4,8,9  However, further elu-
cidation of the basic contribution of this pathway and 
its regulatory mechanism(s) might be crucial for under-
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Figure 1. A schematic diagram of Tryptophan (Trp) metabolic pathways. Three major Trp metabolic pathways are also known. The conversion of Trp to 
5-hydroxytryptamine (serotonin, 5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) via the serotonin (5-HT) pathway (A), and to indole metabolites, such as 
indoleacetic acid (IAA), via the transamination pathway (B). The kynurenine (Kyn) pathway, which is the central pathway for Trp degradation in the liver (c). 
over 95% of dietary Trp, which is not used in protein synthesis, is metabolized by this pathway (c). Tryptophan 2,3-dioxygenase (TDo) and indoleamine 
2,3-dioxygenase (IDo) are the initial and rate-limiting key enzymes in the same step of the Kyn pathway.
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standing the physiological and pathophysiological role 
of TPH on mood and emotion. The second Trp meta-
bolic pathway is the transamination pathway, which 
includes indolelactic acid (ILA) and indoleacetic acid 
(IAA) (Fig. 1B). Only a small proportion of dietary Trp 
is used in protein synthesis or in the 5-HT and transam-
ination pathways, and most Trp (.95%) is metabo-
lized via the Kyn pathway predominantly in the liver 
under normal physiological conditions (Fig. 1C).10 The 
 initial and rate-limiting enzyme in the pathway, which 
converts Trp to N-folmylkynurenine, was initially 
isolated by Kotake et al from rabbit liver, and was 
termed tryptophan pyrrolase (EC 1.13.11.11).11 The 
enzyme was later called tryptophan  2,3-dioxygenase 
(TDO) after Hayaishi et al discovered its ability 
to incorporate atmospheric molecular oxygen into 
N-formylkynurenine.12–15 Mammalian full-length tdo 
cDNA was initially cloned from the rat liver cDNA 
library as an open reading frame of 1218 bp consisting 
of 406 amino acids by Nakamura and his colleagues.16 
The tdo gene is predominantly expressed in the adult 
liver by terminally differentiated hepatocytes. In addi-
tion to TDO, indoleamine 2,3-dioxygenase (IDO) (EC 
1.13.11.52) from rabbit small intestine, which converts 
Trp to N-formylkynurenine (Fig. 1),17 was cloned in 
1990.18 IDO is thought to function outside the liver 
including sensitive responses to immune signals under 
highly specific conditions, such as pregnancy and auto-
immune diseases (see reviews:13,19,20), and the contribu-
tion of IDO in controlling systemic Trp concentrations 
has not been well defined.

By comparison with the 5-HT pathway, the 
physiological/pathophysiological role of the Kyn 
pathway in emotional/psychiatric behavior and the 
role of Trp metabolism is poorly understood. How-
ever, in addition to the Trp metabolites 5-HT, Kyn are 
neuronal modulators in the central nervous system 
(CNS),10 and the Kyn pathway is now considered a 
potential target for the development of novel drugs 
for neurological diseases.21,22 In comparisons with 
IDO, TDO has long been considered a more impor-
tant enzyme in the physiological regulation of Trp in 
the body, and antidepressants have been postulated to 
act by directly inhibiting the activity of TDO, while 
TDO inhibitors are considered useful for the treatment 
of depression when co-treated with Trp.23,24 Thus, we 
used studies of tdo-deficient mice (Tdo-/- mice) to 
assess the role of TDO under physiological conditions 

in systemic Trp, brain Trp and 5-HT synthesis, brain 
development/morphology, neurogenesis (all of which 
has been suggested to relate to emotional/psychiatric 
behaviors), and anxiety-related behavior in vivo.

Materials and Methods
Construction of the targeting vector  
and disruption of the tdo locus
Construction of the targeting vector and disruption of 
the tdo locus were performed as previously described.25 
Briefly, a 12.5-kb tdo genomic fragment containing 
exons 1 to 3, was used to construct a tdo targeting vec-
tor (Fig. 2) by replacing exons 1 and 2 of the tdo frag-
ment that contained the translation initiation site with 
the PGK-neomycin (Neo) cassette. After backcrossing 
with wild-type C57BL/6 mice for five generations, 
homozygous tdo mutants and wild-type animals (Tdo+/+ 
mice) were obtained by intercrossing heterozygotes.

Measurement of amino acids  
in plasma and brain
Plasma was deproteinated with 5% sulfosalicylic 
acid followed by centrifugation. Hippocampus and 
midbrain were rapidly micro-dissected after perfu-
sion with ice-cold Hanks’ balanced salt solution, 
homogenized in a solution containing 0.5 M HClO4 
and 0.025% EDTA, incubated on ice for 10 min, 
and centrifuged at 12,000 × g and 4 °C for 20 min. 
The collected supernatants were filtered and either 
used in analysis of amino acid concentrations or stored 
at -80 °C until use in other analyses.25 The amino acid 
concentrations in the plasma and brain samples were 
immediately analyzed using automated ion-exchange 
chromatography with lithium-based buffers on a high-
speed amino acid analyzer (L8500, Hitachi).

Quantitation of Trp metabolites
Plasma and brain samples were prepared and 
 concentrations of Trp, Kyn, KYNA, ILA, IAA, 5-HT, 
and 5-HIAA were determined using HPLC-FD and 
HPLC-UV systems with a reverse-phase C18  column, 
as previously described.25–27

Histological and immunohistochemical  
analyses
Male mice were deeply anesthetized and  transcardially 
perfused with PBS (pH 7.4), followed by  perfusion 
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with 4% paraformaldehyde (PFA) in PBS, and 
 processed for H&E staining and immunostaining as 
previously described. Primary antibodies to the fol-
lowing proteins were used: Ki67 (DAKO), nestin (BD 
Pharmingen), GFAP (Glial fibrillary acidic protein; 
Chemicon), DCX (doublecortin; Santa Cruz), NeuN 
(Neuronal Nuclei; Chemicon), βIII-tubulin (TuJ1; 
Covance Research), MAP2 (Microtubule-associated 
protein 2; Sigma), and PSA-NCAM (Poly-Sialated 
Neural Cell Adhesion Molecule; AbCys S.A.). After 
washing with PBS, either Alexa Fluoro 488- or Alexa 
Fluoro 546-conjugated secondary antibodies and the 
nuclear counter-staining reagent TO-PRO-3 iodide 
(Molecular Probes) in PBS were used. The slides 
were visualized using an LSM 510 PASCAL confo-
cal microscope (ZEISS).

Administration of BrdU and staining
BrdU injections and subsequent analyses were per-
formed as previously described25,28 using an antibody 
specific for BrdU (Oxford Laboratory). In brief, to 
assess the dividing progenitor cells, 13-week-old 
male mice were intraperitoneally administered BrdU 
(4 × 75 mg/kg) every 2 h and were then sacrificed 24 h 
after the last BrdU injection. To determine the fate 
of BrdU-labeled cells, 9-week-old male mice were 
administered BrdU (4 × 75 mg/kg) and were allowed 
to survive for 28 days after the last BrdU injection. 

Brain sections were prepared as described above. For 
BrdU immunohistochemistry, sections were fixed in 
acetone, then were treated with 1 N HCl for 30 min 
at 60 °C to denature the DNA, followed by rinsing 
in PBS. Subsequent processes were identical to those 
described above.

Cell quantitation
Four weeks after the injection of BrdU, sections were 
prepared and the number of cells immunopositive 
for NeuN, TuJ1, PSA-NCAM, DCX, Nestin, GFAP, 
BrdU, and/or Ki67 in the hippocampus of  13-week-old 
Tdo+/+ and Tdo-/- male mice (n = 3 for each genotype) 
were quantified as previously described.25,28 In these 
experiments, cells were totaled for the surfaces of 
the GCL and SGZ in the DG in one of at least five 
sections per animal (n . 3 per group) between 1.7 
and 2.06 mm caudal to the bregma, according to the 
method of Franklin and Paxinos.29

elevated plus maze (EPM), and open  
field (OFT) test
epM
Tdo+/+ and Tdo-/- male mice (13–15 weeks old, n = 16 
and n = 11, respectively) were tested in an EPM accord-
ing to Lister29 with slight modifications. In brief, the 
plus maze consisted of two open (30 × 6 cm) and two 
wall-enclosed arms (30 × 6 × 15 cm) connected by a 
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Figure 2. generation of tdo-deficient (Tdo-/-) mice. A targeting strategy for tdo gene disruption. exons are represented as numbered boxes (coding 
regions; black boxes). Neo, pgK-neomycin resistant cassette; DT-A, diphtheria toxin-A.
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central platform (6 × 6 cm). The  apparatus was  elevated 
40 cm above the floor. Each mouse was placed in the 
central zone facing an open arm, which the animal 
usually would enter first. Exploratory behavior was 
monitored during the 5-min test period.

oFT
The OFTs for 13∼15-week-old Tdo+/+ and Tdo-/- male 
mice (n = 22 and n = 20, respectively) were performed 
according to Paylor et al,30 as follows. The open 
field consisted of four adjacent activity  chambers 
(40 × 40 × 40 cm) surrounded by walls with the field 
lit by overhead lightning. Mice were released into 
the center of the field and allowed to roam the open 
field for 30 min. The total distance moved, time spent 
and the distances moved in the margins of the field 
(within 10 cm of the walls) and in the center zone 
(area .10 cm from the walls) were measured. The 
ratio of the distance moved in the center to the total 
distance moved was calculated and used as a measure 
of anxiety-related behavior.

Statistical analysis
Statistical analysis was carried out using StatView 
software version 5.0.1 (SAS Institute). A Student’s 
t-test was used for the amino acid and histological 
analyses. The other data were analyzed by one-way 
factorial analysis of variance (ANOVA). When the 
P-value by ANOVA was less than 0.05, statistical sig-
nificance was determined using a Fisher’s protected 
least significant difference (PLSD) test (post-hoc test). 
All behavioral tests (EPM, and OFT) were conducted 
between 9:30 AM and 1:00 PM and all  experiments 

were monitored by an automated video motility sys-
tem and were analyzed with  EthoVision Ver. 2.3.19 
software (Noldus), as previously described.24

Results
generation of mice with targeted disruption  
of the tdo gene locus
Homologous recombination was used to disrupt the tdo 
gene in mice.25 The targeting vector was constructed by 
replacing genomic tdo exons 1 and 2 (containing the 
translational initiation site) with the  PGK-neomycin 
(Neo) cassette (Fig. 2). Heterozygous mice were 
crossed with C57BL/6 mice for five generations. 
 Interbreeding of the resultant heterozygotes produced 
wild-type (Tdo+/+), heterozygote (Tdo+/-), and homozy-
gote (Tdo-/-) mice.25 Disruption of the tdo gene was 
verified by the absence of tdo mRNA transcripts and 
TDO protein in the liver, and the null mutation of tdo 
was also verified by assay of enzyme activity in liver 
extracts.25 The mutant mice were born at ratios that fol-
lowed Mendelian inheritance, and they matured for at 
least one year with no apparent gross abnormalities.

Role of TDo in systemic (plasma) Trp  
and its metabolites
By comparing Tdo-/- mice to their wild-type litter-
mates (Tdo+/+ mice), we demonstrated that, in the 
presence of intact IDO, plasma Trp concentrations 
were increased approximately 10-fold in Tdo-/- com-
pared with Tdo+/+ adult mice with no obvious differ-
ences in the concentrations of other essential amino 
acids (Fig. 3).25 By contrast, no difference was seen 
in plasma Trp concentrations between ido-knock-out 
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Figure 3. effect of tdo deletion on systemic and brain Trp. plasma amino acid composition and Trp metabolites in 18- to 20-week-old Tdo+/+ and Tdo-/- mice 
(n = 9 each). plasma Trp concentration (A), the ratio of Trp to large neutral amino acids (LnAA) (B) and brain Trp levels (c) were determined using an 
amino acid analyzer in 18- to 20-week-old Tdo+/+ and Tdo-/- mice.25 
note: These data represent means ± S.e.
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mice,31 which possess one of the two enzymes that 
convert Trp to formylkynurenine17,20 (Fig. 1), and 
their wild-type littermates.25 The plasma concentra-
tions of the Trp catabolites (5-HIAA, ILA, and IAA) 
were also elevated in Tdo-/- mice relative to Tdo+/+ 
mice.25 These results clearly demonstrated that TDO 
is largely responsible for controlling the systemic 
concentrations of Trp and, in turn, indirectly contrib-
utes to the plasma levels of Trp catabolites from both 
the 5-HT and transamination pathways, even in the 
presence of IDO under physiological conditions.

Role of TDo in brain Trp levels and brain 5-HT  
synthesis in the presence of intact TpH
Given that large neutral amino acids (LNAA) compete 
for transport across the blood-brain barrier (BBB),10 
the elevation in plasma concentrations of Trp, but 
not the other LNAA, and the consequent increase in 
the Trp/LNAA ratio in Tdo-/- mice suggested increased 
transport of Trp across the BBB. Indeed, based on 
HPLC analysis, Trp concentrations in the brain were 
more than 20-fold higher in Tdo-/- than in Tdo+/+ 
mice. By contrast, there were no obvious differences 
in the other amino acids, except a slight modulation 
in methionine concentration (Fig. 3).25 We therefore 
predicted that 5-HT synthesis in the brain would be 
altered in Tdo-/- mice. Levels of 5-HT in the brain 
were higher in Tdo-/- than in Tdo+/+ mice, and those 
of the 5-HT metabolite 5-HIAA were nearly 5-fold 
higher, indicating accelerated 5-HT synthesis and 
turnover in these mice (Fig. 4). Because tryptophan 
hydroxylase (TPH) is believed to be the rate-limiting 
enzyme for 5-HT biosynthesis, we asked whether the 
mRNA content or enzyme activity of tph2 would be 
modulated by TDO deletion. However, the mRNA 
level and enzyme activity of TPH were not modified 
in Tdo-/- mice, indicating that TDO, rather than TPH, 
was the dominant regulator of 5-HT biosynthesis 
in vivo under physiological conditions (Fig. 4).25

Role of TDo in anxiety-related behavior:  
TDo as a molecular link between mood  
(anxiety) and Trp in the mice
We next assessed whether TDO deletion modulated 
anxiety-related behavior by analyzing anxiety-related 
behavior using an elevated plus maze test (EPM) and 
an open-field test (OFT).25 In the EPM, adult Tdo-/- 
mice spent significantly more time in the open arms 

of the maze than the Tdo+/+ mice with no obvious dif-
ferences in locomotor activity or time spent in the 
center zone (Fig. 5A). Moreover, in the OFT, Tdo-/- 
mice showed increased center locomotion and more 
time spent in the center zone, but there was no differ-
ence in total movement in the open field (Fig. 5B).25 
These results clearly indicate that depletion of TDO 
had an anxiolytic effect without affecting locomotor 
activity or the behavioral phenotype of Tdo-/- mice.

Collectively, the results of the present study sug-
gest that TDO is a molecular link between mood 
(anxiety) and Trp in mice (Fig. 6). Whether TDO(s) 
is a possible molecular link between mood and Trp 
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Figure 4. Modulation of brain Trp, 5-HT and its metabolite 5-HIAA by 
tdo disruption. The alteration of Trp, 5-HT and its metabolite 5-HIAA in 
the brain, hippocampus and midbrain of 18- to 20-week-old Tdo-/- mice.  
In Tdo-/- mice, the concentrations of Trp in the liver and plasma were 
markedly elevated by tdo disruption, and elevated plasma Trp passes 
into the brain through an amino acid transporter at the blood-brain bar-
rier (BBB), thus increasing the levels of Trp in the brain. Subsequently, 
elevated brain Trp is metabolized to 5-HT by TpH and then to 5-HIAA.
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and its metabolites in human is the next issue to be 
examined. The role of IDO in mood is another impor-
tant issue that has yet to be examined.

Increased neurogenesis in the dentate gyrus  
(Dg) of the hippocampus of Tdo-/- mice
To assess the mechanism by which TDO modulates 
anxiety-related behavior, we examined neurogenesis 
in the hippocampus of Tdo-/- mice. It was previously 
reported that the effects of stress and antidepressant 
treatment on hippocampal neurogenesis is parallel to 
behavioral changes in animal models.32 Moreover, 
ablating hippocampal neurogenesis renders antide-
pressants inactive in behavioral paradigms used to 
model antidepressant response and anxiety-like behav-
ior in mice.28 Tdo-/- mice showed a greater number of 
deeply stained cells with neurite-like spines, resem-
bling neurogenic cells, in the subgranular zone (SGZ) 
and granular cell layer (GCL) of the  hippocampus 

(Fig. 7).25 Some of these cells were immunopositive 
for PSA-NCAM, which is a marker for migrating 
neuroblasts. This result suggests that TDO modulates 
neurogenesis in the hippocampus. To further examine 
whether these cells are involved in neurogenesis, we 
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injected mice with BrdU with/without the neurogenic 
markers nestin (a neural stem cell marker), GFAP 
(a neural stem cell marker), DCX and PSA-NCAM 
(neural progenitor/migrating neuroblast markers), and 
NeuN (a neuronal marker). Although no significant 
difference in the total number of cells in the SGZ and 
the GCL was observed between genotypes, the total 
number of BrdU-labeled cells was markedly higher 
in Tdo-/- than in Tdo+/+ mice. These results suggest 
enhanced proliferation in Tdo-/- mice and raise the 
concern that the survival rate of newly generated 
cells may differ between wild-type and Tdo-/- mice. 
Furthermore, a significant increase in BrdU-positive 

cells co-labeled with neural stem cell markers (nes-
tin and GFAP), neural progenitors (DCX and PSA-
NCAM) and a neuronal marker (NeuN) in the SGZ 
of Tdo-/- mice was detected, indicating the promotion 
of both neural stem and progenitor cell proliferation 
in the SGZ of these mice (Fig. 7). Intriguingly, these 
increases were greater than those observed following 
antidepressant injection,28 suggesting a marked accel-
eration of de novo neurogenesis in Tdo-/- mice, which 
might be a mechanism by which anxiety-related 
behavior was altered in Tdo-/- mice. Of note, when we 
examined another brain region where neurogenesis 
occurs in adult mice, Tdo-/- mice showed increased 
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Figure 7. Increased neurogenesis in the hippocampus of Tdo-/- mice compared with wild-type littermates. Paraffin-embedded brain sections (5 µm) were 
stained with H&e, and immunostained with nestin/BrdU, pSA-nCAM/BrdU and neun/BrdU. A schematic view of the hippocampus is illustrated. The 
boxed area shows a magnified view of the DG of the hippocampus. Arrows illustrate the acceleration of neurogenesis in 13-week-old Tdo-/- mice at the 
levels of neural stem cells, neuroblasts and new neurons as revealed by nestin/BrdU, pSA-nCAM/BrdU, and neun/BrdU immunostaining, respectively. 
Cells were counted in .3 matched sections from the Dg of each mouse (n = 3 for each genotype). 
notes: These data represent means ± S.e. *P , 0.05  versus Tdo+/+ mice (AnoVA, Scheffe’s post-hoc test). In a similar manner, neurogenesis in the SVZ 
and oB in 13-week-old mice was also accelerated as  previously described.25
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proliferation of neural progenitors in the subventricu-
lar zone (SVZ), a marked reduction in the size of the 
lateral ventricles, and accelerated adult neurogenesis 
in the GCL of the olfactory bulb. These results dem-
onstrated that neurogenesis was also accelerated in 
the SVZ of adult Tdo-/- mice.25 Thus, TDO modulates 
neurogenesis not only in the hippocampus, but also 
in the SVZ.

Discussion
Here, we present evidence that Tdo-/- mice showed 
a marked increase in Trp levels in systemic circula-
tion as well as increased Trp and 5-HT levels in the 
brain, even in the presence of intact TPH. Therefore, 
our results indicate that TDO is the key regulatory 
enzyme that modulates systemic Trp concentrations, 
ie, hepatic TDO plays an essential role in the regu-
lation of Trp in systemic circulation (blood) (Fig. 8). 
In addition to Trp, 5-HT and 5-HIAA levels were also 
elevated in the brain. Although precise mechanisms 

have to be determined, our findings raise the possibility 
of the  following working model in mice, as shown in 
Figuer 8. Trp in the blood passes through the BBB by 
competition with neutral amino acids. In the brain, Trp 
is metabolized to 5-HT and 5-HIAA. Therefore, TDO 
regulates both systemic and brain Trp and 5-HT, and 
its metabolite 5-HIAA (Fig. 4). Taken together, these 
results suggest that TDO, which is expressed predom-
inantly in the liver, plays an essential and dominant 
role in the in vivo regulation of brain levels of 5-HT, 
even in the presence of TPH1 (in the periphery and 
pineal gland) and TPH2 (in the brain) (Fig. 8).

Because the role of the 5-HT transporter in anxiety-
related behavior has been reported,34 and 5-HT/5-HT1A 
receptor-mediated neurogenesis is critically involved in 
the anxiolytic effects of anti-depressant fluoxetine in 
adult animals,28 a likely mechanism is that the dele-
tion of hepatic TDO  modulates plasma Trp and sub-
sequently increases brain Trp and 5-HT, which in 
turn accelerates neurogenesis in the  hippocampus 

Trp

Trp

Trp

Glucocorticoid

tdo mRNA regulation

Stress

Environment etc.

Food (Trp) 

Kyn

Kyn

Kyn

Blood

Blood

Brain

Brain

Liver Food intake as a mood
modulator

TDOs

TDOs

TPH

5-HT

TDOs

Modulation of neurogenesis and
anxiety-related behavior

Figure 8. Working model of the role of TDo in modulating anxiety-related behavior and neurogenesis via regulation of Trp metabolism in the mice. 
Increased consumption of dietary Trp increases plasma Trp, which is predominantly metabolized to Kyn via hepatic TDo. Up-regulation of TDo activity 
in the liver (or locally expressed in the brain33) by stress or stress-induced glucocorticoids would decrease systemic Trp levels, Trp transport to the brain 
through the BBB, and 5-HT biosynthesis in the central nervous system, even in the presence of intact TpH. In contrast, a decrease in TDo activity via 
gene knockout or genetic mutation would increase systemic and brain Trp/5-HT levels. These changes in Trp metabolism by TDo regulation/dysregulation 
would modulate anxiety-related behavior and adult neurogenesis, and may be largely involved in the modulation of mood by stress and environment under 
physiological conditions or psychiatric diseases. In addition, changes in the level of Kyn by TDo may also contribute to anxiety-related behavior. Because 
TDo and its novel variants are expressed in the brain in vivo33 and in primary human neurons in vitro,54 it seems likely that brain TDo(s) may play a role, 
and we intend to investigate the role of brain TDo(s) in a future study.
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and modulates  anxiety-related behavior (Fig. 8). It 
should be noted that mRNA for TDO and its variants 
is expressed in various regions of both the develop-
ing and adult brain,33 suggesting that local expression 
of TDOs modulates specific regions of the brain and 
is responsible for subsequent behavioral changes. 
Moreover, altered immunoreactivity against TDO 
has been reported in patients with schizophrenia and 
depression.34

We also used Tdo-/- mice to evaluate the role 
of TDO in anxiety-related behavior. Although the 
mechanism remains to be elucidated, TDO dele-
tion had clear anxiolytic effects, as revealed by two 
 classical behavioral tests. In agreement with our data, 
 Yamasaki et al reported a marked reduction in the 
level of tdo mRNA in the hippocampus of alpha-CaM-
Kinase II deficient mice (alpha-CaMKII+/-), which 
show an anxiolytic phenotype.35 In addition, Kyn 
levels are associated with the regulation of behavior 
in insects, and increased plasma Kyn concentrations 
are positively associated with endogenous anxiety in 
humans. Therefore, we cannot exclude the possibil-
ity that anxiety-related behavior is also modulated 
by TDO-induced changes in Kyn, and possibly in 
other kynurenines as well.36,37 If the contribution of 
Kyn to anxiety-related behavior is indeed important, 
then TDO appears to be a key modulator of behav-
ior under physiological conditions via the control of 
both 5-HT and Kyn. This possible role of TDO dif-
fers from that of TPH, which has been considered a 
rate-limiting enzyme in the synthesis of 5-HT, but 
not of Kyn.

The role of stress and stress-induced glucocorti-
coids in affecting mood and anxiety is well known. 
Administration of glucocorticoids to rats elevates 
tryptophan-metabolizing enzymes and TPH in vivo, 
and administration of dexamethasone phosphate 
regulates TDO activity in the cells of control and 
adrenarectomized mice.38,39 In addition, a variety 
of substances including hormones, such as gluca-
gon, insulin and glucocorticoids, have been used 
to regulate both the activity and mRNA levels of 
TDO in rat liver40–43 in vitro44 in isolated primary 
hepatocytes.45–49 Indeed, stresses such as forced run-
ning, immobilization and exposure to cold increases 
rat liver TDO activity.50 Taken together, the results of 
the present study suggest that TDO might modulate 

mood and anxiety-related behavior, and possibly the 
psychiatric response to stress and the environment 
(Fig. 8).

In summary, the present study has resulted in the 
first evidence that TDO plays an essential role in 
the homeostasis of systemic and brain Trp metabo-
lism, including a dominant role in the regulation 
of the serotonergic pathway, under physiological 
 conditions. TDO also plays a role in adult neurogen-
esis and modulation of anxiety-related behavior, indi-
cating a role in higher brain functions.  Collectively, 
our results with Tdo-/- mice indicate a direct molecu-
lar link between Trp metabolism and mental  status. 
Because of the association of tdo2 (human tdo) 
gene polymorphism with attention deficit hyperac-
tivity disorder (ADHD), Tourette’s syndrome and 
autism,51–53 further elucidation of the role of TDO and 
its metabolites, such as Kyn, may identify the molec-
ular mechanisms responsible for not only systemic 
Trp metabolism, but also higher brain functions and 
diseases, including emotional behavior(s) and men-
tal and neurodegenerative disease(s). Identification 
of the molecular mechanisms provides a foundation 
for the development of new therapeutic interventions 
for these disorders.
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