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In the last few decades, Brain-Computer Interface (BCI) research has focused

predominantly on clinical applications, notably to enable severely disabled people

to interact with the environment. However, recent studies rely mostly on the use

of non-invasive electroencephalographic (EEG) devices, suggesting that BCI might

be ready to be used outside laboratories. In particular, Industry 4.0 is a rapidly

evolving sector that aims to restructure traditional methods by deploying digital tools

and cyber-physical systems. BCI-based solutions are attracting increasing attention

in this field to support industrial performance by optimizing the cognitive load of

industrial operators, facilitating human-robot interactions, and make operations in critical

conditions more secure. Although these advancements seem promising, numerous

aspects must be considered before developing any operational solutions. Indeed, the

development of novel applications outside optimal laboratory conditions raises many

challenges. In the current study, we carried out a detailed literature review to investigate

the main challenges and present criteria relevant to the future deployment of BCI

applications for Industry 4.0.
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1. INTRODUCTION

Recent advances in neuroscience and engineering led to the development of new applications
interfacing minds with machines, known as Brain-Computer Interface (BCI) technology. The
origins of BCI date back to the 1960s, with Delgado (1969) who notably developed an implantable
chip used to both stimulate the brain by radio and send electrical signals of the brain by telemetry,
allowing the subject to move about freely. A few years later, Vidal (1973) explored the use of
scalp-recorded brain signals in humans to implement a simple non-invasive BCI based on “visually
evoked potentials” (see Vidal, 1973). Those experiments paved the way for the development of
non-invasive BCI paradigms that made use of neuroimaging techniques as electroencephalography
(EEG), magnetoencephalography (MEG), functional magnetic resonance imaging (fMRI) and
functional near-infrared spectroscopy (fNIRS) (see Rao, 2013 for a comprehensive review). Indeed,
by translating the recorded neural activity into digital commands via mathematical and AI
methods (see Wolpaw et al., 2002) (Figure 1), BCI enables controlling external devices with
the brain (e.g., Padfield et al., 2019; Khan et al., 2020), such as a computer, a robot, or an
exoskeleton (e.g., Nuyujukian et al., 2018; Benabid et al., 2019; Moses et al., 2019). This ability is
particularly interesting in specific contexts where voice or motor commands cannot be used (e.g.,
Lin et al., 2014).
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FIGURE 1 | Brain-computer interface scheme.

Regarding the user’s task and the neural patterns of interest,
we can distinguish three main categories of BCI, namely, active,
reactive and passive BCI (see Kögel et al., 2019). Firstly, while
using an active BCI, the agent must intentionally modulate their
brain activity to bring out neural characteristics that will become
identifiable after mathematical processing and classification, as
Motor Imagery (MI) paradigm (e.g., Salvaris, 2014). Secondly,
reactive BCI relies on neural activity that is typically triggered by
an external stimulus—mostly visual or auditory—and that evokes
brain responses, such as P300 event-related potential (ERP) (e.g.,
Jin et al., 2012) or Steady State Evoked Potentials (SSEP) (e.g.,
Chen et al., 2017). Thirdly, passive BCI relies on brain activity
which is not voluntarily modulated by the user, in order to
evaluate psychological states such as drowsiness (e.g., Hongfei
et al., 2011; Dehais et al., 2018), frustration, or even cognitive
load (e.g., Roy et al., 2013; Myrden and Chau, 2017). More
details concerning the neurophysiological underpinnings, as well
as the advantages and limitations of these three BCI methods are
provided in section 3.1.

Thus, in the last two decades, many types of BCI techniques
and applications have emerged, especially in the clinical field
where it represents a promising technology for assisting
or rehabilitating neurological patients and contribute to the
faster reintegration of brain-injured patients (e.g., Chaudhary
et al., 2016; Verplaetse et al., 2016). However, recent advances
in neuroscience and technology, especially non-invasive and
portable brain imaging techniques related to EEG, have
encouraged the development of novel applications outside the
medical and scientific areas (e.g., Abdulkader et al., 2015; Rashid
et al., 2020). Notably, one might list the following fields of
education (e.g., Wegemer, 2019), entertainment (e.g., Bonnet
et al., 2013; Kerous et al., 2018; Ramchurn et al., 2018; Vasiljevic
and Miranda, 2020), biometrics authentification (e.g., Alariki
et al., 2018; Chan et al., 2018), or even civil and military aviation
(e.g., Dehais et al., 2018).

Recently, the industrial sector has also shown a growing
interest in BCI (e.g., Angrisani et al., 2018), where the
societal, economic and commercial impacts of this technology
could be important (e.g., Van Erp et al., 2012). Indeed, since
modern times, Industry has continuously seized on emerging
technologies to improve its efficiency and performance and each
industrial revolution has entailed deep socioeconomic changes
and challenges (see Morrar et al., 2017). The last industrial
revolution, also known as Industry 4.0, specifically harnessed
digital technologies such as AI, big data and analytics, or the
Internet of things (see Chunguang et al., 2020), which led to
a constantly evolving and intelligent automation of industrial
processes. However, it also raises important questions regarding
environmental, ethical and human factors (see Melnyk et al.,
2019). Interestingly, similar technologies are presently required
to develop sophisticated BCI, notably, to efficiently process brain
signals and emit commands to the connected device. Then,
regarding this technological compatibility, BCI applications
could theoretically constitute a potential extension of the
4th industrial revolution. Moreover, “Human enhancement”
provided by BCI techniques could represent a viable way to
conciliate industrial and societal concerns in a near future.

2. RESEARCH GOALS

To this day, the use of BCI techniques in Industry 4.0
remains theoretical, being mainly explored in academic articles
or exhibition demonstrators. In the following, we investigate
the potential benefits of implementing BCI and how it could
help to re-introduce humans within the industrial processes,
by facilitating the operator’s work and limiting potential risks
and human errors (e.g., Jinjing et al., 2021). Indeed, technical
and ethical limitations inherent in non-invasive BCI necessarily
hamper the expansion of this technology within operational
contexts (e.g., Rashid et al., 2020). Thus, the question of selecting
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the most suitable and relevant BCI technique for the industrial
sector arises, especially regarding its reliability, its generalizability
or its ease of use. In this context, we sought to explore the
criteria that will be decisive for the potential integration of
BCI in industrial settings regarding the current maturity of BCI
techniques. In the current review, we attempt to answer the
following question:

• Which BCI techniques are most likely to be deployed in future
industrial applications?

To this end, we carried out a detailed literature review of
the databases (Science direct, PubMed, IEEE, Springer, ArXiv,
ResearchGate, Google Scholar, MDPI, HAL) queried with the
following inclusive keywords: BCI, Brain-computer interface,
BCI and Industry 4.0, EEG-based BCI, BCI applications, BCI
challenges, Assistive technology associated to scientific studies
published between 2010 and 2021. Then, we extracted recent and
relevant empirical and review articles, conference proceedings,
research reports related to the usage of BCI in industrial
environments. Note that the exclusion criteria include “Invasive
BCI techniques, non-invasive BCI for both clinical applications
and non-industrial fields.” In addition, all the references that are
provided in the following sections serve as recent examples for
the identified BCI applications for Industry 4.0.

3. RESULTS AND DISCUSSION

3.1. BCI Applications for Industry 4.0
Theoretically, the deployment of BCI applications in Industry
4.0 could contribute to put the operator back at the center of
industrial processes. The possible industrial applications could be
categorized as follows: (1) safety at work, (2) adaptive training
and (3) device’s control (e.g., Tamburrini, 2014; Balderas et al.,
2015; Oztemel and Gursev, 2018).

3.1.1. Safety at Work: Passive BCI
Recently, there has been a growing interest in using EEG-
based BCI as a potential solution allowing to reduce safety
risks, while enhancing productivity and improving decisions
in operators and managers (e.g., Villalba-Diez et al., 2019).
Regarding technical aspects, this application would rely on the
use of passive BCI. Notably, the decomposition of EEG signal
into frequency bands represents a convenient way to identify
the user’s neurocognitive condition. For instance, many studies
have shown that the spectral power in alpha (8–13 Hz) and
theta (4–7 Hz) bands increase when a person feels fatigued (e.g.,
Craig et al., 2012; Dehais et al., 2018). Such modulation can
therefore constitute a first-rate indicator of the user’s arousal state
(e.g., Zhang et al., 2017). Changes in theta rhythm in frontal
sites and alpha rhythm in parietal sites (e.g., Borghini et al.,
2013), could also indicate a state of cognitive overload, which
has been linked to reduced performances in complex tasks (e.g.,
Aricò et al., 2018). Thus, by allowing user-state monitoring,
passive BCI could notably limit or prevent safety risks and
human errors without requiring any particular effort from
the user. Theoretically, this passive aspect makes it potentially
usable in multitasking contexts and does not induce additional

fatigue. However, passive BCI is subject to an important inter-
individual variability. Moreover, EEG band frequencies must be
carefully analyzed because similar spectral power patterns could
be associated to several mental states (e.g., Aricò et al., 2018).

Then, the neurofeedback provided by passive BCIs could
reinforce safety at work by preventing agents from committing
dangerous errors due to drowsiness or cognitive overload for
instance (e.g., Villalba-Diez et al., 2019). In fact, some industrial
sectors—including among others, manufacturing, quality control
or pharmaceutical industry—require operators to carry out a
large number of repetitive and sensible actions that directly
depend on the operator’s neurocognitive states (e.g., Villalba-
Diez et al., 2019). In this context, EEG-based BCI could allow
to monitor operators’ mental states like fatigue, stress, or loss
of vigilance which can be critical during dangerous activities. In
particular, fatigue monitoring is more considered as a valuable
tool in repetitive and automatic tasks such as driving, piloting
or quality control (e.g., Zhang et al., 2017; Huang et al., 2019).
For this reason, some solutions that integrate EEG captors within
worksite helmets (e.g., Li et al., 2014; Barkallah et al., 2015) or
under headwears (e.g., Zhang et al., 2017) have already been
proposed to warn users whenever a critical drowsiness threshold
is reached.

3.1.2. Adaptive Training: Passive BCI
Another emerging BCI application—also relying on passive BCI
technique—concerns adaptive training, which might reinforce
the learning process of complex industrial procedures. This
neurofeedback approach is already used in clinical settings,
to support learning or rehabilitate attention in children
with neurodevelopmental disorders (e.g., Papanastasiou et al.,
2020). Indeed, such monitored training would allow boosting
attentional processes while adapting task difficulty according to
cognitive load or vigilance, to optimize learning and prevent
frustration. In this context, Huang et al. (2019) proposed to
combine BCI with other technologies such as Virtual Reality
(VR) and/or Augmented Reality (AR) to make the learning task
even more immersive and efficient. Similarly, Nisiforou (2013)
proposed the use of eye tracking coupled with EEG to assess and
evaluate students’ cognitive dimensions.

3.1.3. Device’s Control: Reactive and Active BCI
Besides monitoring applications, another potential industrial
use case concerns cobots or machine’ s control. Both active
and reactive BCI paradigms could be relevant for this kind of
application. Regarding active BCI, motor imagery (MI-BCI) is
the most commonly used paradigm. During this task, the user
is typically required to imagine specific movements (e.g., for
limb), that allows controlling an external device in the same
way (e.g., a robot, an exoskeleton or an avatar etc.). Indeed,
imagining a movement typically produces neural activity that is
spatiotemporally similar to the activity generated during actual
movement, but smaller in magnitude (see Wolpaw et al., 1991;
Pfurtscheller et al., 1997; McFarland et al., 2000). Although
this method is particularly promising in the context of motor
disability, its main drawbacks stem from some limitations
of the EEG method itself. Notably, due to a low spatial
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resolution, it is not possible to localize accurately activation
sources within the same hemispheric sensorimotor cortex, which
prevents the reliable identification of fine motor movements
(e.g. distinguishing a movement of the whole arm from a
movement of the sole hand). This generally limits the number
of potential and reliable orders to 4 (e.g., Schlögl et al., 2005).
Another disadvantage of the MI paradigm relies on the EEG
low signal/noise ratio. Indeed, due to its non-invasive nature,
EEG recordings also contain irrelevant, non-brain signals like
environmental electromagnetic artifacts or peripheral nervous
transmissions. In addition, this technique requires a long training
phase to be properly mastered (e.g., Vidaurre et al., 2011) that can
last several days or weeks and which is incompatible with many
industrial contexts. Then, even after a substantial training phase,
more than 30% of individuals would remain BCI illiterate (e.g.,
Ahn et al., 2014; Lee et al., 2019), by staying unable to control the
device. Finally, motor imagery requires an intense concentration
from the user and is incompatible with other “real” movements
that would interfere with the thought command and ultimately,
with the BCI accuracy. Thus, MI paradigms prevents the user
from performing other tasks at the same time and necessarily
generates fatigue (e.g., Talukdar et al., 2019) which makes its
use rather inflexible. Despite all these limitations, MI training
session design is of vital importance for clinicians planning to
implement interventions adapted to participant health status,
age and gender. For that, numerous studies are attempting to
overpass these limitations—notably regarding the problematic
user-training phase—by proposing some guidelines that could
be useful to improve this critical dimension (e.g., Schuster et al.,
2011; Jeunet et al., 2016)

Regarding reactive BCI, the two most widely used and
reliable EEG markers are the P300 and SSVEP (steady-
state evoked potentials). P300 is a positive event-related
potential that is apparent whenever the user has noticed an
unexpected or a rare visual or auditory event (e.g., Walter
et al., 1964; Donchin and Smith, 1970). Although associated
to a fast training, this technique remains very sensitive to
surrounding noise and motor artifacts (e.g., Chamola et al.,
2020), preventing its use in a noisy or multitasking context.
In addition, a single command requires the user to focus
their attention on several consecutive events, including non-
relevant (non-rare) and relevant (rare and unexpected) ones,
which necessarily decreases the system’s speed (e.g., Lotte
et al., 2015) while being costly in terms of attentional
processes (fatigability).

As regards SSVEPs, the distinct potential commands are
displayed via a visual interface (e.g., screen or AR glasses),
icons that flicker at distinct frequencies (e.g., 10 Hz) represent
different options. Then, while the user is focusing on one
flickering option, visual neurons (i.e., from the primary visual
cortex) are synchronously discharging at the same rate, which
will ultimately allow the user’s choice to be identified with
classification algorithms (e.g., Middendorf et al., 2000; Faller
et al., 2010). Interestingly, SSVEP-BCI is less prone to inter-
individual differences, which enhances its accuracy (e.g., Lotte
et al., 2015) and reduces its illiteracy rate (e.g., Lee et al., 2019).
Moreover, it does not require a long training phase (e.g., Guger

et al., 2012) while the latency between the neural command
and the command execution can potentially be lower than in
other BCI paradigms. However, similarly to the P300 paradigm,
extended use can induce significant fatigue, due to the required
active concentration on stimuli. Another disadvantage of reactive
BCI is the need to use external stimuli to allow the agent to
make a choice. The exerted control is therefore limited to the
presented options and is not strictly endogenous. Moreover,
it requires an additional interface, such as a screen, which
decreases its portability (e.g., Cecotti et al., 2010). Regarding
this last limitation, recent works have attempted to create new
interface designs and stimuli that reduce fatigue and discomfort,
to promote a daily and long-term use of this BCI paradigm (see
Baek et al., 2019).

In industrial settings, an SSVEP-BCI combined with AR
glasses could facilitate making certain tasks hands-free (and
therefore, replace buttons/joysticks) for operators who control
machines (e.g., Angrisani et al., 2018, 2020). Looking further
ahead, one might also imagine that a MI-BCI could eventually
allow to quickly take over control of transport vehicles in case
of emergency braking. In this scenario, BCI must be sufficiently
advanced to allow a reliable transmission of the “thought”
braking command to the mobile device. It should also be faster
than our peripheral nervous transmission to become valuable
regarding accidents prevention, which is far from being the case
at present (e.g., Royer et al., 2010; Kim and Lee, 2017; Georgescu
et al., 2020).

3.2. Specifications and Limitations
Regardless the potential benefits that BCI could bring to Industry
and besides the actual weaknesses of EEG-based BCI, it is also
necessary to consider its current ethical, ergonomic and technical
limitations, before any operational development or usage.

The first limitation relates to ethics and acceptability thatmust
be further questioned and regulated regarding the individual
and societal impacts that industrial BCI applications might
have. Among other things, industrial BCI must ensure data
confidentiality and security given the sensible and personal
nature of recorded physiological signals (e.g., Burwell et al.,
2017). In addition to the operator consent, individual data must
be locally stored and processed. Then, the relevant extracted
information must be accessible to the sole concerned operators.
To be acceptable to the end users, the BCI system must provide
a real improvement of work conditions and/or safety by limiting
the risks in dangerous conditions, such as passive BCI. Presently,
non-invasive BCI for device control (active and reactive BCI)
remains too immature to get easily used and adopted by the
agents. According to Burwell et al., 2017, the need for regular and
challenging training sessions (e.g, Motor Imagery) may impose
physical, emotional, and financial burdens on the user (e.g.,
Fenton and Alpert, 2008) and it may require more cognitive
planning and attention than a user can achieve on a regular basis,
leading to frustration (e.g., Glannon, 2014).

Another crucial requirement for an effective adoption by
end-users concerns ergonomics (e.g., Li et al., 2014). More
precisely, BCI solutions must be non-invasive; comfortable to
wear; portable and not bulky to allow mobility in different

Frontiers in Human Neuroscience | www.frontiersin.org 4 August 2021 | Volume 15 | Article 705064

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Douibi et al. Toward EEG-Based BCI Applications for Industry 4.0

TABLE 1 | Levels of adequacy between industrial and technical BCI requirements based on the EEG, regarding potential industrial applications.

Active BCI Reactive BCI Passive BCI

Motor imagery P300 SSVEP Fatigue monitoring Cognitive load monitoring

Industrial applications Device control Device control Device control Safety, training Safety, training

Ethics Acceptability ++ ++ ++ ++ +

Ergonomics

and user

experience

Portability +++ ++ ++ +++ +++

Fatigability + ++ ++ +++ +++

Multitasking + + ++ +++ +++

Training/calibration + ++ +++ ++ +

Technical

Reliability + ++ +++ ++ ++

Rapidity + + ++ ++ ++

Flexibility + + ++ +++ +++

areas; non-tiring for the user; multitasking-compatible to allow
usual tasks without limitations; inexpensive in terms of training
time and dedicated resources. On the one hand, passive BCIs
are currently more suited to the criteria of portability, non-
fatigability and multitasking since they do not require external
stimuli and devices (e.g., AR glasses or monitor) and they do
not require to perform a particular cognitive task, in comparison
with active and reactive paradigms (see Wolpaw et al., 2002;
Rao, 2013). On the other hand, the training cost is particularly
important in active BCI, while it is less important in reactive and
passive BCI (e.g., Cecotti, 2010; Jeunet et al., 2017; Myrden and
Chau, 2017).

Moreover, BCI technical specificities must be considered
to ensure: (1) reliability—which depends on classifications’
accuracy—(2) reactivity in terms of response time and (3)
flexibility to adapt to context and individual differences (e.g.,
Rashid et al., 2020). In other words, an ideal BCI solution must
be able to interpret an operator’s neural signal, by minimizing
classification errors and training time, while increasing the
information transfer rate (ITR) and its generalizability of use
(e.g., Rashid et al., 2020). According to literature, reliability and
flexibility appear to be higher in reactive BCI and particularly in
SSVEP-based BCI (e.g., Chen et al., 2014), relative to active and
passive paradigms. Flexibility appears lower in active paradigms,
with a high illiteracy rate, in comparison with reactive and
passive paradigms (e.g., Lee et al., 2019). Reliability depends
on the quality of the collected signal and the relevance of AI
algorithms applied. Besides, some neurophysiological markers
used are more or less resistant to surrounding noise and should
be carefully selected with a reduced latency. In addition, a
large-scale deployment BCI requires adaptability and flexibility
to make it usable and equally reliable for a large number of users.

Based on the advantages and disadvantages of each
BCI application described previously (section 3.1), Table 1

summarizes the estimated levels of adequacy between the main
industrial criteria (section 3.2) and the actual state-of-the-art
EEG-based BCI, in the light of potential applications. More
specifically, we have compared the three main non-invasive BCI
paradigms and their potential industrial applications considering
the most important criteria related to ethics, ergonomics &
UX, and technical.

The level of adequacy is ranked as follow: “+” rating represents
a low level of match between the industrial requirement and the
BCI technique, while “++” and “+++”means an intermediate and
a high level of suitability, respectively.

4. CONCLUSIONS AND PERSPECTIVES

BCI is an emerging technology that enables to decode brain
activity and translate it into a set of actions reflecting the user’s
intention, mental state, and even emotions. Numerous public
and private actors are envisioning the deployment of BCI in
industrial settings in a near future (e.g., Sujatha Ravindran
et al., 2020). In the present paper, we summarized the potential
applications, key success factors and the most advanced EEG-
based BCI paradigms for Industry 4.0. Currently, none of
the EEG-based BCI evaluated fits ideally to all the essential
industrial criteria we have established based on ethical,
ergonomic and technical factors. However, SSVEP-based BCI
represents a highly promising technology for device control,
while fatigue monitoring appears particularly interesting and
appropriate to prevent damaging errors and safety risks in
dangerous contexts, or optimize training upstream of these
critical situations. With the dramatic rise of EEG-based BCI
studies—regarding material, associated algorithms (machine
learning, deep learning etc.) or even psychological aspects
of BCI—we believe that the large-scale deployment of BCI
applications in the Industry is a matter of years. Thus, the
ethics and rules related to BCI applications in industrial
settings need to be carefully defined to pave the way to
effective use.

5. STUDY LIMITATIONS AND FURTHER
WORK

The authors are aware that the present results should be
interpreted with caution and some important limitations deserve
to be mentioned. Firstly, the envisioned industrial applications
of BCI are still at the first stages of research and development.
Thus, the development of reliable and ethical BCI solutions
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adapted to end-users in industrial contexts will necessarily
take several years. Secondly, research focussing on BCI users’
experience remains extremely rare and further studies must
explore this important dimension. Though the users’ experience
is currently strongly related to technical specificities of BCIs
solutions, a user-centered approach similar to the one proposed
by Kubler et al. (2014) must be systematically used in future
research before considering any large-scale deployment of
such neurotechnology.
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