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Abstract

This paper aims to investigate information-theoretic network complexity measures which have already been intensely used
in mathematical- and medicinal chemistry including drug design. Numerous such measures have been developed so far but
many of them lack a meaningful interpretation, e.g., we want to examine which kind of structural information they detect.
Therefore, our main contribution is to shed light on the relatedness between some selected information measures for
graphs by performing a large scale analysis using chemical networks. Starting from several sets containing real and synthetic
chemical structures represented by graphs, we study the relatedness between a classical (partition-based) complexity
measure called the topological information content of a graph and some others inferred by a different paradigm leading to
partition-independent measures. Moreover, we evaluate the uniqueness of network complexity measures numerically.
Generally, a high uniqueness is an important and desirable property when designing novel topological descriptors having
the potential to be applied to large chemical databases.
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Introduction

The problem to quantify the complexity of a network appears in

various scientific disciplines [1–7] and has been a challenging

research topic of ongoing interest for several decades [8]. This

problem first appeared when studying the complexity of biological

and chemical systems, e.g., battery cells or living systems [9–12]

using information-theoretic measures [13] (in this paper, we use

the words ‘‘measure’’, ‘‘index’’, ‘‘descriptor’’ synonymously when

referring to topological graph complexity measures). Directly

afterwards, the idea of applying entropy measures to network-

based systems finally emerged as a new branch in mathematical

complexity science. An important problem within this area deals

with determining the so-called structural information content

[8,12,14–19] of a network. Finally, it turned out that the

developed information indices for measuring the information

content of a graph have been of substantial impact when solving

QSPR (Quantitative structure-property relationship)/QSAR

(Quantitative structure-activity relationship) problems in mathe-

matical chemistry and drug design [1,2,20–25]. Correspondingly,

such measures have been widely used to predict biological

activities as well as toxicological and physico-chemical properties

of molecules using chemical datasets, see, e.g., [1,20,23–26]. More

precisely, most powerful and generally applicable for theses

approaches are empirical multivariate models y~f (x), with y

being a chemical or a physical property (P) or a biological activity

(A), and vector x consisting of a series of numerical molecular

descriptors describing the molecular structure. For modeling

biological activities also (measured or computed) physical

properties are used. Some of the already mentioned information-

theoretic complexity measures which are well-established in

mathematical chemistry will be defined in the next section.

Before sketching the aims of our paper, we start with a brief

review about classical and more recent approaches to measure the

complexity of networks. However, for performing the numerical

results, we mainly restrict our analysis to information-theoretic

measures which are based on SHANNON’s entropy [13] and which

have already been applied in the context of mathematical

chemistry [2,21] and drug design [1,20,23].

In general, it seems clear that complexity and, even, structural

complexity is generally not uniquely defined because it is in the eye

of a beholder [27]. Consequently, it is often not clear which

structural features of a graph in question should be taken into

account. For instance, to use complexity measures within

mathematical chemistry, some of their desirable features were

stated in [3]. Now, we start outlining the most known classical

approaches and then turn to more recently developed approaches

for detecting network complexity. Beside the already mentioned

information-based measures [1,2,8,20–26,28], the complexity of a

network was also defined by using boolean functions approaches

[6,8,29,30]. For example, CONSTANTINE [29] defined the com-

plexity of a graph to be the number of its containing spanning

trees. JUKNA [30] determined graph complexity as the minimum

number of union and intersection operations required to obtain
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the whole set of its edges starting from star graphs. Finally, the so-

called combinatorial complexity of a network was developed by

MINOLI [6]. The key property of such a descriptor is that it must be

a monotonically increasing function of the factors which

contribute to the complexity of a network, e.g., number of vertices

and edges, vertex degrees (branching [3]), multiple edges, cycles,

loops, and labels [3]. Another crucial definition of complexity

(algorithmic information) that is different compared to the

mentioned ones was given by KOLMOGOROV [31]. Based on

appropriate string encodings of graphs, bounds to estimate the

KOLMOGOROV-complexity of labeled and unlabeled graphs were

obtained in [32]. However, this kind of network complexity

measures are difficult to apply in general because of computational

reasons [32]. In order to briefly review more recently developed

approaches, we start by mentioning some quantities for structur-

ally characterizing networks [33,34] which emerged from complex

network theory [33,35–37]:

N Size of the giant connected component [33,38].

N Degree distributions P(i) [33,38–41].

N Exponent of degree distributions [33], i.e., it holds P(i)*i{c.

N Total number of vertices and edges [33,34,40,42,43].

N Path-based quantities [33,40,42,44].

N Distance-based quantities, e.g., j-spheres, average distances,

eccentricity, diameter and radius [33,40,42,44].

N Degree, degree statistics and edge density [33,40,42,44].

N Clustering coefficient, modularity and network motifs [45–48].

N Eigenvector measures [40,49,50].

Further, various measures have been developed to characterize

the complexity of networks where many of the recent ones were

summarized by KIM et al. [51] and DA COSTA et al. [44]. In

particular, information-theoretic complexity measures for general

graphs have been investigated in [51–54]. For instance, starting

from directed networks, the information measure called Medium

Articulation was defined which is maximized for exactly the

medium number of links [53]. Properties thereof were examined in

[54]. Another entropy-based measure called Offdiagonal com-

plexity (OdC) was contributed by CLAUSSEN [52]. This graph

complexity measure is based on determining the entropy of the so-

called offdiagonal elements of the vertex-vertex link correlation

matrix [51,52]. Similar entropy measures can be also found in

[44,55]. We already mentioned that the number of spanning trees

might also serve as graph complexity measure, see, e.g. [29]. As a

further attempt, KIM et al. [51] developed a more sophisticated

approach by calculating a quantity for each edge that takes the

number of spanning trees of the graph and the number of

spanning trees of the corresponding one-edge-deleted subgraph

into account. By using these entities which were called sensitivities,

an entropic measure was defined and interpreted as a spanning

tree sensitivity complexity of a network. Another important class of

network complexity measures is based on determining subgraphs

of a network [51,56]. More precisely, the concrete idea is as

follows: The more different subgraphs a network contains, the

more complex is the underlying network [51]. Here, ‘‘different’’

means that non-isomorphic graphs are considered, however, the

graph isomorphism problem is known to be computationally

costly, see, e.g. [57,58]. Thus, KIM et al. [51] proposed

approximations for decide graph isomorphism and ended up with

several subgraph-based graph complexity measures which can be

found in [51]. Further, methods based on characterizing subgraph

relationships were developed in [56]. To finalize our review on

general graph complexity measures, we mention two recently

developed approaches [59,60]. In [59], measures were proposed

capturing features around each vertex to identify singular vertices.

As an interesting result, they found that the obtained singular

motifs had unique functional roles in the considered network [59].

A statistical method was defined in [60] to detect network

regularity interpreted as simplicity. Finally, starting from a set of

measurements and by applying PCA analysis, they found simple

regions in the networks under consideration [60]. Interestingly, we

want to point out that these two approaches are particularly

interesting for investigating biological networks (but not limited to).

Especially, the latter method takes incompleteness or noise during

the network construction into account [60]. However, the

chemical graphs we will use in our paper are deterministically

inferrable and not erroneous (measurement errors). This is the

reason why we restrict our analysis to information-theoretic

measures for globally quantifying the information content of

chemical structures where the probability distribution is deter-

ministically inferrable from structural features (e.g., orbits and j-
spheres) of the graphs in question.

In this paper, we investigate information-theoretic network

complexity measures which are particularly relevant for enhancing

empirical QSAR/QSPR models [23]. As we have already

expressed, a variety of graph measures have been used so far to

characterize the so-called molecular complexity [3,6,61,62].

However, many of such complexity measures lack a meaningful

interpretation. Thus, as the major contribution of our paper, we

put the emphasis on examining interrelations between informa-

tion-theoretic network complexity measures often used in

mathematical chemistry, that is, we shed light on the problem

which kind of structural information the measures detect when

applied to chemical graphs.

To tackle this problem, we select a few measures from two different

paradigms for inferring such indices: The so-called topological

information content [19] (see Equation (4) of a graph and information

measures (see Equation (23)) based on using special information

functionals [63–65]. The former represents a classical partition-based

measure that relies on symmetry with respect to topologically

equivalent vertices having the same degrees. The latter is a partition-

independent information measure that is based on using a special

information functional capturing structural features of the networks.

In order to perform this study, we evaluate these measures

numerically by using several large datasets containing real and

synthetic chemical graphs. To our best knowledge, such a large scale

analysis involving the classical topological information content has

not been done so far. Note that in this study, we only consider

skeletons of the chemical structures, that is, all atoms are equal and all

bonds are equal. Another problem we want to address in this paper is

to investigate the uniqueness of complexity measures. This relates to

examine their discrimination power, that means, their ability to

discriminate non-isomorphic graphs as unique as possible. For this,

we also use the mentioned databases - real and synthetic chemical

structures - and calculate a special sensitivity measure [66]. Besides

evaluating the uniqueness of the information-theoretic measure

introduced in the next section, we will calculate the sensitivity values

of the entropic measure Offdiagonal complexity and the graph index

(Cr is a non-information-theoretic graph complexity measure) Cr, see

[51]. Finally, our research addresses the challenging problem of

investigating the capability of information-theoretic network descrip-

tors for meaningfully capturing structural features of graphs.

Methods

This section aims to present the information-theoretic topolog-

ical descriptors we want to investigate in this paper. In the

Network Complexity Measures
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following, we briefly shed light on the two main procedures

(resulting in partition-based and partition-independent measures)

to infer information-theoretic complexity measures for character-

izing chemical network structures. Afterwards, we express their

concrete definitions for performing our numerical analysis.

Information-Theoretic Network Complexity Measures
Applying information-theoretic methods for exploring complex

networks is a still challenging and ongoing problem [7–

9,12,14,15,19,55,67,68]. As mentioned in the introduction, this

research area has its origin in biology and mathematical chemistry

[8,9,12,19]. Historically seen, TRUCCO [12] and RASHEVSKY [19]

were the first who developed information measures to analyze

complex biological and chemical systems. Later, MOWSHOWITZ

[15–18] further developed this approach and proved important

mathematical properties thereof.

More precisely, TRUCCO [12] and RASHEVSKY [19] defined

entropy measures for graphs which were interpreted as the

structural information content of a graph; the original information

measure due to RASHEVSKY [19] is called the so-called topological

information of a graph in question, see Equation (4). So far, the just

mentioned information measures representing the entropy of the

underlying graph topology have been widely used for measuring the

structural complexity of graphs [3,15–18,21,27,55,69]. The basic

principle to infer these measures is as follows: Let G~(V , E) be a

graph. By starting from an arbitrary graph invariant X of G and an

equivalence criterion a, one obtains a partitioning of X where the

partitions are denoted by X1, . . . , Xk. In order to infer probabilities

for each obtained partition, the entities pi : ~
jXij
jX j can be used

because it obviously holds

Xk

i~1

pi~1: ð1Þ

Thus P(G) : ~(p1, . . . , pk) represents a finite probability distribu-

tion of G. Now, applying SHANNON’s entropy formulas [13] leads to

the classical graph entropies [8]:

I(G, a)~jX j log (jX j){
Xk

i~1

jXij log (jXij), ð2Þ

�II(G, a)~{
Xk

i~1

jXij
jX j log

jXij
jX j

� �
: ð3Þ

Equation (2) is the total information content of G, whereas

Equation (3) represents its mean information [2,70]. We want

to point out that the just explained procedure yields to

partition-based information measures for determining the

structural complexity of networks. For example, MOWSHOWITZ

[15] obtained such a measure based on algebraic equivalence

criteria, e.g., graph automorphisms and graph colorings

[15,57]. But it is known that the problem of determining

graph automorphisms is equivalent to check whether two

graphs are isomorphic [71]. Moreover, the computation of the

chromatic number of undirected graphs to infer chromatic

decompositions was proven to be NP-complete [58]. Hence,

one can expect that the computational complexity of the

underlying algorithms for calculating these measures are for

arbitrary graphs very costly. After this seminal work [15–19],

the outlined principle of inducing vertex partitions was

generalized by associating a weighted finite probability

distribution to a network, see [8]. This generalization led to

numerous information-theoretic graph complexity measures by

applying equivalence criteria like vertex degrees, distances to

chemical graphs etc. [2,8,21].

Now, we give a sketch of the second procedure for inferring

graph entropy measures that results in obtaining partition-

independent measures [63–65]. The main idea is as follows:

Instead of inducing vertex partitions to obtain probabilities for

subsets of vertices, we assign a probability value to every vertex in

a graph. This has been done by means of so-called information

functionals [64,65] (note that concrete information functionals will

be defined in the next section) which capture structural features of

a graph and here represent positive mappings which are assumed

to be monotonous, see, e.g., [63]. A notable feature of this

procedure is that we avoid the problem of determining vertex

partitions associated with an equivalence relation that can be often

computationally expensive.

As follows, we start with the definition of some concrete

partition-based entropy measures to be applied to real and

synthetic chemical structures. Note that in this paper, we only

evaluate the mean information contents. For the sake of simplicity,

we write I(G) instead of �II(G).
Definition 1. Let G~(V , E) be a graph.

Iorb(G) :~{
Xk

i~1

jNij
jV j log

jNij
jV j

� �
, ð4Þ

is called topological information content of G. Here, jNij denotes the number of

topologically equivalent vertices in the i-th vertex orbit of G where k is the

number of different orbits.

Remark 1. Let G~(V , E) be a graph. We recall the definition [2]

for two vertices v, u [V being topologically equivalent: For each i-th

neighboring vertex of v there exists an i-th neighboring vertex of u which

possesses the same degree. A vertex orbit is a set of vertices that only contains

topologically equivalent vertices.

Definition 2. Let G~(V , E) be a graph.

ID(G) :~{
1

jV j log
1

jV j

� �
{
Xr(G)

i~1

2ki

jV j2
log

2ki

jV j2

 !
, ð5Þ

IW
D (G) :~{

Xr(G)

i~1

iki

W
log

i

W

� �
, ð6Þ

where

W (G) :~
1

2

XjV j
i~1

XjV j
j~1

d(vi,vj): ð7Þ

W is called the WIENER index [72] and d(vi, vj) denotes the shortest distance

between vi, vj [V . ID and IW
D are so-called magnitude-based information

indices, see [69]. It is assumed that the distance of a value i in the distance

matrix D appears 2ki times. r(G) stands for the diameter of a graph G.

Definition 3. Let G~(V , E) be a graph.

IU (G) :~
jEj

mz1

X
(vi ,vj )[E

½u(vi)u(vj)�{
1
2, ð8Þ

Network Complexity Measures
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IW (G) :~
jEj

mz1

X
(vi ,vj )[E

½w(vi)w(vj)�{
1
2, ð9Þ

where

u(vi) :~{
Xs(vi)

j~1

jgj

d(vi)
log

j

d(vi)

� �
, ð10Þ

w(vi) :~{w(vi)~d(vi) log (d(vi)){u(vi), ð11Þ

d(vi) :~
XjV j
j~1

d(vi, vj)~
Xs(vi)

j~1

jgj : ð12Þ

See [28]. gj equals the number of vertices having distance j starting from

vi [V . Also, gj equals the corresponding j-sphere cardinality.

s(v) :~ maxu [V d(u, v) is the eccentricity of v [V . m :~
jEjz1{jV j denotes the cyclomatic number, see [28].

Definition 4. Let G~(V , E) be a graph.

Igm
(vi) :~{

XjV j
j~1

gj
m(vi)PjV j

j~1 g
j
m(vi)

log
gj

m(vi)PjV j
j~1 g

j
m(vi)

 !
, ð13Þ

where

g
j
1(vi) :~d(vi,vj), 1ƒiƒjV j, ð14Þ

g
j
2(vi) :~cjd(vi, vj), 1ƒiƒjV j, ciw0: ð15Þ

Igm
(vi) is a local vertex entropy [66]. Finally, the entropy of G can be defined by

Igm
(G) :~

PjV j
i~1 Igm

(vi)

jV j : ð16Þ

In particular, we define special information measures for

characterizing graphs by choosing concrete coefficients [73].

Definition 5. Let G~(V , E) be a graph. We define

I1
loc(G) :~Ig1

(G)~

PjV j
i~1 Ig1

(vi)

jV j , ð17Þ

I2
loc(G) :~Ig2

(G)~

PjV j
i~1 Ig2

(vi)

jV j , ð18Þ

where

c1 :~r(G), c2 :~r(G){1, . . . , cr(G) :~1: ð19Þ

Finally,

I3
loc(G) :~Ig2

(G), ð20Þ

where

c1 :~r(G), c2 :~r(G)e{1, . . . , cr(G) :~r(G)e{r(G)z1: ð21Þ

To finalize this section, we now express the definitions of some

partition-independent entropy measures for graphs introduced by

DEHMER et al. [63–65]. Mathematical properties and applications

thereof can be found, e.g., in [64,65].

Definition 6. Let G~(V , E) be a graph. The following partition-

independent entropy measures based on a special information functional were

defined as [63,65]

If V (G) :~{
XjV j
i~1

pV (vi) log (pV (vi)), ð22Þ

Il
f V (G) :~l log (jV j)z

XjV j
i~1

pV (vi) log (pV (vi))

 !
, ð23Þ

where lw0 is a scaling constant.

pV (vi) :~
f V (vi)PjV j

j~1 f V (vj)
, ð24Þ

are vertex probabilities. The special information functional f V was defined as

[63]

f V (vi) :~c1jS1(vi, G)jzc2jS2(vi, G)jz � � �zcr(G)jSr(G)(vi, G)j,

ckw0, 1ƒkƒr(G):
ð25Þ

Here, Sj(vi, G) denotes the j-sphere [65] of a vertex vi, that is, the set of

vertices having shortest distance j starting from vj [V . ck are positive

coefficients for emphasizing certain structural of a graph, e.g., high vertex

degrees, also see, [63,65].

Remark 2. To perform the numerical calculations in this paper, we set

l~1000.

Definition 7. Let G~(V , E) be a graph. The measure Il
f V becomes

to Il
f V
lin

by choosing the coefficients ck according to Equation (19), i.e., linearly

decreasing. Correspondingly, Il
f V becomes to Il

f V
exp

when choosing the coefficients

ck according to Equation (21), i.e., exponentially decreasing.

In the following, we briefly comment on the computational

complexity of the discussed information measures without giving

proofs. Obviously, the measures whose definitions are based on

calculating matrices can be often computed in polynomial time

(e.g., square, cubic etc.). For instance, it has been proven [74] that

the fastest general algorithm to compute the WIENER index is

O(jV jjEj). Applying W to trees, its computation even only

requires time complexity O(jV j). To calculate Iorb, the automor-

phism group of the corresponding graph has to be formally

determined. However, it is well known that this procedure is

computationally extensive for arbitrary graphs [71]. Hence, this

measure is rather not suitable to calculate the information content

of large networks. If G~(V , E) is an undirected and connected

graph, we showed in [65] that the computation of f V requires time

complexity O(jV j2). By applying a shortest path algorithm jV j
times, it easily follows If V (G) has time complexity O(jV j3). In

order to examine the time complexity of such indices which are

based on determining shortest paths for every vertex in a graph,

e.g., I
j
loc, one can argue almost analogously. Further, it can be

Network Complexity Measures
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similarly shown that the remaining information measures possess

polynomial time complexity. The computational complexity of

OdC and Cr (see next section) has already been discussed in

[51,52].

Additional Network Complexity Measures
As stated in the introduction, we will additionally evaluate the

uniqueness of the Offdiagonal complexity and the graph index Cr,

see [51,52].

Definition 8. Let G~(V , E) be a graph and let (cij)ij be the vertex-

vertex link correlation matrix, see [52]. cij denotes the number of all neighbors

with degree jwi of all vertices with degree i [51]. dmax stands for the

maximum degree of G. The normalized version of OdC can be defined as

[51]

OdC :~
{

Pdmax{1
jV j~0

~aajV j log (~aajV j)
� �

log (jV j{1)
[ ½0,1�, ð26Þ

where

~aajV j :~
ajV jPdmax{1

jV j~0 ajV j
, ð27Þ

and

ajV j :~
Xdmax{jV j

i~1

ci,izjV j, see ½51�: ð28Þ

Definition 9. Let G~(V , E) be a graph and let r be the largest

eigenvalue computed from its adjacency matrix.

Cr :~4cr(1{cr) [ ½0, 1�, ð29Þ

where

cr :~

r{2 cos
p

jV jz1

� �

jV j{1{2 cos
p

jV jz1

� � : ð30Þ

Before discussing numerical results, we describe the databases

and our developed software in brief.

Chemical Graph Databases

N MS 2265: This database has been extracted by own software

from the commercially available mass spectral database NIST

[75]. It contains 2265 selected chemical structures with

different skeletons originating from the database NIST. This

database has been already used in [63] for investigating

different aspects of topological descriptors. It holds

4ƒjV jƒ19; 2ƒr(G)ƒ15 VG [ MS 2265.

N AG 3982: The original freely available database called Ames

Genetoxicity contains 6512 chemical compounds, see [76,77].

After filtering the isomorphic graphs by using SubMat [78], we

obtained 3982 structurally different skeletons, that is, all atoms

and all bonds are considered as equal. The database was

created from six different public sources [76,77]. Each

structure has a class label (0 and 1) that results from the so-

called Ames test indicating the genetoxicity of a substance. So

far, the mentioned test has often been used in pharmaceutical

sciences when investigating new molecules [76]. It holds

2ƒjV jƒ109; 1ƒr(G)ƒ47 VG [ AG 3982.

N APL 91075: The ASINEX Platinum Collection is a freely

available, in-house designed and synthesized collection of

126615 drug-like compounds [79,80]. The filtering process of

the isomorphic graphs by using a Python program resulted in

91075 structurally different skeletons. A notable feature of this

database is that it contains structures from chemical subareas

which are often under-represented in other available structure

libraries [80]. Here, the chemical structures represent

unlabeled and undirected graphs (skeletons). It holds

6ƒjV jƒ60; 3ƒr(G)ƒ36 VG [ APL 91075.

N C15 trees: This synthetic graph class [63] consists of 4347

alkane isomers with 15 carbon atoms (vertices). By definition,

trees are connected, cycle free and here represent unlabeled

and undirected graphs (skeletons). This database has been

created by the software Molgen, see also [63].

N C15 ring 1: This synthetic graph class [63] consists of 60077

hydrocarbon isomers with 15 carbon atoms (vertices) contain-

ing one ring (cycle) and only single bonds. Hence, the

structures can be treated as unlabeled and undirected graphs

(skeletons). This database has been created by the software

Molgen, see also [63].

N C15 ring 2: This synthetic graph class [63] consists of 94013

hydrocarbon isomers with 15 carbon atoms (vertices) contain-

ing two rings (cycles) and only single bonds. Hence, the

structures can be treated as unlabeled and undirected graphs

(skeletons). This database has been created by the software

Molgen, see also [63].

Software and Data Processing
In order to generate and process our chemical graphs, we used

the known Molfile format [81]. The database AG 3982 was

originally available in Smiles format that we converted to Molfile

format (SDF) using a Python procedure. The databases MS 2265

and APL 91075 were directly available in Molfile format (SDF).

To apply the information-theoretic measures to the previously

presented graph databases, we performed a procedure to filter all

isomorphic graphs contained in these databases. This isomorphism

check was done by applying the software SubMat [78] and the

previously mentioned Python program. As a result, we obtained

sets of graphs containing different skeletons representing the

underlying graph topology of the molecules.

We implemented all used topological measures in Python using

freely available libraries like Networkx, Openbabel and Pybel

packages [82]. For the calculations we have performed in this

paper, we started from the Molfile representation of a chemical

structure, created the corresponding adjacency matrix and

computed the topological indices based on the developed Python

program. The databases containing the synthetic graph structures

(isomers) have been generated by the software Molgen, see also

[63].

Results and Discussion

In this section, we will apply the complexity measures presented

in the previous section. As stated before, we mainly put the emphasis

on exploring the relatedness between the topological information

content Iorb and our graph entropy measures Il
f V
lin

and Il
f V
exp

.

Moreover, we numerically calculate further information-theoretic

network measures presented in the last section and interpret the

results. In particular, an interesting question will be to investigate

Network Complexity Measures
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the so-called uniqueness of the measures when applying them to

both databases containing real and synthetic chemical graphs.

Numerical Results
In the following, we discuss and interpret numerical results

when applying the selected descriptors to sets containing real

chemical structures. Our study involves calculating and interpret-

ing dependency plots, cumulative entropy distributions, and the

so-called uniqueness of the used topological indices [66].

Relatedness between Iorb and Il
f V
lin

, Il
f V
exp

. We start to examine

how the entropies Iorb and Il
f V
lin

, Il
f V
exp

capture structural information

of our graphs and depict the scatter plots (see Figure (1) and

Figure (2)) for exploring the correlation between the measures. To

tackle this problem, we now only consider Figure (1) exemplarily.

Clearly, the main observation is that Iorb is highly uncorrelated

with Il
f V
lin

, Il
f V
exp

. In order to interpret this figure in more detail, we

select the graphs marked by red-colored arrows (these graphs are

depicted in Figure (3), (4), (5)) whose entropies (for practical scaling

reasons, we always calculated normalized entropies) are extremal

with respect to Iorb or Il
f V
lin

, Il
f V
exp

. Before discussing the results, we

give two mathematical statements [27,64].

Proposition 1. If G is vertex transitive [27,57], then Iorb(G)~0
Proposition 2. If G is k-regular [57], then If V (G)~ log (jV j)

and, hence, Il
f V (G)~0.

The graph G~C6 with Iorb(C6)~0 and Il
f V
exp

(C6)~0 is a cycle

possessing six vertices (Figure (1)). Because C6 is vertex transitive, there

is only one orbit containing all vertices and, thus, according to

Proposition (1), we get Iorb(C6)~0. Moreover, C6 is 2-regular.

Applying Proposition (2) yields to If V
exp

(C6)~ log (6) (see also Equation

(22)) and, hence, Il
f V
exp

(C6)~l log (6){ log (6)ð Þ~0.

The interrelation between the entropies (Iorb and Il
f V
exp

) for the

graph depicted by Figure (3) can be understood by applying the

previously stated propositions. As we easily see, this graph has a cyclic

and symmetric structure and, therefore, Iorb is low. For the same

reason when explaining the interrelation for the fully cyclic graph C6,

the corresponding entropy value of Il
f V
exp

is also low. The next entropy

relation we want to describe concerns the graph G (see Figure (4))

whose topological information content is relatively high and

Il
f V
exp

(G)~1. Here, Il
f V
exp

(G)~1 means that the entropy If V
exp

(G) attains

a minimum. The reason why the topological information content is

relatively high for this graph can be understood by the fact that the

degree of symmetry is rather low resulting in the observation that

most of the vertex orbits of G are only singleton partitions. The last

graph G we will inspect possesses Iorb(G)~1 and a relatively small

value of Il
f V
lin

. This graph G (see Figure (5)) is an element of a certain

subset that is highlighted by the red-colored rectangle in Figure (1).

To determine Iorb for this graph, we have to calculate the partitions

according to the equivalence criterion that is based on vertex orbits.

At first glance, G seems to be symmetric (according to this criterion)

but a deeper inspection leads to the result that all vertex orbits are

singleton partitions. Hence, Iorb(G)~1. But based on the cyclic

structure of G and again by definition of Il
f V
lin

and Proposition (2), we

infer that its corresponding entropy value is relatively small.
Uniqueness of the Descriptors. Besides investigating the

problem how the measures capture structural information of the

considered chemical structures, we now examine another

important property of a topological index, namely the ability to

discriminate the graphs as unique as possible. This characteristic

property of a structural graph measure is often referred to as

degeneracy [66,69,83]; related work can be found in, e.g.,

[63,66,69,83,84]. To evaluate the uniqueness of a measure I , we

Figure 1. Iorb versus Il
f V
lin

, Il
f V
exp

for MS 2265. (reference label: scatter_plot1).

doi:10.1371/journal.pone.0008057.g001
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here apply the sensitivity index proposed by KONSTANTINOVA

[66]:
S(I)~

jGj{jGj j
jGj : ð31Þ

I denotes a topological index and G denotes a set of arbitrary

graphs, respectively. jGj j stands for the number of graphs Gi [G

which can not be distinguished by calculating I . If it holds

S(I)~1, we know by definition that it does not exist any pair of

non-isomorphic graphs Gi [G possessing the same value of I .

We now start discussing the results shown in Table (1) when

evaluating the sensitivity of our indices and start with the topological

information content Iorb. We note that the sensitivity values depends

on the chosen decimal places. Here, we calculated S(I) with an

Figure 2. Iorb versus Il
f V
lin

, Il
f V
exp

for AG 3982. (reference label: scatter_plot2).

doi:10.1371/journal.pone.0008057.g002

Figure 3. Example Graph with relatively small value of both Iorb

and Il
f V
exp

. (reference label: graph_plot1).

doi:10.1371/journal.pone.0008057.g003

Figure 4. Example Graph G with relatively large value of Iorb

and Il
f V
exp

(G)~~~~~~1. (reference label: graph_plot2).

doi:10.1371/journal.pone.0008057.g004
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accuracy of 6 decimal places. First, we see that Iorb has a very low

discrimination power compared to the remaining information

measures, except OdC and WIENER index. This can be understood

by briefly recalling the definition of the topological information

content (see also Remark(1)): The main idea is to partition the vertex

set in equivalence classes according to the criterion that each such

class contains topologically equivalent vertices [2,19]. Therefore,

this measure is based on symmetry with respect to the topologically

equivalent vertices having the same degrees (the vertices to be in the

same vertex orbit must have the same degree). Thus, we can easily

construct graphs having the same vertex orbits but whose

underlying topology is different, and, evidently, the uniqueness of

Iorb is often very low. Interestingly, OdC has similarly to Iorb a very

low discrimination power. This can be explained by arguing that the

underlying basis for calculating this measure - the vertex-vertex link

correlation matrix - does not capture complex structural features of

a graph adequately (at least for the considered graph classes). As

known and reflected by Table (1), the uniqueness of the WIENER

index is also very low [66]. In contrast to this, the sensitivity values of

Cr for MS 2265 and AG 3982 are feasible. But for APL 91075, its

uniqueness is very low. This clearly shows that the uniqueness of a

topological index strongly depends on the graph class (structural

diversity of graphs) under consideration (see also ‘‘Summary and

Conclusion’’ section). Note that the sensitivity calculation of our

information indices Il
f V
lin

, Il
f V
exp

led to much better results. By choosing

the coefficients exponentially decreasing (see Equation (21)), the

resulting entropy measure is able to discriminate all graphs of MS

2265 uniquely and, hence, S(Il
f V
exp

)~1. For AG 3982 and APL

91075, we obtained that 12 and 220 graphs could not be

distinguished when applying Il
f V
exp

, respectively. The sensitivity

evaluation of Il
f V
lin

led to quite similar result. In summary, Table (1)

shows that our information indices possess a very high uniqueness

for all three chemical databases and, therefore, can discriminate real

chemical graphs successfully. A more mathematical explanation for

this result is as follows: Instead of determining partitions by using a

graph invariant, e.g., number of vertices or edges, and then

calculating a probability for each such partition, we assign a

probability value to every vertex in a graph. By using our proposed

information functional, we furthermore compute the full topological

neighborhood of all involved vertices (atoms) of the structure [63].

To determine the entropy of the underlying graph topology, the

vertex probabilities (see Equation (24)) can be interpreted as

percentage rates of the entire graph structure for every vertex

instead of lumping structural properties together when calculating

the partitions (according to a an equivalence criterion). As a

conclusive remark, we want to emphasize that IU and some other

computed information indices also possess a high discrimination

power (see Table (1)).

To interpret the sensitivity values when applying our information

measures to synthetical chemical graphs, we look at Table (2). Here,

we applied the same graph measures to the presented synthetic

graph classes. As before, the uniqueness of OdC, Iorb and W is for

all three graph classes extremely low. Compared to W , one sees that

Cr has a much better discrimination power. By exemplarily

determining the number of graphs which could not be distinguished

by Cr for C15 ring 2, we yield jGj j~47772 (see Equation (31)).

However for the tree class, our Il
f V
exp

discriminates all 4347 trees

uniquely. Moreover, one observes that the sensitivity values of the

remaining information measures for this graph class are high. The

Figure 5. Example Graph G with Iorb(G)~~~~~~~~~1 and relatively small
Il

f V
exp

. (reference label: graph_plot3).

doi:10.1371/journal.pone.0008057.g005

Table 1. Calculation of sensitivity index S(I) for chemical databases.

Topological index I S(I) for MS 2265 S(I) for AG 3982 S(I) for APL 91075

OdC 0.142604 0.247363 0.029744

Il
f V
lin

0.997350 0.995981 0.988723

Il
f V
exp

1.0 0.996986 0.997584

Iorb 0.026931 0.074334 0.002723

ID 0.859602 0.938724 0.873873

IW
D

0.883885 0.947513 0.933033

IU 0.999116 0.999497 0.996618

IW 0.990286 0.990959 0.522799

I1
loc

0.995584 0.994977 0.914389

I2
loc

0.999116 0.996986 0.916453

I3
loc

0.989403 0.973882 0.595783

W 0.014128 0.037920 0.001065

Cr 0.864017 0.919638 0.223892

doi:10.1371/journal.pone.0008057.t001
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final result we want to emphasize is that by applying our

information-based topological descriptors Il
f V
lin

, Il
f V
exp

, we obtained

constantly high sensitivity values for all three synthetic graphs

classes. In order to calculate the number of graphs which could not

be distinguished by Il
f V
exp

and IU , we choose again the class C15

ring 2. For Il
f V
exp

, we get jGj j~246 but by applying IU , we yield

jGj j~13206.
Cumulative Entropy Distributions. The cumulative

entropy distributions are illustrated by Figure (6). In these plots,

the x-axis represents the normalized entropy values whereas the y-

axis shows the percentage rate of chemical graphs having a

(normalized) entropy value less or equal I(G). We want to remark

that the measures were normalized by using

~II~
I{ min (I)

max (I){ min (I)
.

We start by observing that about 80% of the graphs of MS 2265

possess relatively small entropy values when evaluating IW (see

Equation (9)). In contrast, 80% of the graphs have large entropy

values by calculating IW
D , I1

loc, I2
locIorb (see Equation (6), (17), (4)).

This result can be interpreted such that the measures capture

structural information of the graphs quite differently because the

corresponding entropy distributions are almost reverse. The

Table 2. Calculation of sensitivity index S(I) for synthetic graph classes.

Topological index I S(I) for C15 trees S(I) for C15 ring 1 S(I) for C15 ring 2

OdC 0.001380 0.000065 0.000031

Il
f V
lin

0.983897 0.963713 0.980034

Il
f V
exp

1.0 0.998601 0.997383

Iorb 0.001380 0.000116 0.000042

ID 0.634000 0.124972 0.093774

IW
D

0.748562 0.142567 0.108889

IU 0.998159 0.937213 0.859530

IW 0.987577 0.771842 0.586365

I1
loc

0.965263 0.568736 0.394817

I2
loc

0.965033 0.669940 0.553370

I3
loc

0.982286 0.785658 0.727622

W 0.000920 0.000116 0.000085

Cr 0.459627 0.502771 0.491857

doi:10.1371/journal.pone.0008057.t002

Figure 6. Cumulative Entropy Distributions for MS 2265. (reference label: cum_plot1).
doi:10.1371/journal.pone.0008057.g006
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interrelation between the graph entropies Il
f V
lin

, Il
f V
exp

(see Equation

(23)) and Iorb is quite similar to the just described one. Finally, note

that the findings of the section where we have examined the

relatedness between the selected measures support this hypothesis.

Equally, the cumulative entropy distributions of AG 3982 are

depicted in Figure (7). One can see that for some indices the curve

progressions appear quite diversely, e.g., W , IU , IW , I1
loc. A possible

explanation for this could be the fact that AG 3982 is structurally more

diverse than MS 2265. For the remaining entropy measures, the

situation is similar as described in Figure (6). Interestingly, the

cumulative similarity distribution of the discussed information

measures illustrated by Figure (6) and Figure (8) are again quite similar.

In particular, we have found that for all three chemical databases,

the evaluation of the topological information content (see Equation

(4)) and the partition-independent measures (see Equation (23)) led

to clearly different cumulative entropy distributions that is obviously

in accordance with the results of the preceding sections.

Summary and Conclusion
In the present paper, we studied interrelations between classical

and novel entropy measures to quantify the structural information

content of networks. Here, these measures served as graph

complexity measures which take certain structural features of the

networks under consideration into account. In the following, we

express the main findings of the paper in brief:

N We explored the relatedness between information measures for

graphs. In particular, we examined the correlation between the

topological information content Iorb (see Equation (4)) and the

partition-independent measures Il
f V (G) (see Equation (23)) by

interpreting the corresponding scatter plots. Let G be a graph.

If Iorb(G) is small or even zero, then G is symmetric with

respect to topologically equivalent vertices having the same

degrees which form the so-called vertex orbits. Then, if the

value of Il
f V (G) is also small, G has a cyclic structure and

represents a graphs that is equal or very similar to a k-regular

graph. As shown in Figure (5), a graph G whose value of

Iorb(G) is large can be also cyclic and, hence, possesses a small

Il
f V (G) value. Further, for a graph G whose value of Il

f V (G) is

large (Figure (4)), the involved mean information content

If V (G) is low or even attains a minimum. In [63], we showed

that such graphs typically represent chain-like graphs or

generally speaking, graphs with a low branching factor. The

reason why Il
f V (G) has small values for graphs containing

cyclic structures seems (which are symmetric) logical because it

corresponds to the accepted concept [3] that symmetry leads to

a decrease of complexity.

N Another important aspect of our numerical study was to

examine the discrimination power of the used network

measures. We found that the topological information content

Iorb was weak in distinguishing non-isomorphic graphs, i,e., it’s

sensitivity value was very low. In contrast, the sensitivity

evaluation for our partition-independent measures Il
f V (G) led

to constantly good results when applying the measures to real

and synthetic chemical structures. Recall that a high

uniqueness of a complexity measure corresponds to the ability

to distinguish networks whose structural similarity is very high.

Hence, this feature could be useful (as future work) when

considering graphs which were inferred statistically (erroneous

graphs) [85]. As an important remark, we want to emphasize

that the uniqueness of a topological index also depends on the

considered graphs class. Note that our chemical graphs are

particularly small and structurally not very diverse compared

to the ones used in e.g., [60]. Especially for those graphs whose

numbers of vertices are rather small, highly discriminative

measures are extremely important for quantifying structural

information as unique as possible. That is one reason why we

studied the uniqueness of topological indices for chemical

graph analysis. A further reason relates to the fact that

descriptors with a high discrimination power are often useful

for QSPR/QSAR. But we have already seen that an index I

does not necessarily perform well for several graph classes at

Figure 7. Cumulative Entropy Distributions for AG 3982. (reference label: cum_plot2).
doi:10.1371/journal.pone.0008057.g007
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the same time. To further shed light on this problem, we

briefly pick up the first argument of this paragraph. In this

paper and in [84], we evaluated the uniqueness of some

information-theoretic measures for real and synthetic chemical

structures. For some indices, e.g., IW
D , ID which performed

very well for real chemical graphs, we got worse results when

applying these measures to synthetic graphs, e.g., isomers

having 10 [84] and 15 vertices each.

N For the real chemical databases, the cumulative entropy

distributions of some measures were calculated. This approach

can be considered as an important preprocessing step to learn

how the measures capture structural information of networks.

Particularly, it is suitable to explore certain correlations between

the measures and, finally, to learn whether the complexity

indices capture structural information differently or similarly.

As a conclusive remark, we emphasize that the presented

information-theoretic methods to analyze complex networks bear

a considerable potential. Our study aimed to get a better

understanding towards the problem of characterizing chemical

graphs using information-theoretic complexity measures. In this

paper, we put the emphasis on such measures which have already

been applied in the context of mathematical chemistry and drug

design. We think that our results can help to apply the measures to

more complex network classes and to interpret the results more

adequately than before.

In the future, we want to extend our measures for determining

the structural complexity of weighted chemical graphs (i.e.,

incorporating atom and bond types) and test their ability to tackle

QSAR/QSPR problems. Further, we would like to test novel

information indices by combining existing ones and evaluate their

discrimination power. Moreover, an interesting task would be to

classify molecules by using this approach and to apply it to special

problems in drug design.
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