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ABSTRACT

Objective: In an effort to improve the efficiency of computer algorithms applied to screening for coronavirus

disease 2019 (COVID-19) testing, we used natural language processing and artificial intelligence–based meth-

ods with unstructured patient data collected through telehealth visits.

Materials and Methods: After segmenting and parsing documents, we conducted analysis of overrepresented

words in patient symptoms. We then developed a word embedding–based convolutional neural network for

predicting COVID-19 test results based on patients’ self-reported symptoms.

Results: Text analytics revealed that concepts such as smell and taste were more prevalent than expected in

patients testing positive. As a result, screening algorithms were adapted to include these symptoms. The deep

learning model yielded an area under the receiver-operating characteristic curve of 0.729 for predicting positive

results and was subsequently applied to prioritize testing appointment scheduling.

Conclusions: Informatics tools such as natural language processing and artificial intelligence methods can have

significant clinical impacts when applied to data streams early in the development of clinical systems for out-

break response.
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INTRODUCTION

Coronavirus disease 2019 (COVID-19) is caused by severe acute re-

spiratory syndrome coronavirus 2 (SARS-CoV-2), a virus in a family

of highly pathogenic human coronaviruses.1

This novel coronavirus is a particularly infectious strain resulting

in a global pandemic that reached the United States early in the

course of the outbreak.2 One of the lynchpins of controlling the

spread of COVID-19 is aggressive testing.3 Testing for SARS-CoV-2

is resource-intensive, as it involves the collection of a nasopharyn-

geal swab specimen under biosafety level 2 conditions and labora-

tory capacity for reverse-transcription polymerase chain reaction

(RT-PCR) assay of SARS-CoV-2 RNA.4 As individual states in the

United States ramp up testing facilities, prioritizing testing based on

risk of exposure, clinical symptoms, and preexisting risk factors5

has become an imperative.
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The Medical University of South Carolina (MUSC) Health system

established a free virtual care consultation and screening service for

symptomatic individuals in the state of South Carolina. Telehealth

providers then screen and prioritize patients for testing. The virtual

care visits are captured through a telehealth system, which allows pro-

viders to screen patients and prioritize testing via a drive-through test-

ing facility. The data are captured in the telehealth system (Zipnosis,

Minneapolis, MN), which includes patient-entered text information.

As testing was a limited resource, even with computer screening, there

were significant delays for patients in scheduling tests. The informatics

research team at MUSC, as part of its outbreak response strategy, un-

dertook the task of enhancing access to and use of the data in Zipnosis

notes to prioritize and inform testing.

One of the main challenges of this task was that the information

piped into the electronic health record (EHR) is not in a structured

format, but rather in a text “blob” that contained information both

from a template-based patient-facing form and free-text data

entered by the patient. The use of EHR to identify specific

clinical phenotypes has gained significant momentum over recent

years.6–8 Characterizing patients based on EHR has several useful

purposes, including, but not limited to, clinical decision support,9–12

population health studies,13–15 and identification of participants for

research recruitment.16,17 As exemplified by the virtual care data

feed at MUSC, a good portion of the information within the EHR

resides in free-text format contained inside numerous types of clini-

cal notes.7,9 In addition to well-established natural language proc-

essing (NLP) pipelines that have been developed for extracting

information from unstructured data,18–20 machine learning–based

clinical text classification approaches have also been used to charac-

terize patients using EHR data.21–23 More recently, deep learning

approaches such as convolutional neural networks (CNNs) have

been used both in predictive modeling in the clinical domain24 and

for phenotyping efforts through clinical text classification.25 In this

case report, we describe the application of text analysis and deep

learning methods to improve our testing algorithms.

MATERIALS AND METHODS

Context
The virtual urgent care program for COVID-19 was established by

MUSC Health based on the Centers for Disease Control and Preven-

tion guidelines26 to screen and evaluate presumptive cases in our re-

gion. To minimize exposure and lessen the risk of nosocomial

infections, patients are advised to visit MUSC Health virtual urgent

care for screening and medical advice from trained MUSC Health

care providers via a secure online telehealth virtual care system by

Zipnosis. Referral for testing for patients at high risk or those who

need inpatient care is determined based on the consultation with the

providers. The data from the virtual care system are fed into our

EHR system (Epic Systems Corporation, Verona, WI) via a proprie-

tary application programming interface (HL7 V2.x.). Data were

subsequently extracted from Epic Clarity and moved to a cloud-

based “data lake” analytics infrastructure in Azure (Microsoft, Red-

mond, WA).

Patient population
We included patients with virtual care visits with COVID-19 listed

as the reason for the visit. Patients without test results 14 days fol-

lowing the visit were excluded. For patients with multiple test

results, only the final result was considered. The total number of

patients included in our analysis was 6813, 498 of whom tested pos-

itive and 6315 of whom tested negative.

Text processing
The telehealth system notes were preprocessed using a simple

Apache UIMA–based NLP application.27 A pattern matching–based

algorithm split the notes into sections and labeled these sections to

enable filtering out boilerplate information and instructions from

the Zipnosis template while focusing on relevant sections. Examples

of such header-demarcated sections included a “Patient Summary:”

section in which symptoms were reported by the patient and a

section labeled “Pertinent COVID-19 information” in which travel

information was reported. Simple pattern matching was also used

for limited dataset de-identification, replacing patient names, phone

numbers, and addresses with generic tokens in order to protect pa-

tient privacy. Diagnosis codes that were demarcated by the template

were extracted and appended to the end of the clinical note. Stop

words were removed prior to tokenization.

Text analytics
As part of the analysis prior to machine learning, we examined dif-

ferences in word frequencies across clinical notes with positive test

results as compared with notes from those with known negative

results. We performed a chi-square analysis to assess words that are

overrepresented across these corpora of text.28 This analysis pro-

vided insight into key words associated with positive COVID-19

tests results.

Model architecture
We used Keras29 and TensorFlow version 2.030 for constructing and

training the CNN model. To construct the features for the deep

learning models, the text sequences were tokenized and padded with

zeros at the end of sequences to match the length of the longest

string in the training set. The input layer had a dimension size of

628, slightly exceeding the maximum length of the input sequences

of tokens. We used word2vec31 for the word-embedding layer. The

embedding weights were initialized with 200-dimension word vec-

tors from a word2vec model pretrained on a PubMed corpus.32 The

embedding layer had a drop rate of 0.3. This was followed by a con-

volutional layer with multiple filter sizes (3, 4, and 5) in parallel,

with 100 filters in each, ReLU (Rectified Linear Unit) activation, a

stride of 1, and global max-pooling, which was followed by a merge

tensor then a fully connected 512-node hidden layer with ReLU acti-

vation and a drop rate of 0.3. Finally, the output layer had a single

binary node with a sigmoid activation function. Several hyperpara-

meter configurations were tried, for example, randomly initialized

with uniform distributions with dimension 50, 100, or 200 dimen-

sions in the embedding layer; 50, 80, 100, or 200 filters in the con-

volutional layer; kernel sizes (2,3,4), (3,4,5), or (4, 5,6); and a

variety of learning rates and learning rate reduction factors. These

were all tracked with MLflow33 and the model with best perfor-

mance on the hold-out set was selected. The final learning rate used

was 4 � 10-4, with a reduction factor of 0.5 on performance

plateau.

Training and evaluation
The data were partitioned into 3 sets based on random sampling of

patients into a training set (60%), cross-validation set (16%), and

hold-out test set (24%). There was no overlap of patients across the

3 partitions. The cross-validation set was used for the validation
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during training epochs. The test set was only used after model fitting

to assess performance. A logistic regression model using a bag-of-

words count-based vectors as features was used as a comparator.

The performance was evaluated using the area under the receiver-

operating characteristic curve (AUC). To assess the precision, recall,

and F1 score, we downsampled the test set to balance the notes to

an equal number of positives and negatives. We did a 100 different

cycles of random selections of 120 cases in each class to calculate

the mean AUC, precision, recall, and F1-score. We used a probabil-

ity threshold of 0.2 to optimize for the F1 score. We later examined

the output of the model on all patients with virtual care visits with

COVID-19 listed as the reason for the visit to assess the discriminant

power of the model across three risk categories based on the pre-

dicted probability (low if P � .2, medium if P is between .2 and .9,

high if P � .9).

Ethical considerations
The purpose of this project was intended to improve the screening

process of our virtual care visit program at MUSC for COVID-19

testing and did not involve a systematic investigation or experimen-

tal procedure. Therefore, the project was determined to be quality

improvement and was not subject to Institutional Review Board for

Human Research approval based on the definition of research pur-

suant to the Common Rule [45 CFR 46.102(d)].34,35

RESULTS

Word frequencies
The results from the analysis of overrepresented keywords in clinical

notes with positive test results as compared with notes from those

with negative test results are shown in Figure 1. All results are highly

statistically significant. For example, the words smell, taste, sense,

and lost are mentioned at a much higher frequency (P< .0001) by

patients who tested positive for SARS-CoV-2 vs those who did not.

Deep learning performance
The deep learning model was extremely accurate in classification of

training sets (AUC ¼ 0.962) but because of the small size of the

training sample yielded only moderate performance, with an AUC

of 0.729 (Figure 2) in the hold-out test set; this compared with an

AUC of 0.704 for the logistic model regression in the same dataset—

a modest but important improvement.

The evaluation metrics base on the repeated cycles of randomly

selected balanced test sets are shown in Table 1. The CNN outper-

formed the logistic regression model on all the metrics except for

precision.

The overall rate of positive tests of patients seen via virtual care

was 5.6%. In discussions with the telehealth providers, we decided

to optimize risk groups into 3 categories with the selected cutoffs at

0.2 and 0.9, respectively, which puts a low-risk group at <3% posi-

tive test rates and a high-risk group at around 60% positive test

rate, resulting in a reasonable follow-up rate of around a few dozen

calls per day. Even though the accuracy of the model was only ac-

ceptable, it was still useful in discriminating patients into these risk

categories (Table 2). Looking across all patients with virtual care

visits who were tested, we were able to identify a high-risk group

that was potentially useful in prioritizing tests.

Figure 1. Top 10 words that are overrepresented in patients who tested posi-

tive for COVID-19 (coronavirus disease 2019), showing relevant words

expressed by patients during the virtual care visit intake process.

Figure 2. The area under the receiver-operating characteristic curve (AUC) of

the convolutional neural network for predicting SARS-CoV-2 (severe acute re-

spiratory syndrome coronavirus 2)–positive results based on the text content

of the virtual care visit notes.

Table 1. Mean values for AUC, precision, recall, and F1 score based

on repeated balanced test sets

Model AUC (95% CI) Precision Recall F1 score

CNN 0.732 (0.697-0.767) 0.754 0.453 0.566 (0.541-0.586)

LR 0.707 (0.665-0.739) 0.800 0.227 0.354 (0.329-0.377)

AUC: area under the receiver-operating characteristic curve; CI: confidence

interval; CNN: convolutional neural network; LR: logistic regression.

Table 2. Analysis of discriminant power of the model

Category Tested Positive % Positive

High 475 289 60.84

Medium 1,915 127 6.63

Low 9,401 244 2.60

Total 11,791 660 5.60
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DISCUSSION

COVID-19 has brought new scenarios to medicine in which patients

are systematically screened using computer algorithms for eligibility

for viral testing and subsequent care.36–39 This case report demon-

strates the rapid application of what previously have been

“research” methods to rapidly improve an institution’s computer

screening algorithms for COVID-19.

Predicting positive results based on clinical text is challenging.

The clinical notes can contain a significant amount of noise, both as

a result of the templated text, as well as patient-entered information

that is often irrelevant with respect to the result of SARS-CoV-2

PCR testing. This may explain the modest performance of the model

(AUC¼0.729). However, risk stratification of potentially positive

individuals may have significant value. At MUSC, during the period

of this study, despite application of a computer algorithm, only

5.6% of tested individuals tested positive, which was not a very effi-

cient use of limited testing resources. Even with an imperfect model,

it was possible to risk-stratify the population, helping direct resour-

ces to patients in most need. Daily predictions from the model were

applied to prioritize appointments for drive-through testing proce-

dures (i.e., high-risk patients were called first).

The text analytics highlighted important symptoms that had not

been captured by the screening form—namely, lack of smell and

taste in affected patients. Anosmia and the alteration of the sense of

taste have been reported by mildly symptomatic patients with

SARS-CoV-2 infection and are often the first noted symptoms.40 In

our hands, the presence of these symptoms as reported by the

patients themselves turned out to be the most sensitive predictor of

positive testing results. Other words relevant to COVID-19 signs

and symptoms (eg, temperature, fever, cough, and words related to

dyspnea) were not as prominent as we expected, likely owing to the

fact that such symptoms were captured through the semistructured

template, which could have masked overrepresentation. This find-

ing, along with other published literature, resulted in the alteration

of the online screening form to specifically include questions about

smell and taste just ahead to the updated Centers for Disease Con-

trol and Prevention guidelines on the “symptoms of coronavirus,”

which includes these specific symptoms.41 This finding demonstrates

the value of a data-driven approach for the identification of relevant

symptoms in novel infections such as the one at the root of this rap-

idly evolving pandemic.

Limitations
Fortunately, the number of positive SARS-CoV-2 test results was

low at our institution. As a result, the sample size for training a deep

learning model such as the CNN described herein is suboptimal.

More data are needed to refine the model and provide better risk

stratification. The complete clinical picture should be considered in

testing decisions, including the severity of symptoms and history of

underlying chronic diseases.5,42 Patients with preexisting or comor-

bid conditions are at higher risk of mortality42 and may need to be

prioritized for clinical reasons, even if the risk of a positive test is

low.

Future work
Future work will include more advanced NLP extraction including

local context analysis to identify negated terms (e.g., “denies fever”)

and terms referring to individuals other than the patient (e.g.,

“spouse has a fever”), term normalization to standard terminolo-

gies, and algorithms that generalize to a variety of clinical text notes.

Moreover, expanding training sets and developing predictive models

that include preexisting risk factors will provide a more comprehen-

sive tool that informs the decisions of our telehealth providers.

CONCLUSION

This case report describes our rapid use of artificial intelligence

methods to improve the efficiency of COVID-19 testing. The results

from our text analysis identified symptoms that informed the elec-

tronic triage process prior to wide publication of these associations

and also revealed how artificial intelligence methods could be used

prioritize patients screening positive for testing.

AUTHOR CONTRIBUTIONS

All authors provided substantial input into the conception and design of this

work, participated in drafting and revising it critically, and provided final ap-

proval of the version to be published.

ACKNOWLEDGMENTS

We thank Rachel McNeely and Grace Neil for their help with programming

and data cleaning and Jean Craig, Katie Kirchoff, and Ekaterina Pekar for

their help with data extraction.

CONFLICT OF INTEREST STATEMENT

None declared.

REFERENCES

1. Paules CI, Marston HD, Fauci AS. Coronavirus infections-more than just

the common cold. JAMA 2020; 323 (8): 707–8.

2. Omer SB, Malani P, Del Rio C. The COVID-19 pandemic in the US: a

clinical update. JAMA 2020; 323 (18): 1767–8. doi: 10.1001/

jama.2020.5788.

3. Parodi SM, Liu VX. From containment to mitigation of COVID-19 in the

US. JAMA 2020; 323 (15): 1441–2.

4. Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized

patients with 2019 novel coronavirus-infected pneumonia in Wuhan,

China. JAMA 2020; 323 (11): 1061–9.

5. Wu C, Chen X, Cai Y, et al. Risk factors associated with acute respiratory

distress syndrome and death in patients with coronavirus disease 2019

pneumonia in Wuhan, China. JAMA Intern Med 2020 Mar 13 [E-pub

ahead of print]; doi:10.1001/jamainternmed.2020.0994.

6. Frey LJ, Lenert L, Lopez-Campos G. EHR Big Data Deep Phenotyping.

Contribution of the IMIA Genomic Medicine Working Group. Yearb Med

Inform 2014; 23 (1): 206–11.

7. Shivade C, Raghavan P, Fosler-Lussier E, et al. A review of approaches to

identifying patient phenotype cohorts using electronic health records. J

Am Med Inform Assoc 2014; 21 (2): 221–30.

8. Richesson RL, Sun J, Pathak J, Kho AN, Denny JC. Clinical phenotyping

in selected national networks: demonstrating the need for high-

throughput, portable, and computational methods. Artif Intell Med 2016;

71: 57–61.

9. Meystre SM, Savova GK, Kipper-Schuler KC, Hurdle JF. Extracting infor-

mation from textual documents in the electronic health record: a review of

recent research. Yearb Med Inform 2008; 17 (1): 128–44.

10. Wilke RA, Xu H, Denny JC, et al. The emerging role of electronic medical

records in pharmacogenomics. Clin Pharmacol Ther 2011; 89 (3):

379–86.

11. Jensen PB, Jensen LJ, Brunak S. Mining electronic health records: towards

better research applications and clinical care. Nat Rev Genet 2012; 13 (6):

395–405.

1324 Journal of the American Medical Informatics Association, 2020, Vol. 27, No. 8



12. Miotto R, Li L, Kidd BA, Dudley JT. Deep patient: an unsupervised repre-

sentation to predict the future of patients from the electronic health

records. Sci Rep 2016; 6 (1): 26094.

13. Kim DJ, Rockhill B, Colditz GA. Validation of the Harvard Cancer Risk

Index: a prediction tool for individual cancer risk. J Clin Epidemiol 2004;

57 (4): 332–40.

14. Schmiedeskamp M, Harpe S, Polk R, Oinonen M, Pakyz A. Use of Inter-

national Classification of Diseases, Ninth Revision, Clinical Modification

codes and medication use data to identify nosocomial Clostridium difficile

infection. Infect Control Hosp Epidemiol 2009; 30 (11): 1070–6.

15. Zhong VW, Obeid JS, Craig JB, et al. An efficient approach for surveil-

lance of childhood diabetes by type derived from electronic health record

data: the SEARCH for Diabetes in Youth Study. J Am Med Inform Assoc

2016; 23 (6): 1060–7.

16. Obeid JS, Beskow LM, Rape M, et al. A survey of practices for the use of

electronic health records to support research recruitment. J Clin Transl Sci

2017; 1 (4): 246–52.

17. Cowie MR, Blomster JI, Curtis LH, et al. Electronic health records to fa-

cilitate clinical research. Clin Res Cardiol 2017; 106 (1): 1–9.

18. Aronson AR, Lang F-M. An overview of MetaMap: historical perspective

and recent advances. J Am Med Inform Assoc 2010; 17 (3): 229–36.

19. Savova GK, Masanz JJ, Ogren PV, et al. Mayo clinical Text Analysis and

Knowledge Extraction System (cTAKES): architecture, component evalu-

ation and applications. J Am Med Inform Assoc 2010; 17 (5): 507–13.

20. Soysal E, Wang J, Jiang M, et al. CLAMP-a toolkit for efficiently building

customized clinical natural language processing pipelines. J Am Med In-

form Assoc 2020; 25 (3): 331–6. doi:10.1093/jamia/ocx132.

21. L�opez Pineda A, Ye Y, Visweswaran S, Cooper GF, Wagner MM, Tsui FR.

Comparison of machine learning classifiers for influenza detection from

emergency department free-text reports. J Biomed Inform 2015; 58: 60–9.

22. Afzal Z, Schuemie MJ, van Blijderveen JC, Sen EF, Sturkenboom M, Kors

JA. Improving sensitivity of machine learning methods for automated case

identification from free-text electronic medical records. BMC Med Inform

Decis Mak 2013; 13 (1): 30.

23. Amrit C, Paauw T, Aly R, Lavric M. Identifying child abuse through text

mining and machine learning. Expert Syst Appl 2017; 88: 402–18.

24. Rajkomar A, Oren E, Chen K, et al. Scalable and accurate deep learning

with electronic health records. NPJ Digit Med 2018; 1: 18.

25. Obeid JS, Weeda ER, Matuskowitz AJ, et al. Automated detection of al-

tered mental status in emergency department clinical notes: a deep learn-

ing approach. BMC Med Inform Decis Mak 2019; 19 (1): 164.

26. Centers for Disease Control and Prevention. Coronavirus Disease 2019

(COVID-19). https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-

criteria.html Accessed April 27, 2020.

27. Ferrucci D, Lally A. UIMA: an architectural approach to unstructured in-

formation processing in the corporate research environment. Nat Lang

Eng 2004; 10 (3–4): 327–48.

28. Culpeper J. Keyness: Words, parts-of-speech and semantic categories in

the character-talk of Shakespeare’s Romeo and Juliet. Int J Corpus Lin-

guist 2009; 14 (1): 29–59.

29. Keras Chollet F.. 2018. https://keras.io/ Accessed November 20, 2018.

30. Abadi M, Agarwal A, Barham P, et al. TensorFlow: large-scale machine

learning on heterogeneous systems. 2018. https://www.tensorflow.org/

Accessed November 20, 2018

31. Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word rep-

resentations in vector space. arXiv:1301.3781.v3.

32. McDonald R, Brokos G-I, Androutsopoulos I. Deep relevance

ranking using enhanced document-query interactions. arXiv:1809.

01682.v2

33. MLflow-a platform for the machine learning lifecycle. https://mlflow.org/

Accessed May 4, 2020.

34. U.S. Department of Health and Human Services. 45 CFR 46. HHS.gov.

https://www.hhs.gov/ohrp/regulations-and-policy/regulations/45-cfr-46/

index.html Accessed April 26, 2020.

35. Medical University of South Carolina. QI Program Evaluation Self-

Certification Tool. https://research.musc.edu/resources/ori/irb/submis-

sions/qi-tool Accessed April 26, 2020.

36. Reeves JJ, Hollandsworth HM, Torriani FJ, et al. Rapid response to

COVID-19: health informatics support for outbreak management in an

academic health system. J Am Med Inform Assoc 2020; 27 (6): 853–9.

doi:10.1093/jamia/ocaa037.

37. Perez-Alba E, Nuzzolo-Shihadeh L, Espinosa-Mora JE, Camacho-Ortiz A.

Use of self-administered surveys through QR code and same center tele-

medicine in a walk-in clinic in the era of COVID-19. J Am Med Inform

Assoc 2020; 27 (6): 985–6. doi:10.1093/jamia/ocaa054.

38. Judson TJ, Odisho AY, Neinstein AB, et al. Rapid design and implementa-

tion of an integrated patient self-triage and self-scheduling tool for

COVID-19. J Am Med Inform Assoc 2020; 27 (6): 860–6. doi:10.1093/

jamia/ocaa051.

39. Turer RW, Jones I, Rosenbloom ST, Slovis C, Ward MJ. Electronic per-

sonal protective equipment: a strategy to protect emergency department

providers in the age of COVID-19. J Am Med Inform Assoc 2020; 27 (6):

967–71. doi:10.1093/jamia/ocaa048.

40. Spinato G, Fabbris C, Polesel J, et al. Alterations in smell or taste in mildly

symptomatic outpatients with SARS-CoV-2 infection. JAMA 2020; 323

(20): 2089–90. doi:10.1001/jama.2020.6771.

41. Centers for Disease Control and Prevention. Coronavirus disease 2019

(COVID-19)–symptoms. https://www.cdc.gov/coronavirus/2019-ncov/

symptoms-testing/symptoms.html Accessed May 4, 2020.

42. Centers for Disease Control and Prevention COVID-19 Response Team.

Preliminary estimates of the prevalence of selected underlying health con-

ditions among patients with coronavirus disease 2019-United States, Feb-

ruary 12-March 28, 2020. MMWR Morb Mortal Wkly Rep 2020; 69

(13): 382–6.

Journal of the American Medical Informatics Association, 2020, Vol. 27, No. 8 1325

https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-criteria.html
https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-criteria.html
https://keras.io/
https://www.tensorflow.org/
https://mlflow.org/
https://www.hhs.gov/ohrp/regulations-and-policy/regulations/45-cfr-46/index.html
https://www.hhs.gov/ohrp/regulations-and-policy/regulations/45-cfr-46/index.html
https://research.musc.edu/resources/ori/irb/submissions/qi-tool
https://research.musc.edu/resources/ori/irb/submissions/qi-tool
https://www.cdc.gov/coronavirus/2019-ncov/symptoms-testing/symptoms.html
https://www.cdc.gov/coronavirus/2019-ncov/symptoms-testing/symptoms.html

