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Abstract

Randomized controlled trials (RCTs) are the gold standard for making causal inferences,

but RCTs are often not feasible in addiction research for ethical and logistic reasons.

Observational data from real-world settings have been increasingly used to guide clinical

decisions and public health policies. This paper introduces the potential outcomes frame-

work for causal inference and summarizes well-established causal analysis methods for

observational data, including matching, inverse probability treatment weighting, the

instrumental variable method and interrupted time-series analysis with controls. It pro-

vides examples in addiction research and guidance and analysis codes for conducting

these analyses with example data sets.
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INTRODUCTION

Randomized controlled trials (RCTs) are the gold standard design for

establishing a causal relationship between a treatment and an out-

come. In RCTs, participants are randomized to one or more treatments

and control (placebo) conditions. Randomization ensures that all mea-

sured and unmeasured variables are equally distributed across condi-

tions, allowing the isolation of the treatment effect. RCTs are

common in experimental and clinical research, but disadvantages

include a lack of generalizability beyond the trial population, low sta-

tistical power for rare health conditions and high financial and time

costs. Further, RCTs are not always feasible for some fields or

research questions, such as addiction epidemiology and policy evalua-

tion, due to ethical (e.g. testing the effect of smoking on cancer) and

logistic consideration. Thus, addiction research often relies upon

observational data. The importance of using observational data from

real-world settings for causal inference has been increasingly recog-

nized in health and medical research [1]. For example, in the

United States, the 21st Century Cures Act supports the use of real-

world evidence, including data from prospective and retrospective

studies, when making health-care decisions and approving drugs [2].

In this paper, we provide an overview of established causal infer-

ence methods for non-randomized observational data [3] that is tailored

for applied researchers with examples in substance use research. We will

use the terms ‘exposure’, ‘treatment’ and ‘intervention’ interchange-

ably. We only focus upon research design with one treatment and one

control condition. However, it should be noted that the ideas introduced

in this paper can be extended to design with multiple treatments. This

paper is not intended to be a comprehensive technical overview of the

causal inference literature. Rather, it introduces researchers to several

well-developed causal inference methods and orientates readers to the

broader literature on causal inference. This paper is structured into five

parts: (i) potential outcomes and counterfactual framework, (ii) matching,

(iii) inverse probability treatment weighting, (iv) instrumental variable

method and (v) interrupted time-series analysis.

PART I: POTENTIAL OUTCOMES
FRAMEWORK

The definition of a causal effect has been formalized in the Rubin

causal model with potential outcomes [4, 5]. For an individual i, the
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causal effect of a treatment is defined as the difference between two

potential outcomes: the outcome that would have been observed if

the individual were exposed to treatment (denoted as Y1
i , where i rep-

resented the ith individual in the sample) and the outcome that would

have been observed if the individual were not exposed to the treat-

ment (denoted as Y0
i ). For example, in evaluating the effect of smoking

on cancer, this would be equivalent to comparing the cancer outcome

(yes/no) for an individual if this individual had smoked and if this indi-

vidual had not smoked, with all other factors remaining the same.

Only one of these outcomes can be observed; the other is a counter-

factual. Therefore, the individual causal effect cannot be estimated.

However, under several causal assumptions, as described below, it is

possible to estimate the average treatment effect (ATE) by aggregat-

ing observations from a group of individuals who are representative

of the target population. The ATE is defined as the average difference

between Y1
i (what would have happened to the individual given expo-

sure) and Y0
i (what would have happened given no exposure; i.e.

E Y1
i −Y

0
i

� �
, where the Eð Þ operator can be intuitively interpreted as

‘taking the average’). We will drop the subscript i in subsequent

expression when defining the average effect. This could also be

interpreted as the effect on the population by shifting the whole pop-

ulation from untreated to treated.

Another effect that is often relevant in applied research is the

average treatment effect for the treated (ATT). This is the difference

in the outcome that would have been observed if the individuals were

treated and the outcome that would have been observed if they were

not treated among those who were treated [i.e. E Y1 −Y0
� ��A=1Þ,

where A is an indicator variable that A = 1 for the treated and A = 0

for the untreated].

In RCTs, ATT and ATE coincide because random allocation bal-

ances the treatment and control groups. With a sufficiently large sam-

ple, the only difference between groups will be in whether the

participants received treatment. In non-randomized observational

studies, by contrast, the participants often self-select themselves into

treatment, and there are often systematic differences between those

who took treatment and those who did not. Therefore, ATT and ATE

differ in most non-randomized observational studies. The ATT is more

relevant for interventions that are self-selected by individuals. For

example, those who voluntarily engage in psychological interventions

for alcohol use disorder are likely to have different characteristics

compared to those who do not seek treatment. Therefore, it is more

relevant to estimate the causal effect of such an intervention among

those who were treated (i.e. ATT). However, for interventions that are

designed to impact the whole population, such as increasing the price

of alcohol, it is more relevant to estimate the causal effect on the pop-

ulation (i.e. ATE).

In RCTs, the ATE can be directly estimated from the average dif-

ference in the observed outcomes between the treatment/exposure

and control conditions. In observational studies, treatment allocation

and the outcome are often confounded. Applied researchers often

‘adjust’ or ‘control’ for confounding variables by adding these vari-

ables into a regression-based model. While, in theory, this approach

can identify the casual effect of treatment, there are several practical

limitations such as the linearity assumption not being met, and the

adjustment relying on extrapolation. Also, with the outcome always in

sight during the modelling process, researchers may be tempted to

cherry-pick a model that produces the desired conclusion [6]. The

methods discussed in the next sections address some of these

limitations and thereby improve the validity of causal inference from

non-randomized observational studies.

ASSUMPTION OF CAUSAL INFERENCE

Regardless of the methods used, the following assumptions are

required to identify a causal effect [3, 7].

1. No interference—this assumes that whether an individual receives

treatment does not affect the outcome of another individual. This

assumption will be violated if there is spillover or a contagion

effect.

2. Consistency—for each individual, only one of the two potential

outcomes is observed. This assumption requires that the potential

outcome under the observed treatment is the same as the

observed outcome. This is a technical assumption needed to link

the observed data to the potential outcomes framework.

3. No unmeasured confounding—this assumption requires that condi-

tioning on a range of potential confounders treatment assignment

is independent of the potential outcome, so that the treatment–

outcome relationship is not confounded. This assumption is usually

untestable and is often violated. The impact of its violation can be

evaluated through sensitivity analyses [8]. For example,

VanderWeele & Ding [8] introduced the E-value, which represents

the minimum strength of association that an unmeasured con-

founder needs to have on both the treatment and outcome to

explain away the treatment–outcome association. Therefore, a

small E-value suggests that the presence of a weak unmeasured

confounder will be sufficient to invalidate a causal interpretation a

treatment–outcome association.

4. Positivity—this requires that treatment is not deterministic at

every level of each of the covariates. As a result, individuals are

assumed to always have some chance of receiving treatment,

regardless of the values of covariates (e.g. age, gender and socio-

economic status).

PART II : MATCHING

The goal of matching is to emulate the balance between treatment and

control group in RCTs and ensure as much as possible that, after

matching, the distributions of all observed covariates are similar in both

treatment and control groups [9–11]. One-to-one matching is com-

monly used to estimate ATT. At its simplest, this method matches each

individual in the treatment group to an individual in the control group

based on a ‘similarity’ measure, such as propensity score [12, 13]. The

propensity score can be intuitively considered as the probability of
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receiving treatment calculated from each individual’s observed

covariates. It is often estimated using logistic regression with pre-

treatment covariates. Two individuals, one from the treatment group

and one from the control group, are considered to be a match if the dif-

ference in their propensity scores is smaller than a pre-determined

threshold, known as the caliper (e.g. 0.02 [14]). Unmatched individuals

are excluded from the analysis. As the treatment and the control are

balanced after matching, a simple regression model with the outcome

regressing only on treatment (treatment versus control) can estimate

the ATT. It is recommended in this simple regression that cluster-robust

standard errors be used for inference [15].

To illustrate the matching procedure, suppose we want to esti-

mate the causal impact of smoking on psychological distress. The top

panel in Table 1 shows the characteristics of people who smoked and

people who did not from a simulated data set based on a national

survey in Australia. Those who smoked and those who did not dif-

fered on several variables. For example, 42% of people who smoked

versus 64% of people who did not smoke finished high school. To

emulate the balance between those who smoked (treatment group)

and those who did not (control group) that would have been achieved

in a RCT, we matched each individual in the smoking group with an

individual in the non-smoking group based on all the observed

covariates (known as one-to-one matching). The matched sample

demonstrates better balance between the two groups (e.g. 42 and

43% of the smoking and the non-smoking groups finished high school;

see the right-most three columns in Table 1). Analysis can then pro-

ceed with the matched sample using linear regression and cluster-

robust standard error for inference. For example, a linear regression

shows that people who smoked report higher psychological distress

than people who did not (see Supporting information, Appendix S1).

T AB L E 1 Sample means in the unmatched and matched sample (top panel); sample means in the unweighted and weighted sample (bottom
panel)

Matching

Unmatched sample mean Matched sample mean

Smoke

(n = 974)

Not smoke

(n = 7026)

Standardized

mean difference

Smoke

(n = 974)

Not smoke

(n = 974)

Standardized

mean difference

Male 0.494 0.442 0.104 0.494 0.475 0.037

Indigenous status 0.052 0.018 0.157 0.052 0.048 0.018

Finished high school 0.422 0.638 −0.437 0.422 0.436 −0.029

Partnered 0.463 0.691 −0.458 0.463 0.444 0.039

Regionality

Major cities 0.585 0.677 −0.187 0.585 0.587 −0.004

Inner regional 0.218 0.190 0.067 0.218 0.232 −0.035

Outer regional or more

remote

0.197 0.133 0.162 0.197 0.181 0.041

English-speaking 0.958 0.913 0.223 0.958 0.954 0.021

Risky alcohol use 0.643 0.541 0.212 0.643 0.640 0.006

Age 51.606 53.782 −0.168 51.606 51.298 0.024

Inverse probability treatment weighting

Unweighted sample mean Weighted sample mean

Smoke Not smoke
Standardized mean
difference Smoke Not smoke

Standardized mean
difference

Male 0.494 0.442 0.104 0.452 0.449 0.007

Indigenous 0.052 0.018 0.239 0.020 0.021 −0.010

Finished high school 0.422 0.638 −0.443 0.607 0.612 −0.010

Partnered 0.463 0.691 −0.483 0.654 0.664 −0.020

Regionality

Major cities 0.585 0.677 −0.195 0.664 0.666 −0.005

Inner regional 0.218 0.190 0.070 0.195 0.193 0.003

Outer regional or more

remote

0.197 0.133 0.186 0.141 0.140 0.003

English-speaking 0.958 0.913 0.164 0.923 0.918 0.017

Risky alcohol use 0.643 0.541 0.204 0.566 0.554 0.024

Age 51.606 53.782 −0.153 53.399 53.519 −0.008
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R codes and the simulated data set are provided in the on-line

Supporting information.

The validity of a causal interpretation will hinge upon whether all

key confounders (i.e. variables that have strong causal impact on both

the exposure/uptake of treatment and the outcome) are measured

and balanced between the treatment and control group, which is

required by the no unmeasured confounding assumption. While this

assumption is untestable, a researcher can calculate the E-value

(a simple approach for sensitivity analysis) to evaluate how strong a

confounding effect due to unmeasured confounding is required to

invalidate a causal interpretation [8].

Simulation studies demonstrate that one-to-one matching using

propensity scores can produce a good balance between treatment

and control groups, and is sufficient for a range of scenarios [11].

Therefore, we focus upon propensity score-matching in the section.

Other matching regimes include k-to-1 matching, exact matching and

the use of Mahalanobis distance as similarity measures [11]. To esti-

mate ATE, full matching can be used. Modern machine-learning algo-

rithms, such as gradient boosting regression, can be used to calculate

propensity scores [16]. For a review of the advantages and drawbacks

of different matching methods and algorithms, readers can consult the

reviews by Stuart [11] and Rosenbaum [17].

For one-to-one matching, a common concern among applied

researchers is that a large number of unmatched observations in the

control group may be discarded, leading to reduced power. However,

the impact on power is usually small because power is largely driven

by the smaller group (the treatment group in many scenarios), and

retaining only the best matches could increase power because the

treatment and control groups are more closely matched and similar

after one-to-one matching [11].

Matching has several advantages over traditional regression anal-

ysis with covariate adjustment [6, 11]. First, it clearly separates the

design and analysis phases. Calculating the propensity score can be

considered as the ‘design’ phase of the study, like the randomization

phase in RCTs. The outcome is not used in the matching procedure so

researchers can fit multiple models to calculate the propensity scores

and select the one that produces the best balance between treatment

and control group. Only when a good balance is achieved does the

researcher proceed to the analysis phase and compare outcomes

between groups. As the outcome is not used during matching, this

reduces the temptation to cherry-pick a model that produces the

desired conclusion. Secondly, unlike regression models in which the

‘adjusted effect’ can be due to extrapolation, researchers directly

compare each of the covariates between treatment and control group

to ensure that a balance is achieved.

PART II I : INVERSE PROBABILITY
TREATMENT WEIGHT

Inverse probability treatment weight (IPTW) is a method that is

closely related to the propensity score method [13, 18]. In the IPTW

method, weighting is used to achieve a balance between the

treatment and control groups. Weighted data can be thought of as a

pseudo-population in which the only difference between groups is in

whether they received treatment [19, 20]. For individuals in the treat-

ment group, the weight is calculated as the inverse of their propensity

score (1 divided by the propensity score). For individuals in the control

group, the weight is the inverse of 1 minus their propensity score.

These weights are called the unstabilized weight because when an

individual who has a small probability of being in treatment ends up

receiving treatment, the individual has a large weight, substantially

inflating the variance of the causal effect estimates. Robins et al. [19]

suggested obtaining a stabilized weight by multiplying the unstabilized

weight by the unconditional probability of receiving treatment (the

raw probability of receiving treatment in the sample, not conditional

upon any covariates) for the individual in treatment and the uncondi-

tional probability of not receiving treatment for the individual in the

control group. To further reduce the impact of large weights, the sta-

bilized weight can be truncated to a less extreme value, such as the

5th or 95th percentile. This procedure could introduce a small bias in

the final causal effect estimate, but effectively reduces variance [21].

Once the weight is calculated, the researcher can compare outcomes

between treatment and control by regressing the outcome solely on

the treatment allocation (treatment versus control) with weights.

Robust standard error is required for correct causal inference.

We used the same example of smoking and psychological distress

to illustrate IPTW. The bottom panel in Table 1 (right-most three col-

umns) shows the characteristics of smokers and non-smokers in the

pseudo-population created by weighting, which produced a much bet-

ter balance between the groups. The causal effect of treatment can

now be estimated with a weighted regression analysis using the

pseudo-population generated using weighting. Example R codes are

provided in Supporting information, Appendix S2.

Extension to multi-wave longitudinal analysis

The IPTW method can be easily extended to longitudinal analysis of

data in which there could be time-varying confounding [19]. A time-

varying confounder is influenced by previous exposure, and influences

future exposure and outcome. For example, peer drinking is a time-

varying confounder in a longitudinal study of parental alcohol supply

during adolescence (exposure) on future alcohol use disorder in young

adulthood (outcome). This is because peer drinking can (i) be

influenced by previous parental supply, (ii) influence future parental

supply and (iii) influence the risk of alcohol use disorder in young

adulthood (Figure 1). Standard regression is not able to adjust for such

time-varying confounding and can introduce bias into the estimates

that could lead to contradictory conclusions [22]. Using the IPTW

method, the overall causal effect of the exposure on the outcome can

be estimated with a weighted regression analysis if we assign a weight

to the individual in each wave and multiply these weights to form a

final weight. An example estimating the impact of adolescent smoking

on psychological distress in young adulthood is presented in

Supporting information, Appendix S2 with example analysis code in R.
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PART IV: INSTRUMENTAL VARIABLE
METHOD

Both matching and IPTW methods can be used to control for con-

founding from measured covariates but assume that there is no

unmeasured confounding. This assumption is untestable and is likely

to be violated because it is almost impossible to measure and include

all possible confounding variables in the matching and weighting pro-

cedure. The instrumental variable method has been developed to con-

trol for unmeasured confounding [23, 24].

An instrumental variable is one that has (i) a direct causal impact

on the exposure, (ii) no direct causal impact on the outcome and

(iii) does not affect the outcome through variables other than the

exposure (i.e. independently of any unmeasured confounders). The

instrumental variable can therefore only affect the outcome through

the exposure variable (Figure 2). This property is also known as the

exclusion restriction assumption. Once a valid instrumental variable is

identified, the researcher can first use a simple regression analysis to

extract the variation in the treatment that is free of unmeasured con-

founding. Another regression then uses this confounding-free varia-

tion in the treatment to estimate the causal effect of treatment on the

outcome.

To identify the causal effect using the instrumental variable

method, the third assumption of no unmeasured confounding

described in Part I needs to be adapted. It is now required that con-

ditioning on a range of potential confounders, the instrumental vari-

able is independent of the potential exposure so that the

instrumental variable–exposure relationship is not confounded. Fur-

ther, conditioning on a range of potential confounders and the

potential exposure, the instrumental variable is independent of the

potential outcome so that the instrument variable–outcome relation-

ship is not confounded.

An example of instrumental variable in addiction research would

be the use of genetic variants associated with alcohol use to estimate

the effect of alcohol use on cardiovascular disease (see the footnote

below Figure 2). Testing the causal impact of alcohol and cardiovas-

cular disease is challenging, because it is unethical to randomize indi-

viduals to drink alcohol. Further, the association would be

confounded by a large range of life-style, social and biological factors

in observational studies. The aldehyde dehydrogenase 2 family mem-

ber (ALDH2) gene can be used as an instrumental variable, because

the ALDH2 enzyme is responsible for metabolizing alcohol by

degrading acetaldehyde to nontoxic acetate. A variant of this gene

(rs671 or ALDH2*2) results in an inactive product protein, impairing

alcohol metabolism and resulting in an adverse reaction after drinking

alcohol. This variant is therefore protective against alcohol use [25].

The ALDH2 gene is not associated with cardiovascular disease and is

unlikely to be associated with confounding factors such as physical

activity and socio-economic status. Therefore, if this gene were to

affect cardiovascular outcomes, it must exert its effect solely through

alcohol consumption. A simple comparison of cardiovascular disease

between individuals with and without copies of the ALDH2 variant

can test if alcohol consumption affects the risks of cardiovascular dis-

eases. Further, by estimating the variation in alcohol consumption

that is explained by the ALDH2 gene, researchers can also estimate

the effect size of alcohol consumption on cardiovascular disease. This

can be conducted using the two-stage least-square estimation (2SLS)

with the following steps.

F I G U R E 2 Association between an instrumental variable (V),
treatment (E), outcome (Y) and unmeasured confounders (U). When
testing the causal effect of alcohol consumption (E) on cardiovascular
risk (Y) there would be many confounding variables, such as
education, socio-economic status and life-style factors. The genetic
variant of aldehyde dehydrogenase 2 family member (ALDH2) can be
an instrumental variable because it influences alcohol consumption
through a well-known biological mechanism. The (lack of) ALDH2
enzyme is unlikely to contribute to cardiovascular disease directly
(hence the top dotted arrow). It is also unlikely to influence
confounding variables (e.g. socio-economic status) that impact both
alcohol use and cardiovascular disease (the dotted arrow from V to U)

F I GU R E 1 Association between the effect of parental alcohol
supply during adolescence, peer alcohol use and future alcohol use
disorder in young adulthood.B represents baseline demographic
characteristics and covariates such as sex, baseline parental alcohol
supply, baseline peer alcohol use, baseline risky alcohol use and
baseline smoking status. C1, C2 and C3 represent time-varying
confounders including peer alcohol use and risky alcohol use at
follow-up 1, 2 and 3. E1, E2 and E3 represent the exposure, parental
alcohol supply, at follow-up 1, 2 and 3. Y represents the outcome,
which is alcohol use disorder in young adulthood. There is time-
varying confounding because, for example, peer alcohol use and risky
alcohol use at follow-up 2 (C2) are influenced by parental alcohol
supply at follow-up 1 (E1), and they also confound the relationship
between parental alcohol supply at follow-up 3 (E3) and alcohol use
disorder at young adulthood (Y)
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1. Regress the treatment (alcohol consumption) on the instrumental

variable (ALDH2 gene) by least squares, and calculate the

predicted value of treatment for each individual.

2. Regress the outcome (cardiovascular disease) on the predicted

value of treatment (predicted value of alcohol consumption from

step 1).

The coefficient of the predicted value of exposure represents the

causal effect on the outcome. For inference, the standard error needs

to be adjusted for the uncertainty in the predicted value of treatment.

This adjustment has been implemented in several open-source soft-

ware packages, such as the ivpack package in R [26]. Baiocchi et al.

[24] provides an in-depth tutorial on the instrumental variable method

with a detailed example in R using the ivpack package.

One challenge of the instrumental variable method is the identifi-

cation of an instrumental variable. In the above example, the use of a

genetic variant is a special application of the instrumental variable

method, generally referred to as Mendelian randomization [27]. Individ-

uals were effectively randomized at birth to have or not have a variant

of the ALDH2 genes, which affected their alcohol consumption

through a well-known biological mechanism [28]. As the ALDH2 genes

affect the production of the ALDH2 enzyme, which is essential in alco-

hol metabolism, we can assume that it affects cardiovascular outcomes

solely through alcohol consumption. However, the use of instrumental

variables in other scenarios is challenging, because the exclusion

restriction assumption is untestable and relies upon theoretical plausi-

bility [24]. The assumption of no unmeasured confounding in conven-

tional analysis such as regression and the above two causal analysis

methods (matching and IPTW) is also untestable and often untenable.

It has been argued that replacing the no unmeasured confounding

assumption in conventional analysis with a theoretically justifiable

assumption in instrumental variable analysis may provide stronger evi-

dence for causal inference. Another example of a viable instrumental

variable in addiction research is alcohol outlet density around an indi-

vidual’s residence. Higher alcohol outlet density is likely to encourage

residents in the neighborhood to increase their alcohol consumption,

and it is likely to be exclusively linked to health outcomes through alco-

hol consumption, after adjusting for socio-demographic factors.

There is still statistical consideration even if an instrumental variable

satisfies all the necessary assumptions. If an instrumental variable is only

weakly linked to the treatment (i.e. it can only explain a very small pro-

portion of variance in the treatment variable), it will result in considerable

variance in the estimates. Therefore, it is necessary to test the strength

of the association between the instrumental variable and the treatment

variable before conducting an instrumental variable analysis.

PART V: INTERRUPTED TIME-SERIES
ANALYSIS

Many public health interventions are implemented to change a

population-level outcome such as the rate of hospital emergency pre-

sentations due to excessive alcohol drinking. For example, O’Brien et al.

[29] tested the effect of minimum alcohol pricing on population-level

alcohol consumption in the Northern Territory, Australia.

Using data from repeated observations of an outcome, an inter-

rupted time-series analysis (ITSA) compared the trend in the outcome

before and after the intervention [30, 31]. This can be conceptualized

based on the counterfactual framework as comparing what would

have happened in the absence of the intervention (a counterfactual

scenario) with what has been observed after an intervention. A con-

trol series, in which the intervention is not implemented, can be

included to strengthen causal inference. The counterfactual scenario

can be estimated based on the underlying trend preceding the inter-

vention and the trend in the control series (including the time-points

following intervention). A change in trend in the intervention series

before and after the intervention, and a lack of change in the control

series, provides good evidence for a causal effect of the intervention

(Figure 3). Interrupted time-series analysis can control for secular

trends in the outcome, confounding due to within- and between-

group variation and fluctuation in the outcome due to seasonality.

Estimates from interrupted time-series analysis are often comparable

to estimates from RCTs [32, 33]. Further, it could have more impor-

tant implications, because the data were from a naturalistic setting

and so could potentially be more applicable in the real world.

The successful application of the interrupted time-series analysis

requires a clear implementation time-point so that the pre-

intervention period can be clearly differentiated from the post-

intervention period. Further, it requires short-term outcomes that are

responsive to the intervention. For example, in the evaluation of the

effectiveness of a minimum alcohol pricing policy, the intervention

time was clear because it was implemented on a specific date. For

some designs, caution is required to allow for phase-in period that is

clinically and/or theoretically derived. For example, using the current

example individuals might stockpile alcohol when anticipating a price

increase due to policy change.

Total alcohol consumption and alcohol sales data are ideal out-

comes because they are usually very responsive to change in alcohol

price and they are proximal to the policy change. Acute emergency

department admissions may require a longer lead in period. Long-term

outcomes such as changes in rates of liver cirrhosis are less suitable

because they are more distal to the intervention.

It is also important that a comparable control series is chosen from

a population that is as similar as possible to the one exposed to the

intervention, except for the fact that one receives the intervention and

one does not. For example, the control series can be from another loca-

tion with similar population characteristics, or it can be from the histori-

cal trend in same population (e.g. comparing the time-series in the

18-month window where the intervention was implemented mid-way

and the previous 18-month window when there was no intervention).

An interrupted time-series analysis with control is often based on

the regression model:

Yt = β0 + β1time+ β2post intervention+ β3post intervention× time
+ β4group+ β5group× time+ β6group×post intervention + β7time
×post intervention × group+ ϵt
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Post intervention is an indicator variable for pre- and post-

intervention (0: pre-intervention; 1: post-intervention); group is an

indicator variable for intervention and control group (0: control group;

1: intervention group); time is a numerical variable that represents the

elapse of time. The interpretation of the coefficients β0 to β7 are

explained in Figure 4. In this model, seasonality can be also adjusted

for if indicator variables representing different seasons are added to

model. For time-series, the outcome is often correlated over time and

such autocorrelation must be accounted for. Several methods can be

used. For example, the coefficients and the corresponding standard

errors can be estimated using generalized least squares with a

specified residual structure (e.g. AR [1]). The coefficients can also be

estimated using ordinary least squares with heteroskedasticity auto-

correlation consistent (HAC) standard error [34]. An example estimat-

ing the effect of minimum alcohol pricing on population-level alcohol

consumption is presented in Supporting information, Appendix S4

with R codes.

In this section we have only focused upon a regression-based

technique with which most addiction researchers were familiar. For

applications of other time-series analysis technique, such as ARIMA

and ARIMAX, the readers can consult the review by Beard et al. [35].

DISCUSSION

RCTs are the gold standard for establishing causality, but they are not

always a feasible approach due to ethical, cost or logistical reasons.

We provided an introduction, with simulated data sets and R codes,

to four statistical methods that could help addiction researchers draw

causal inferences based on observational data. However, it should be

noted that statistical method is not a replacement for overall research

design. The first two methods, matching and IPTW, are generally

applied to individual-level data, and could be prone to bias due to

unmeasured confounding. To reduce the impact of confounding in

these designs, it is essential to identify as many potential confounders

as possible based on established theoretical frameworks, and collect

as much information as possible on these confounding variables for

statistical adjustment (e.g. through matching and inverse probability

treatment weight). Directed acyclic graphs (DAGs) have been increas-

ingly used for confounder selection, but this requires adequate knowl-

edge with regard to the underlying causal structure between variables

[3]. However, this knowledge is often not available. VanderWeele [36]

proposed that disjunctive cause criteria to simplify the confounder

selection process. These criteria suggest adjusting for (1) all variables

that were either a cause of the exposure or outcome or both, and

excluding from this set any instrumental variable for the exposure and

outcome, and (2) variables that were proxy for an unmeasured con-

founder that is a common cause for both the exposure and outcome.

Further, the Bradford–Hill criteria provide an overarching concep-

tual framework for evaluating overall evidence of the causal relation-

ship between an exposure and an outcome in epidemiological

research. Two of the criteria, biological plausibility and temporality,

are particularly relevant for accessing causality in individual study.

Biological plausibility refers to the presence of evidence for a possible

biological mechanism linking the exposure to the outcome

(e.g. smoking releases carcinogens, thus it is possible that it could lead

F I GU R E 3 The black and grey line represents observed time-series from intervention and control group. In (a), there is an immediate effect of
intervention, and there is a change in trend direction. The control series continues its original trajectory, providing strong evidence of a causal
intervention effect. Similarly, in (b), there is an immediate effect but no change in trend direction; in (c) there is a change in trend direction but no
immediate effect. In (d), although there is a change in trend direction after the intervention, the same change is also observed in the control series,
indicating that the change is probably caused by other confounding factors, such as another intervention, that is implemented in both the
intervention and control group

2742 CHAN ET AL.



to cancer). Temporality requires that the exposure preceding the out-

come, and this can be addressed with careful longitudinal design. For

example, three waves of data can be used for matching to strengthen

causal inference—the exposure (measured at wave 2) can be matched

based on a range of pre-exposure variables (measured at wave 1), and

the exposure can be tested as a predictor for the outcome measured

at a later time-point (e.g. wave 3). The third method, instrumental vari-

able, is a powerful method that can overcome the issue caused by

unmeasured confounding, but finding a suitable instrument could be

challenging. The last method, interrupted time-series analysis, is gen-

erally applied to aggregated population-level data to evaluate policy

impact. It is less prone to confounding at individual level and selection

bias. However, it could be insensitive to detect the effect of an inter-

vention at individual level and mask important differential effect on

subpopulations.

Researchers should not blindly apply the methods discussed in

this paper and always evaluate the plausibility of the assumptions

underlying each method (e.g. assumptions about the relationship

between the instrumental variable, exposure and outcome). These

assumptions are often untestable using observational data and they

need to be justified by plausibility. Sensitivity tests can help

researchers to evaluate how serious the degree of assumption viola-

tion needs to be to invalidate their conclusions. Researchers should

always consider sensitivity analysis in addition to their main analysis.

To strengthen causal inference using observational studies, Hernán

[37] outlined the target trial protocol, in which he proposed to apply

thinking in RCT when designing an observational study, such as clearly

specifying a priori the eligibility criteria, treatment strategies, out-

come, causal estimates and statistical analysis.

CONCLUSION

Observational data can provide important information about causality.

The four methods discussed in this paper can be used to strengthen

causal inference from observational data, provided that the assump-

tions of each method are carefully considered and justified.
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