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ABSTRACT  28 

Strategies to develop therapeutics for SARS-CoV-2 infection may be informed by experimental 29 

identification of viral-host protein interactions in cellular assays and measurement of host 30 

response proteins in COVID-19 patients. Identification of genetic variants that influence the 31 

level or activity of these proteins in the host could enable rapid ‘in silico’ assessment in human 32 

genetic studies of their causal relevance as molecular targets for new or repurposed drugs to 33 

treat COVID-19. We integrated large-scale genomic and aptamer-based plasma proteomic data 34 

from 10,708 individuals to characterize the genetic architecture of 179 host proteins reported 35 

to interact with SARS-CoV-2 proteins or to participate in the host response to COVID-19. We 36 

identified 220 host DNA sequence variants acting in cis (MAF 0.01-49.9%) and explaining 0.3-37 

70.9% of the variance of 97 of these proteins, including 45 with no previously known protein 38 

quantitative trait loci (pQTL) and 38 encoding current drug targets. Systematic characterization 39 

of pQTLs across the phenome identified protein-drug-disease links, evidence that putative viral 40 

interaction partners such as MARK3 affect immune response, and establish the first link 41 

between a recently reported variant for respiratory failure of COVID-19 patients at the ABO 42 

locus and hypercoagulation, i.e. maladaptive host response. Our results accelerate the 43 

evaluation and prioritization of new drug development programmes and repurposing of trials to 44 

prevent, treat or reduce adverse outcomes. Rapid sharing and dynamic and detailed 45 

interrogation of results is facilitated through an interactive webserver 46 

(https://omicscience.org/apps/covidpgwas/).  47 
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INTRODUCTION 48 

The pandemic of the novel coronavirus SARS-CoV-2 infection, the cause of COVID-19, is causing 49 

severe global disruption and excess mortality1,2. Whilst ultimately strategies are required that 50 

create vaccine-derived herd immunity, in the medium term there is a need to develop new 51 

therapies or to repurpose existing drugs that are effective in treating patients with severe 52 

complications of COVID-19, and also to identify agents that might protect vulnerable individuals 53 

from becoming infected. The experimental characterization of 332 SARS-CoV-2-human protein-54 

protein interactions and their mapping to 69 existing FDA-approved drugs, drugs in clinical trials 55 

and/or preclinical compounds3 points to new therapeutic strategies, some of which are 56 

currently being tested. The measurement of circulating host proteins that associate with 57 

COVID-19 severity or mortality also provides insight into potentially targetable maladaptive 58 

host responses with current interest being focused on the innate immune response4, 59 

coagulation5,6, and novel candidate proteins7. 60 

Naturally-occurring sequence variation in or near a human gene encoding a drug target and 61 

affecting its expression or activity can be used to provide direct support for drug mechanisms 62 

and safety in humans. This approach is now used by major pharmaceutical companies for drug 63 

target identification and validation for a wide range of non-communicable diseases, and to 64 

guide drug repurposing8,9. Genetic evidence linking molecular targets to diseases relies on our 65 

understanding of the genetic architecture of drug targets. Proteins are the most common 66 

biological class of drug targets and advances in high-throughput proteomic technologies have 67 

enabled systematic analysis of the “human druggable proteome” and genetic target validation 68 

to rapidly accelerate the prioritization (or de-prioritisation) of therapeutic targets for new drug 69 

development or repurposing trials. 70 

Identification and in-depth genetic characterization of proteins utilized by SARS-CoV-2 for entry 71 

and replication as well as those proteins involved in the maladaptive host response will help to 72 

understand the systemic consequences of COVID-19. For example, if confirmed, the reported 73 

protective effect of blood group O on COVID-19-induced respiratory failure10 might well be 74 

mediated by the effect of genetically reduced activity of an ubiquitously expressed 75 

glycosyltransferase on a diverse range of proteins. 76 
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In this study we integrated large-scale genomic and aptamer-based plasma proteomic data 77 

from a population-based study of 10,708 individuals to characterize the genetic architecture of 78 

179 host proteins relevant to COVID-19. We identified genetic variants that regulate host 79 

proteins that interact with SARS-CoV-2, or which may contribute to the maladaptive host 80 

response. We deeply characterized protein quantitative trait loci (pQTLs) in close proximity to 81 

protein encoding genes, cis-pQTLs, and used genetic score analysis and phenome-wide scans to 82 

interrogate potential consequences for targeting those proteins by drugs. Our results enable 83 

the use of genetic variants as instruments for drug target validation in emerging genome-wide 84 

associations studies (GWAS) of SARS-CoV-2 infection and COVID-19. 85 

RESULTS 86 

Coverage of COVID-19-relevant proteins 87 

We identified candidate proteins based on different layers of evidence to be involved in the 88 

pathology of COVID-19: 1) two human proteins related to viral entry11, 2) 332 human proteins 89 

shown to interact with viral proteins3, 3) 26 proteomic markers of disease severity7, and 4) 54 90 

protein biomarkers of adverse prognosis, complications, and disease deterioration4–6,12 (Fig. 1). 91 

Of 409 proteins prioritised, 179 were detectable by an aptamer-based technology (SomaScan©), 92 

including 28 recognised by more than 1 aptamer (i.e. 179 proteins recognised by 190 aptamers) 93 

and 32 also measured using the Olink© proximity extension assay in a subset of 485 Fenland 94 

study individuals (Supplemental Tab. S1). Of these 179 proteins, 111 (Supplemental Tab. S1) 95 

were classified as druggable proteins, including 32 by existing or developmental drugs13, and 22 96 

highlighted by Gordon et al. as interacting with SARS-CoV-2 proteins3. To simplify the 97 

presentation of results we introduce the following terminology: we define a protein as a unique 98 

combination of UniProt entries, i.e. including single proteins and protein complexes. We further 99 

define a protein target as the gene product recognised by a specific aptamer, and, finally, an 100 

aptamer as a specific DNA-oligomer designed to bind to a specific protein target.  101 

 102 
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 103 

Figure 1 Flowchart of the identification of candidate proteins and coverage by the SomaScan v4 104 

platform within the Fenland cohort. More details for each protein targeted are given in 105 

Supplemental Table S1. 106 

 107 

Local genetic architecture of protein targets  108 

We successfully identified 220 DNA sequence variants acting in cis for 97 proteins recognised by 109 

106 aptamers (Fig. 2 and Supplemental Tab. S2). For 45 of these proteins, no pQTLs had 110 

previously been reported. Of 9 proteins recognised by more than 1 aptamer, sentinel sequence 111 

variants were concordant (identical or in high linkage disequilibrium (LD) r²>0.8) between 112 

aptamer pairs or triplets for 7 proteins. Minor allele frequencies ranged from 0.01-49.9%, and 113 

the variance explained ranged from 0.3-70.1% for all cis-acting sentinel variants and 0.3-70.9% 114 

for cis-acting variants including 2-9 identified secondary signals at 57 targets, similar to what 115 
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was observed considering all cis- and an additional 369 trans-acting variants identified for 98 116 

aptamers (0.4-70.9%). Among the 97 proteins, 38 are targets of existing drugs, including 15 117 

proteins (PLOD2, COMT, DCTPP1, GLA, ERO1LB, SDF2, MARK3, ERLEC1, FKBP7, PTGES2, EIF4E2, 118 

MFGE8, IL17RA, COL6A1, and PLAT) (8 with no known pQTL) that were previously identified3 as 119 

interacting with structural or non-structural proteins encoded in the SARS-CoV-2 genome and 120 

16 proteins (CD14, F2, F5, F8, F9, F10, FGB, IL1R1, IL2RA, IL2RB, IL6R, IL6ST, PLG, SERPINC1, 121 

SERPINE1, and VWF) (7 with no known pQTL) that encode biomarkers related to COVID-19 122 

severity7, prognosis, or outcome.  123 

 124 

 125 

 126 

Figure 2 Manhattan plot of cis-associations statistics (encoding gene ±500kb) for 179 proteins. 127 

The most significant regional sentinel protein quantitative trait loci (pQTL) acting in cis are 128 

annotated by larger dots for 104 unique protein targets (dashed line; p<5x10-8). Starred genes 129 

indicate those targeted by multiple aptamers (n=9 genes).  130 

 131 

Proteins are known to act in a cascade-like manner. To classify such ‘vertical’ pleiotropy, i.e. 132 

associations within a pathway, as well as ‘horizontal’ pleiotropy where proteins are acting 133 

through distinct pathways, we investigated associations of identified lead cis-pQTLs with all 134 

measured aptamers (N=4,776 unique protein targets, see Methods). For 38 cis-pQTLs mapping 135 

to druggable targets, we found evidence for a) protein specific effects for 23 regions, b) 136 

possible vertical pleiotropy for 6, and c) horizontal pleiotropy for 9 lead cis-pQTLs. A similar 137 
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distribution across those categories was seen for the remaining cis-pQTLs (Fishers exact test p-138 

value=0.49).  139 

To test for dependencies between host proteins predicted to interact with the virus and those 140 

related to the maladaptive host response we computed genetic correlations for all proteins 141 

with at least one cis-pQTL and reliable heritability estimates (see Methods). Among 86 142 

considered proteins, we identified a highly connected subgroup of 24 proteins including 19 143 

SARS-CoV-2-human protein interaction partners (e.g. RAB1A, RAB2A, AP2A2, PLD3, KDEL2, 144 

GDP/GTP exchange protein, PPT1, GT251 or PKP2 ) and 5 proteins related to cytokine storm (IL-145 

1Rrp2 and IL-1Ra), fibrinolysis (PAI-1), coagulation (coagulation factor X(a)), and severity of 146 

COVID-19 (GSN (gelsolin)) (Fig. 3). The cluster persisted in different sensitivity analyses, such as 147 

omitting highly pleiotropic genomic regions (associated with >20 aptamers) or lead cis-pQTLs 148 

(Supplementary Fig. S1). Manual curation highlighted protein modification and vesicle 149 

trafficking involving the endoplasmic reticulum as highly represented biological processes 150 

related to this cluster. Among these proteins, nine are the targets of known drugs (e.g. COMT, 151 

PGES2, PLOD2, ERO1B, XTP3B, FKBP7, or MARK3). The high genetic correlation between these 152 

proteins indicates shared polygenic architecture acting in trans, which is unlikely to be driven by 153 

selected pleiotropic loci identified in the present study. 154 

Apart from this cluster, we identified strong genetic correlations (|r|>0.5) between smaller sets 155 

of proteins related to COVID-19 severity, and host proteins relevant to viral replication such as 156 

between IL-6 induced proteins (SAA1, SAA2, and CD14) and fibulin 5 (FBLN5). 157 

 158 
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 159 

Figure 3 Genetic correlation matrix of 86 unique proteins targeted by 93 aptamers with reliable 160 

heritability estimates (see Methods). Aptamers were clustered based on absolute genetic 161 

correlations to take activation as well repression into account and protein encoding genes were 162 

used as labels. The column on the far left indicates relevance to SARS-CoV-2 infection. Strong 163 

correlations (|r|>0.5) are indicated by black frames. 164 

 165 

A tiered system for trans-pQTLs 166 

In the absence of an accepted gold standard for the characterization of trans-pQTLs, we created 167 

a pragmatic, tiered system to guide selection of trans-pQTLs for downstream analyses. We 168 

defined as a) ‘specific’ trans-pQTLs those solely associated with a single protein or protein 169 
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targets creating a protein complex, b) ‘vertically’ pleiotropic trans-pQTLs those associated only 170 

with aptamers belonging to the same common biological process (GO-term), and c) as 171 

‘horizontally’ pleiotropic trans-pQTLs all remaining ones, i.e. those associated with aptamers 172 

across diverse biological processes. We used the entire set of aptamers available on the 173 

SomaScan v4 platform, N=4,979, to establish those tiers.  174 

Among 451 SNPs acting solely as trans-pQTLs, 114 (25.3%) were specific for a protein target, 29 175 

(6.4%) showed evidence of vertical pleiotropy, and 308 (68.3%) evidence of horizontal 176 

pleiotropy, indicating that trans-pQTLs exert their effects on the circulating proteome through 177 

diverse mechanisms. As an extreme example, the most pleiotropic trans-pQTL (rs4648046, 178 

minor allele frequency (MAF)=0.39) showed associations with over 2,000 aptamers and is in 179 

high LD (r2=0.99) with a known missense variant at CFH (rs1061170). This missense variant was 180 

shown, among others, to increase DNA-binding affinity of complement factor H14, which may 181 

introduce unspecific binding of complement factor H to a variety of aptamers, being small DNA-182 

fragments, and may therefore interfere with the method of measurement more generally, 183 

rather than presenting a biological effect on these proteins. A similar example is the trans-pQTL 184 

rs71674639 (MAF=0.21) associated with 789 aptamers and in high LD (r²=0.99) with a missense 185 

variant in BCHE (rs1803274).  186 

Sample handling is an important contributor to the identification of non-specific trans-pQTL 187 

associations. Blood cells secrete a wide variety of biomolecules, including proteins, following 188 

activation or release such as consequence of stress-induced apoptosis or lysis. Interindividual 189 

genetic differences in blood cell composition can hence result in genetic differences in protein 190 

profiles depending on sample handling or delays in time-to-spin. A prominent example seen in 191 

our results and reported in a previous study15 is variant rs1354034 in ARHGEF3, associated with 192 

over 1,000 aptamers (on the full SomaScan platform). ARHGEF3 is a known locus associated 193 

with platelet counts16, albeit its exact function has yet to be determined, either genetically 194 

determined higher platelet counts or higher susceptibility to platelet activation may result in 195 

the secretion of proteins into plasma during sample preparation. While we report such 196 

examples, the extremely standardised and well controlled sample handling of the 197 

contemporary and large Fenland cohort has minimised the effects of delayed sample handling 198 
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on proteomic assessment, as compared to historical cohorts or convenience samples such as 199 

from blood donors, evidenced by the fact that previously reported and established sample 200 

handling related loci, such as rs62143194 in NLRP1215 are not significant in our study.  201 

Finally, for 27 out of 98 aptamers with at least one cis- and trans-pQTL, we identified no or only 202 

very weak evidence for horizontal pleiotropy, i.e. associations in trans for no more than 1 203 

aptamer, suggesting that those might be used as additional instruments to genetically predict 204 

protein levels in independent cohorts for causal assessment. 205 

Host factors related to candidate proteins 206 

We investigated host factors that may explain variance in the plasma abundances of aptamers 207 

targeting high-priority candidate proteins using a variance decomposition approach (see 208 

Methods). Genetic factors explained more variance compared to any other tested host factors 209 

for 63 out of 106 aptamers with IL-6 sRa, collagen a1(VI), or QSOX2 being the strongest 210 

genetically determined examples (Fig. 4). The composition of non-genetic host factors 211 

contributing most to the variance explained appeared to be protein specific (Fig. 4). For SMOC1 212 

and Interleukin-1 receptor-like 1, for example, sex explained 23.8% and 17.9% of their variance, 213 

respectively, indicating different distributions in men and women. Other examples for single 214 

factors with large contributions included plasma ALT (15.4% in the variance of NADPH-P450 215 

oxidoreductase) or age (14.2% in the variance of GDF-15/MIC-1). We observed a strong and 216 

diverse contribution from different non-genetic factors for proteins such as LG3BP, SAA, IL-1Ra, 217 

or HO-1 implicating multiple, in part modifiable, factors with independent contributions to 218 

plasma levels of those proteins. 219 
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 220 

Figure 4 Stacked bar chart showing the results from variance decomposition of plasma 221 

abundances of 106 aptamers targeting candidate proteins. For each candidate protein a model 222 

was fitted to decompose the variance in plasma levels including all 16 factors noted in the 223 

legend. cis/trans-GRS = weighted genetic risk score based on all single nucleotide 224 

polymorphisms associated with the aptamer of interest acting in cis and trans, respectively. 225 

BMI (body mass index), WHR (waist-to-hip ratio), HDL (high-density lipoprotein), LDL (low-226 

density lipoprotein), eGFR (estimated glomerular filtration rate), ALT (alanine amino 227 

transaminase), BP (blood pressure) 228 

 229 

Patients with multiple chronic conditions are at higher risk of getting severe COVID-19 230 

disease2,17,18 and to investigate the influence of disease susceptibility on protein targets of 231 

interest, we generated weighted genetic risk scores (GRS) for major metabolic (e.g. type 2 232 

diabetes and body mass index (BMI)), respiratory (e.g. asthma), and cardiovascular (e.g. 233 

coronary artery disease (CAD)) phenotypes to investigate the association with all COVID-19-234 

related proteins (Supplemental Fig. S2). 235 

Plasma abundances of QSOX2 were positively associated with GRS for lung function and 236 

coronary artery disease (CAD), however, as described below these disease score to protein 237 

associations were likely driven by genetic confounding. Specifically, (cis) variants in proximity 238 

(±500kb) to the protein encoding gene (QSOX2) were genome-wide significant for forced 239 

expiratory volume (FEV1) and forced vital capacity (FVC) and exclusion of this region from the 240 
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lung function genetic score abolished the score to QSOX2 association. None of the three lead 241 

cis-pQTLs were in strong LD with the lead lung function variant (r²<0.4) and genetic 242 

colocalization of QSOX2 plasma levels and lung function19 showed strong evidence for distinct 243 

genetic signals (posterior probability of near 100%). The association with the CAD-GRS was 244 

attributed to the large contribution of the ABO locus to plasma levels of QSOX2, and exclusion 245 

of this locus from the CAD score led to the loss of association with QSOX2.  246 

The GRSs for BMI (N=10), estimated glomerular filtration rate (eGFR; N=7), and CAD (N=4) were 247 

associated with higher as well as lower abundance of different aptamers, and the asthma-GRS 248 

was specifically and positively associated with IL1RL1. Individuals with higher genetic 249 

susceptibility to BMI had higher abundances of three putative viral interaction partners 250 

(LMAN2, ETFA, and SELENOS), and lower levels of albumin, GSN, and ITIH3. Lower plasma 251 

abundances of albumin and GSN have been associated with severity of COVID-197. Plasma 252 

abundance of LMAN2 (or VIP36) was associated with the BMI-GRS (positively) and the eGFR-253 

GRS (inversely). VIP36 is shed from the plasma membrane upon inflammatory stimuli and has 254 

been shown to enhance phagocytosis by macrophages20. The higher plasma levels among 255 

individuals with genetically higher BMI and lower kidney function, however, do not reflect the 256 

fact that both of these are considered to be risk factors for COVID-19. 257 

Integration of gene expression data 258 

We integrated gene expression data across five tissues of direct or indirect relevance to SARS-259 

Cov-2 infection and COVID-19 (lung, whole blood, heart - left ventricle, heart - atrial appendage, 260 

and liver) from the GTEx project21,22 (version 8) to identify tissues and RNA expression traits 261 

contributing to protein targets. Genetically-anchored gene expression models could be 262 

established using PrediXcan23 for at least one of these tissues for 72 of the 102 high-priority 263 

aptamers with at least one cis-pQTL located on the autosomes. Protein and gene expression 264 

were significantly associated for 65 of those aptamers (p<0.05) with varying tissue specificity 265 

(Fig. 5), similar to previous reports15,24. Predicted gene expression (druggable targets in bold) of 266 

ACADM, SERPINC1, EROLB1, POR, RAB2A, KDELC2, C1RL, AES, IL17RA, FKBP7, and EIF4E2, for 267 

example, was consistently associated with corresponding protein levels in plasma across at 268 
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least three tissues, whereas gene expression in lung only was associated with plasma levels of 269 

SAA1, SAA2, and SERPINA10. 270 

Plasma levels of proteins depend on multiple biological processes rather than solely on the 271 

expression of the encoding genes. Testing for enriched biological terms25 across all significantly 272 

associated genes (p<10-6) in lung highlighted ‘signal peptide’ (false discovery rate 273 

(FDR)=2.5x10-5), ‘glycoproteins’ (FDR=1.7x10-4), or ‘disulfide bonds’ (FDR=2.8x10-4) as relevant 274 

processes. These are involved in the transport and posttranslational modification of proteins 275 

before secretion and highlight the complexity of plasma proteins beyond a linear dose-response 276 

relationship with tissue abundance of the corresponding mRNA. 277 

 278 

 279 
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 280 

Figure 5 Results of predicted gene expression in each of five tissues and plasma abundances of 281 

102 aptamers with at least one cis-pQTL on one of the autosomes using PrediXcan. Each panel 282 

displays results for a tissue. Each column contains results across successful gene expression 283 

models for the association with the aptamer listed on the x-axis. Red indicates nominally 284 

significant (p<0.05) positive z-scores (y-axis) and blue nominally significant inverse z-scores for 285 

associated aptamers. Protein encoding genes are highlighted by larger black circles. Orange 286 

background indicates all examples of significant associations between the protein encoding 287 

gene and protein abundance in plasma regardless if this was the most significant one. Top 288 

genes were annotated if those differed from the protein encoding gene. 289 

 290 

Cross-platform comparison 291 

We tested cross-platform consistency of identified pQTLs using data on 33 protein targets also 292 

captured across 12 Olink protein panels and available in a subset of 485 Fenland participants. In 293 
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brief, Olink’s proximity extension assays use polyclonal antibodies and protein measurements 294 

are therefore expected to be less affected by the presence of protein altering variants (PAVs) 295 

and so-called epitope effects, since they are likely to affect epitope binding only for a subset of 296 

the antibody populations, if any.  297 

We compared effect estimates for 29 cis- and 96 trans-pQTLs based on a reciprocal look-up 298 

across both platforms (see Methods, Supplemental Tab. S5). We observed strong correlation of 299 

effect estimates among 29 cis-pQTLs (r=0.75, Fig. S3) and slightly lower correlation for trans-300 

pQTLs (r=0.54) indicating good agreement between platforms. In detail, 36 pQTLs (30%) 301 

discovered using the far larger SOMAscan-based effort were replicated (p<0.05 and 302 

directionally consistent) in the smaller subset of participants with overlapping measurements. 303 

We identified evidence for inconsistent lead cis-pQTLs for two of these 33 protein targets. The 304 

lead cis-pQTL for GDF-15 from SomaScan (rs75347775) was not significantly associated with 305 

GDF-15 levels measured using the Olink assay despite a clear and established signal in cis for 306 

the Olink measure26 (rs1227731, beta=0.59, p<6.5x10-16). However, rs1227731 was a secondary 307 

signal for the SomaScan assay (beta=0.29, p<5.8x10-66) highlighting the value of conditional 308 

analyses to recover true signals for cases where these are ‘overshadowed’ by potential false 309 

positive lead signals caused by epitope effects. Another protein, the poliovirus receptor (PVR), 310 

did not have a cis-pQTL in the SomaScan but in the Olink-based discovery (rs10419829, 311 

beta=-0.84, p<2.9x10-33), which in the context of an observational correlation of r=0.02 suggests 312 

that the two technologies target different protein targets or isoforms. A similar example is 313 

ACE2, the entry receptor for SARS-CoV-2, with a correlation of r=0.05 between assays and for 314 

which we identified only trans-pQTLs with evidence for horizontal pleiotropy (Supplemental 315 

Tab. S3). The SCALLOP consortium investigates genetic association data focused on Olink 316 

protein measures, and can be a useful and complementary resource for the subset of proteins 317 

of interest that are captured (https://www.olink.com/scallop/). 318 

Drug target analysis 319 

We identified pQTLs for 105 proteins already the target of existing drugs or known to be 320 

druggable which are implicated in the pathogenesis of COVID-19 either through interactions 321 
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with SARS-CoV-2 proteins, untargeted proteomic analysis of plasma in affected patients, or as 322 

candidate proteins in the potentially maladaptive host inflammatory and pro-coagulant 323 

responses. Of these, 18 are targets of licensed or clinical phase compounds in the ChEMBL 324 

database. Thirteen of these were targets of drugs affecting coagulation or fibrinolytic pathways 325 

and five were targets of drugs influencing the inflammatory response. Drugs mapping to targets 326 

in the coagulation system included inhibitors of factor 2 (e.g. dabigatran and bivalirudin), factor 327 

5 (drotrecogin alfa), factor 10 (e.g. apixaban, rivaroxaban), von Willebrand factor 328 

(caplacizumab), plasminogen activator inhibitor 1 (aleplasinin), and tissue plasminogen 329 

activator. Drugs mapping to inflammation targets included toclizumab and satralizumab 330 

(targeting the interleukin 6 receptor), brodalumab (targeting the soluble interleukin-17 331 

receptor) and anakinra (targeting interleukin-1 receptor type 1). Two targets with pQTLs 332 

(catechol O-methyltransferase and alpha-galactosidase-A) were identified as potential virus-333 

host interacting proteins. The former is the target for a drug for Parkinson’s disease 334 

(entacapone) and the latter is deficient in Fabry’s disease, a lysosomal disorder for which 335 

migalastat (a drug that stabilises certain mutant forms of alpha-galactosidase-A) is a treatment. 336 

Out of the 105 proteins, 24 have no current licensed medicines but are deemed to be druggable 337 

including multiple additional targets related to the inflammatory response, prioritised by 338 

untargeted proteomics analysis of COVID-19 patient plasma samples. These included multiple 339 

components of the complement cascade (e.g. Complement C2, Complement component C8, 340 

Complement component C8 gamma chain, and Complement factor H). A number of inhibitors 341 

of the complement cascade are licensed (e.g. the C5 inhibitor eculizumab) or in development, 342 

although none target the specific complement components prioritised in the current analysis.  343 

The effect of drug action on COVID-19 for the targets identified in this analysis requires careful 344 

analysis. For example, one target identified through analysis of host-virus protein interactions is 345 

prostaglandin E synthase 2 (PGES2) involved in prostaglandin biosynthesis. Non-steroidal anti-346 

inflammatory drugs (NSAIDs) are also known to suppress synthesis of prostaglandins and, 347 

though the evidence is weak, concerns have been raised that NSAIDs may worsen outlook in 348 

patients with COVID-1927. The cis-pQTLs we identified for PGES2 might be useful to explore this 349 

further. 350 
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Linking cis-pQTLs to clinical outcomes  351 

We first tested whether any of the 220 cis-pQTLs or proxies in high LD (r²>0.8) have been 352 

reported in the GWAS catalogue and identified links between genetically verified drug targets 353 

and corresponding indications for lead cis-pQTLs at F2 (rs1799963 associated with venous 354 

thrombosis28), IL6R (rs2228145 with rheumatoid arthritis29), and PLG (rs4252185 associated 355 

with coronary artery disease30).  356 

To systematically evaluate whether higher plasma levels of candidate proteins are associated 357 

with disease risk, we tested genetic risk scores (cis-GRS) for all 106 aptamers for their 358 

associations with 633 ICD-10 coded outcomes in UK Biobank. We identified 9 significant 359 

associations (false discovery rate <10%), including the druggable example of a thrombin-cis-GRS 360 

(2 cis-pQTLs as instruments) and increased risk of pulmonary embolism (ICD-10 code: I26) as 361 

well as phlebitis and thrombophlebitis (ICD-10 code: I80) (Supplemental Table S6).  362 

To maximise power for disease outcomes, include clinically relevant risk factors, and allow for 363 

variant-specific effects we complemented the phenome-wide strategy with a comprehensive 364 

look-up for genome-wide significant associations in the MR-Base platform31. 365 

Out of the 220 variants queried, 74 showed at least one genome-wide significant association, 366 

20 of which were cis-pQTLs for established drug targets. We obtained high posterior 367 

probabilities (PP>75%) for a shared genetic signals between 25 cis-pQTLs and at least one 368 

phenotypic trait using statistical (conditional) colocalisation (Fig. 6 and Supplemental Tab. S7). 369 

Among these was rs8022179, a novel cis-pQTL for microtubule affinity-regulating kinase 3 370 

(MARK3), a regional lead signal for monocyte count and granulocyte percentage of myeloid 371 

white cells16. The variant showed associations with higher plasma levels of MARK3 and 372 

monocyte count and therefore suppression of MARK3 expression with protein kinase inhibitors 373 

such as midostaurin may affect the protein host response to the virus. The important role of 374 

monocytes and macrophages in the pathology of COVID-19 has been recognised4, and a range 375 

of immunomodulatory agents are currently evaluated in clinical trials, with a particular focus on 376 

the blockade of IL-6 and IL-1β. Our findings indicate that proteins utilized by the virus itself, 377 

such as MARK3, SMOC1, or IL-6 receptor, may increase the number of innate immune cells 378 

circulating in the blood and thereby contribute to a hyperinflammatory or hypercoagulable 379 
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state. Stratification of large COVID-19 patient populations by cis-pQTL genotypes that 380 

contribute to stimulation/repression of a specific immune signalling pathway is one potential 381 

application of our results. However, such investigations would need to be large, i.e. include 382 

thousands of patients, and results need to be interpreted with caution as targeting those 383 

proteins can have effects not anticipated by the genetic analysis, which cannot mimic short 384 

term and dose-dependent ‘drug’ exposure.  385 

We observed general consistency among phenotypic traits colocalising with cis-pQTLs, i.e. traits 386 

were closely related and effect estimates were consistent with phenotypic presentations 387 

(Supplemental Tab. S7 and Fig. 6). For instance, rs165656, a lead cis-pQTL increasing catechol 388 

o-methyltransferase plasma abundances, is a regional lead variant for BMI32 and specifically 389 

colocalised with adiposity related traits, i.e. inversely associated with overall measures of body 390 

size such as BMI, weight, and fat-free mass. In general, phenotypic characterization of potential 391 

genetic instruments to simulate targeting abundances or activities of proteins can help to 392 

distinguish those with narrow and well-defined or target-specific from those with undesirable 393 

or broad phenotypic effects. Notable exceptions included the IL-6 receptor variant rs2228145, 394 

for which the protein increasing C allele was inversely associated with the risk of coronary heart 395 

disease and rheumatoid arthritis but positively with the risk for allergic disease, such as asthma.    396 

A variant at the ABO locus links susceptibility of respiratory failure in COVID-19 to protein 397 

targets 398 

A recent GWAS identified two independent genomic loci to be associated with an increased risk 399 

of respiratory failure in COVID-19 patients10. We observed six proteins to be associated 400 

positively with the lead signal (rs657152) at the ABO locus (coagulation factor VIII, sulfhydryl 401 

oxidase 2 (QSOX2), von Willebrand factor, SVEP1, and heme oxygenase 1) and one inverse 402 

association (interleukin-6 receptor subunit beta), but did not observe significantly associated 403 

proteins with the lead variant (rs11385942) at 3p21.31. We identified a cluster of ten aptamers 404 

(targeting SVEP1, coagulation factor VIII, ferritin, heme oxygenase 1, van Willebrand factor, 405 

plasminogen, PLOD2, and CD14) sharing a genetic signal (regional probability: 0.88; rs941137; 406 

Supplemental Fig. S4), which was in high LD (r²=0.85) with the lead ABO signal associated with 407 

a higher risk for respiratory failure among COVID-19 patients. 408 
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 409 

 410 

Figure 6 Circos plot summarizing genome-wide significant associations between 74 cis-pQTLs 411 

and 239 traits31 in the inner ring and results from statistical colocalisation in the outer ring. The 412 

dashed line in the outer ring indicates a posterior probability of 75% of shared genetic signal 413 

between the protein and a phenotypic trait. Protein targets are classified on the basis of their 414 

reported relation to SARS-CoV-2 and COVID-19. Each slice contains any cis-pQTLs associated 415 

with the target protein annotated and effect estimates were aligned to the protein increasing 416 

allele, i.e. bars with a positive –log10(p-values) indicate positive associations with a trait from 417 

the database and vice versa. Clinical traits are grouped by higher-level categories and coloured 418 

accordingly. GIT = gastrointestinal tract, Misc = Miscellaneous , No coloc. pos. = colocalisation 419 

for secondary signals was not possible  420 

 421 
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Webserver  422 

To facilitate in-depth exploration of candidate proteins, i.e. those with at least one cis-pQTL, we 423 

created an online resource (https://omicscience.org/apps/covidpgwas/). The webserver 424 

provides an intuitive representation of genetic findings, including the opportunity of 425 

customized look-ups and downloads of the summary statistics for specific genomic regions and 426 

protein targets of interest. We further provide detailed information for each protein target, 427 

including links to relevant databases, such as UniProt or Reactome, information on currently 428 

available drugs or those in development as well as characterization of associated SNPs. The 429 

webserver further enables the query of SNPs across proteins to assess specificity and to find co-430 

associated protein targets.  431 

DISCUSSION 432 

We present the largest and most systematic genetic investigation of host proteins reported to 433 

interact with SARS-CoV-2 proteins, be related to virus entry, host hyperimmune or 434 

procoagulant responses, or be associated with the severity of COVID-19. The integration of 435 

large-scale genomic and aptamer-based plasma proteomic data from 10,708 individuals 436 

improves our understanding of the genetic architecture of 97 of 179 investigated host proteins 437 

by identifying 220 cis-acting variants that explain up to 70% of the variance in these proteins, 438 

including 45 with no previously known pQTL and 38 encoding current drug targets. Our findings, 439 

shared in an interactive webserver (https://omicscience.org/apps/covidpgwas/), enable rapid 440 

‘in silico’ follow-up of these variants and assessment of their causal relevance as molecular 441 

targets for new or repurposed drugs in human genetic studies of SARS-CoV-2 and COVID-19, 442 

such as the COVID-19 Host Genetics Initiative (https://www.covid19hg.org/). 443 

The contribution of identified genetic variants outweighed the variance explained by most of 444 

the tested host factors for the majority of protein targets. Protein expression in plasma was 445 

also frequently associated with expression of protein encoding genes in relevant tissues. We 446 

demonstrate that a large number of genetic variants acting in trans are non-specific and show 447 

evidence of substantial horizontal pleiotropy. Findings for these variants should be treated with 448 

caution in follow-up studies focused on protein-specific genetic effects. 449 
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The successful identification of druggable targets for COVID-19 provides an insight both on 450 

potential therapies but also on medications that might worsen outlook, depending on the 451 

direction of the genetic effect, and whether any associated compound inhibits or activates the 452 

target. We also found genetic evidence that selected protein targets, such as for MARK3 and 453 

monocyte count, have potential for adverse effects on other health outcomes, but note that 454 

this was not a general characteristic of all tested ‘druggable’ targets. Further, in-depth 455 

characterization of the targets identified will be required as a first step in gauging the likely 456 

success of any new or repurposed drugs identified via this analysis33.  457 

We exemplify the value of the data resource generated by being the first that links a genomic 458 

risk variant for poor prognosis among COVID-19 patients, i.e. respiratory failure, at the ABO 459 

locus10 to proteins related to the maladaptive response of the host, namely hypercoagulation, 460 

as well as two putative viral interaction partners (heme oxygenase 1 and PLOD2). The risk 461 

increasing A allele of rs657152 was consistently associated with higher plasma levels of 462 

coagulation factor VIII and von Willebrand factor. Anticoagulation is associated with a better 463 

outcome in patients with severe COVID-1934, and randomised controlled trails are underway to 464 

properly evaluate the benefit or harms of anticoagulant therapies.   465 

Affinity-based proteomics techniques rely on conserved binding epitopes. Changes in the 3D-466 

conformational structure of target proteins introduced by protein altering variants (PAVs) might 467 

change the binding affinity to the target, and hence measurements, without affecting biological 468 

activity of the protein. We identified 52 cis-pQTLs which were in LD (r²>0.1) with a PAV. 469 

However, 27 of those cis-pQTLs or a proxy in high LD (r²>0.8) have been previously identified as 470 

genome-wide significant signals for at least one trait in the GWAS catalogue (excluding any 471 

entries of platforms used in the present study) and might therefore carry biologically 472 

meaningful information. 473 

This study is the largest genetic discovery of protein targets highly relevant to the current 474 

COVID-19 pandemic and was designed to provide a rapid open access platform to help prioritise 475 

drug discovery and repurposing efforts. However, important limitations apply. Firstly, protein 476 

abundances have been measured in plasma, which may differ from the intracellular role of 477 

proteins, and include purposefully secreted as well as leaked proteins. Secondly, while 478 
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aptamer-based techniques provide the broadest coverage of the plasma proteome, specificity 479 

can be compromised for specific protein targets and evidence using complementary techniques 480 

such as Olink or mass spectrometry efforts is useful for validation of signals. Thirdly, in-depth 481 

phenotypic characterization of the high-priority cis-pQTLs requires appropriate formal and 482 

statistical follow-up, such as colocalisation, where the genomic architecture permits existing 483 

approaches not yet optimised for multiple secondary signals and outcomes, and cis-GRS 484 

evaluation in independent and adequately powered studies for the trait of interest. 485 

  486 
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Materials and Methods 487 

Study participants 488 

The Fenland study is a population-based cohort of 12,435 participants born between 1950 and 489 

1975 who underwent detailed phenotyping at the baseline visit from 2005-2015. Participants 490 

were recruited from general practice surgeries in the Cambridgeshire region in the UK. 491 

Exclusion criteria were: clinically diagnosed diabetes mellitus, inability to walk unaided, 492 

terminal illness, clinically diagnosed psychotic disorder, pregnancy or lactation. The study was 493 

approved by the Cambridge Local Research Ethics Committee (ref. 04/Q0108/19) and all 494 

participants provided written informed consent. Population characteristics and proteomic 495 

measures have previously been described in detail35. 496 

Mapping of protein targets across platforms 497 

We mapped each candidate protein to its UniProt-ID (https://www.uniprot.org/) and used 498 

those to select mapping aptamers and Olink measures based on annotation files provided by 499 

the vendors.    500 

Proteomic profiling  501 

Proteomic profiling of fasted EDTA plasma samples from 12,084 Fenland Study participants 502 

collected at baseline was performed by SomaLogic Inc. (Boulder, US) using an aptamer-based 503 

technology (SOMAscan proteomic assay). Relative protein abundances of 4,775 human protein 504 

targets were evaluated by 4,979 aptamers (SomaLogic V4), as previously described35. To 505 

account for variation in hybridization within runs, hybridization control probes are used to 506 

generate a hybridization scale factor for each sample. To control for total signal differences 507 

between samples due to variation in overall protein concentration or technical factors such as 508 

reagent concentration, pipetting or assay timing, a ratio between each aptamer's measured 509 

value and a reference value is computed, and the median of these ratios is computed for each 510 

of the three dilution sets (40%, 1% and 0.005%) and applied to each dilution set. Samples were 511 

removed if they were deemed by SomaLogic to have failed or did not meet our acceptance 512 

criteria of 0.25-4 for all scaling factors. In addition to passing SomaLogic QC, only human 513 

protein targets were taken forward for subsequent analysis (4,979 out of the 5284 aptamers). 514 
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Aptamers’ target annotation and mapping to UniProt accession numbers as well as Entrez gene 515 

identifiers were provided by SomaLogic.  516 

Plasma samples for a subset of 500 Fenland participants were additionally measured using 12 517 

Olink 92-protein panels using proximity extension assays36. Of the 1104 Olink proteins, 1069 518 

were unique (n=35 on >1 panel, average correlation coefficient 0.90). We imputed values below 519 

the detection limit of the assay using raw fluorescence values. Protein levels were normalized 520 

(‘NPX’) and subsequently log2-transformed for statistical analysis. A total of 15 samples were 521 

excluded based on quality thresholds recommended by Olink, leaving 485 samples for analysis.      522 

Genotyping and imputation  523 

Fenland participants were genotyped using three genotyping arrays: the Affymetrix UK Biobank 524 

Axiom array (OMICs, N=8994), Illumina Infinium Core Exome 24v1 (Core-Exome, N=1060) and 525 

Affymetrix SNP5.0 (GWAS, N=1402). Samples were excluded for the following reasons: 1) failed 526 

channel contrast (DishQC <0.82); 2) low call rate (<95%); 3) gender mismatch between reported 527 

and genetic sex; 4) heterozygosity outlier; 5) unusually high number of singleton genotypes or 528 

6) impossible identity-by-descent values. Single nucleotide polymorphisms (SNPs) were 529 

removed if: 1) call rate < 95%; 2) clusters failed Affymetrix SNPolisher standard tests and 530 

thresholds; 3) MAF was significantly affected by plate; 4) SNP was a duplicate based on 531 

chromosome, position and alleles (selecting the best probeset according to Affymetrix  532 

SNPolisher); 5) Hardy-Weinberg equilibrium p<10-6; 6) did not match the reference or 7) 533 

MAF=0. 534 

Autosomes for the OMICS and GWAS subsets were imputed to the HRC (r1) panel using 535 

IMPUTE437, and the Core-Exome subset and the X-chromosome (for all subsets) were imputed 536 

to HRC.r1.1 using the Sanger imputation server (https://imputation.sanger.ac.uk/)38. All three 537 

arrays subsets were also imputed to the UK10K+1000Gphase339 panel using the Sanger 538 

imputation server in order to obtain additional variants that do not exist in the HRC reference 539 

panel. Variants with MAF < 0.001, imputation quality (info) < 0.4 or Hardy Weinberg Equilibrium 540 

p < 10-7 in any of the genotyping subsets were excluded from further analyses.  541 

GWAS and meta-analysis 542 
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After excluding ancestry outliers and related individuals, 10,708 Fenland participants had both 543 

phenotypes and genetic data for the GWAS (OMICS=8,350, Core-Exome=1,026, GWAS=1,332). 544 

Within each genotyping subset, aptamer abundances were transformed to follow a normal 545 

distribution using the rank-based inverse normal transformation. Transformed aptamer 546 

abundances were then adjusted for age, sex, sample collection site and 10 principal 547 

components and the residuals used as input for the genetic association analyses. Test site was 548 

omitted for protein abundances measured by Olink as those were all selected from the same 549 

test site. Genome-wide association was performed under an additive model using BGENIE 550 

(v1.3)37. Results for the three genotyping arrays were combined in a fixed-effects meta-analysis 551 

in METAL40. Following the meta-analysis, 17,652,797 genetic variants also present in the largest 552 

subset of the Fenland data (Fenland-OMICS) were taken forward for further analysis. 553 

Definition of genomic regions (including cis/trans) 554 

For each aptamer, we used a genome-wide significance threshold of 5x10-8 and defined non-555 

overlapping regions by merging overlapping or adjoining 1Mb intervals around all genome-wide 556 

significant variants (500kb either side), treating the extended MHC region (chr6:25.5–34.0Mb) 557 

as one region. For each region we defined a regional sentinel variant as the most significant 558 

variant in the region. We defined genomic regions shared across aptamers if regional sentinels 559 

of overlapping regions were in strong LD (r²>0.8). 560 

Conditional analysis 561 

We performed conditional analysis as implemented in the GCTA software using the slct option 562 

for each genomic region - aptamer pair identified. We used a collinear cut-off of 0.1 and a p-563 

value below 5x10-8 to identify secondary signals in a given region. As a quality control step, we 564 

fitted a final model including all identified variants for a given genomic region using individual 565 

level data in the largest available data set (‘Fenland-OMICs’) and discarded all variants no 566 

longer meeting genome-wide significance. 567 

We performed a forward stepwise selection procedure to identify secondary signals at each 568 

locus on the X-chromosome using SNPTEST v.2.5.2 to compute conditional GWAS based on 569 

individual level data in the largest subset. Briefly, we defined conditionally independent signals 570 
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as those emerging after conditioning on all previously selected signals in the locus until no 571 

signal was genome-wide significant. 572 

Explained variance 573 

To compute the explained variance for plasma abundancies of protein targets we fitted linear 574 

regression models with residual protein abundancies (see GWAS section) as outcome and 1) 575 

only the lead cis-pQTL, 2) all cis-pQTLs, or 3) all identified pQTLs as exposure. We report the R² 576 

from those models as explained variance.   577 

Annotation of pQTLs 578 

For each identified pQTL we first obtained all SNPs in at least moderate LD (r²>0.1) and queried 579 

comprehensive annotations using the variant effect predictor software41 (version 98.3) using 580 

the pick option. For each cis-pQTL we checked whether either the variant itself or a proxy in the 581 

encoding gene (r²>0.1) is predicted to induce a change in the amino acid sequence of the 582 

associated protein, so-called protein altering variants (PAVs). 583 

Mapping of cis-pQTLs to drug targets 584 

To annotate druggable targets we merged the list of proteins targeted by the SomaScan V4 585 

platform with the list of druggable genes from Finan at al.13 based on common gene entries. We 586 

further added protein – drug combinations as recommended by Gordon et al.3. 587 

Identification of relevant GWAS traits  588 

To enable linkage to reported GWAS-variants we downloaded all SNPs reported in the GWAS 589 

catalog (19/12/2019, https://www.ebi.ac.uk/gwas/) and pruned the list of variant-outcome 590 

associations manually to omit previous protein-wide GWAS. For each SNP identified in the 591 

present study (N=671) we tested whether the variant or a proxy in LD (r²>0.8) has been 592 

reported to be associated with other outcomes previously. 593 

Definition of novel pQTLs 594 

To test whether any of the identified regional sentinel pQTLs has been reported previously, we 595 

obtained a list of published pQTLs15,24,26,42,43 and defined novel pQTLs as those not in LD (r²<0.1) 596 

with any previously identified variant. We note that this approach is rather conservative, since 597 
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it only asks whether or not any of the reported SNPs has ever been reported to be associated 598 

with any protein measured with multiplex methods.  599 

Assessment of pleiotropy 600 

To evaluate possible protein-specific pleiotropy of pQTLs we computed association statistics for 601 

each of the 671 unique SNPs across 4,979 aptamers (N=4,775 unique protein targets) with the 602 

same adjustment set as in the GWAS. This resulted in a protein profile for each variant defined 603 

as all aptamers significantly associated (p<5x10-8). For all aptamers we retrieved all GO-terms 604 

referring to biological processes from the UniProt database using all possible UniProt-IDs as a 605 

query. GO-term annotation within the UniProt database has the advantage of being manually 606 

curated while aiming to omit unspecific parent terms. We tested for each pQTL if the associated 607 

aptamers fall into one of the following criteria: 1) solely associated with a specific protein, 2) all 608 

associated aptamers belong to a single GO-term, 3) the majority (>50%) of associated aptamers 609 

but at least two belong to a single GO-term, and 4) no single GO-term covers more than 50% of 610 

the associated aptamers. We refer to category 1 as protein-specific association, categories 2 611 

and 3 as vertical pleiotropy, and category 4 as horizontal pleiotropy.  612 

Heritability estimates and genetic correlation  613 

We used genome-wide genotype data from 8,350 Fenland participants (Fenland-OMICs) to 614 

determine SNP-based heritability and genetic correlation estimates among the 102 protein 615 

targets with at least one cis-pQTLs and excluding proteins encoded in the X-chromosome. We 616 

generated a genetic relationship matrix (GRM) using GCTA v.1.9044 from all variants with MAF > 617 

1% to calculate SNP-based heritability as implemented by biMM45. Genetic correlations were 618 

computed between all 4273 possible pairs among 93 protein targets with heritability estimates 619 

larger than 1.5 times its standard error, using the generated GRM by a bivariate linear mixed 620 

model as implemented by biMM. We further conducted two sensitivity analyses to evaluate 621 

whether the estimated genetic correlation could be largely attributable to the top cis-pQTL or 622 

to shared pleiotropic trans regions. To evaluate contribution of the top cis variant, each protein 623 

target was regressed against its sentinel cis variant in addition to age, sex, sample collection 624 

site, 10 principal components and the residuals were used as phenotypes to compute 625 
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heritability and genetic correlation estimates. To assess the contribution of 29 pleiotropic trans 626 

regions, we excluded 2Mb genomic regions around pleiotropic trans-pQTLs (associated with 627 

>20 aptamers) from the GRM to compute heritability and genetic correlation estimates. Genetic 628 

correlations could not be computed for pairs involving IL1RL1 in the main analysis and were 629 

therefore excluded. However, upon regressing out the sentinel cis-variant, genetic correlations 630 

with this protein could be computed probably due to its large contribution to heritability. 631 

Variance decomposition 632 

We used linear mixed models as implemented in the R package variancePartition to decompose 633 

inverse rank-normal transformed plasma abundances of 106 aptamers with at least one cis-634 

pQTL. To this end, we computed weighted genetic scores for each aptamer separating SNPs 635 

acting in cis (cis-GRS) and trans (trans-GRS). In addition to the GRS we used participants’ age, 636 

sex, body mass index, waist-to-hip ratio, systolic and diastolic blood pressure, reported alcohol 637 

intake, smoking consumption and fasting plasma levels of glucose, insulin, high-density 638 

lipoprotein cholesterol, low-density lipoprotein cholesterol, alanine aminotransaminase as well 639 

as a creatinine-based estimated glomerular filtration rate as explanatory factors. We 640 

implemented this analysis in the Fenland-OMICs data set leaving 8,004 participants without any 641 

missing values in the factors considered. 642 

Genetic risk scores associations 643 

We computed weighted GRS for metabolic (Insulin resistance46, type 2 diabetes47 and BMI48), 644 

respiratory (forced expiratory volume, forced vital capacity19 and asthma49) and cardiovascular 645 

traits (eGFR50, systolic blood pressure51, diastolic blood pressure51 and coronary artery 646 

disease30) for Fenland-OMICs participants (N = 8,350) to evaluate their association with plasma 647 

protein abundances. GRSs were computed from previously reported genome-wide significant 648 

variants and weighted by their reported beta coefficients for continuous outcomes or log(OR) 649 

for binary outcomes. Variants not available among Fenland genotypes, strand ambiguous or 650 

with low imputation quality (INFO < 0.6) were excluded from the GRSs. Associations between 651 

each scaled GRS and log10 transformed and scaled protein levels were computed by linear 652 

regressions adjusted by age, sex, 10 genetic principal components and sample collection site. 653 
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We implemented this analysis for the 186 proteins with at least one associated cis or trans-654 

pQTL. Associations with p-values < 0.05/186 were deemed significant according to Bonferroni 655 

correction for multiple comparisons.  656 

Incorporation of GTEx v8 data  657 

We leveraged gene expression data in five human tissues (lung, whole blood, heart - left 658 

ventricle, heart - atrial appendage, and liver), of relevance to COVID-19 and its potential 659 

adverse effects and complications, from the Genotype-Tissue Expression (GTEx) project21,22. For 660 

the 102 Somamers with at least one cis-pQTL located on the autosomes and available gene 661 

expression models trained in GTEx v852, we performed summary-statistics based PrediXcan23 662 

analysis to identify tissue-dependent genetically determined gene expression traits that 663 

significantly predict plasma protein levels. We used the standardized effect size (z-score) to 664 

investigate the tissue specificity or the consistency of the association across the tissues 665 

between the genetic component of the expression of the encoding gene and the corresponding 666 

protein. We performed DAVID functional enrichment analyses on all the genes significantly 667 

associated (Bonferroni-adjusted p<0.05) with plasma levels of the proteins to identify biological 668 

processes (Benjamini-Hochberg adjusted p<0.05) that may explain the associations found 669 

beyond the protein encoding genes. 670 

Cross-platform comparison 671 

We selected 24 cis- and 101 trans-pQTLs mapping to 33 protein targets overlapping with Olink 672 

from the SomaScan-based discovery and obtained summary statistics from in-house genome-673 

wide association studies (GWAS) based on corresponding Olink measures. To enable a more 674 

systematic reciprocal comparison, we further compared 13 pQTLs (for 11 proteins) only 675 

apparent in an in-house Olink-based pGWAS (p<4.5x10-11) effort and obtained GWAS-summary 676 

statistics from corresponding aptamer measurements. We pruned the list for variants in high LD 677 

(r²>0.8) and discarded SNPs not passing QC for both efforts (n=6). 678 

Phenome-wide scan among UK Biobank and look-up 679 

We obtained all ICD-10 codes-related genome-wide summary statistics from the most recent 680 

release of the Neale lab (http://www.nealelab.is/uk-biobank) with at least 100 cases resulting 681 
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in 633 distinct ICD-10 codes. Among the 220 cis-pQTLs identified in the present study, 215 were 682 

included in the UK Biobank summary statistics (3 aptamers had to be excluded due to 683 

unavailable lead cis-pQTLs or proxies in LD). We next aligned effect estimates between cis-684 

pQTLs and UK Biobank statistics and used the grs.summary() function from the ‘gtx’ R package 685 

to compute the effect of a weighted cis-GRS for an aptamer across all 633 ICD-codes. We 686 

applied a global testing correction across all cis-GRS – ICD-10 code combinations using the 687 

Benjamini-Hochberg procedure and declared a false discovery rate of 10% as a significance 688 

threshold.  689 

We queried all 220 cis-pQTLs for genome-wide association results using the phewas() function 690 

of the R package ‘ieugwasr’ linked to the IEU GWAS database. We selected all variants in strong 691 

LD (r²>0.8) with any of the cis-pQTLs to incorporate information on proxies. We restricted the 692 

search in the ieugwar tool to the batches "ebi-a", "ieu-a", and "ukb-b" to minimize redundant 693 

phenotypes. 694 

Colocalisation analysis 695 

We used statistical colocalisation53 to test for a shared genetic signal between a protein target 696 

and a phenotype with evidence of a significant effect of the cis-pQTL (see above). We obtained 697 

posterior probabilities (PP) of: H0 – no signal; H1 – signal unique to the protein target; H2 – 698 

signal unique to the trait; H3 – two distinct causal variants in the same locus and H4 – presence 699 

of a shared causal variant between a protein target and a given trait. PPs above 75% were 700 

considered highly likely. In case the cis-pQTL was a secondary signal we computed conditional 701 

association statistics using the cond option from GCTA-cojo to align with the identification of 702 

secondary signals. We conditioned on all other secondary signals in the locus. We note that 703 

conditioning on all other secondary variants in the locus failed to produce the desired 704 

conditional association statistics in a few cases probably due to moderate LD (r²>0.1) between 705 

selected secondary variants and other putative secondary variants.     706 

Multi-trait colocalization at the ABO locus 707 

We used hypothesis prioritisation in multi-trait colocalization (HyPrColoc)54 at the ABO locus 708 

(±200kb) 1) to identify protein targets sharing a common causal variant over and above what 709 
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could be identified in the meta-analysis to increase statistical power, and 2) to identify possible 710 

multiple causal variants with distinct associated protein clusters. Briefly, HyPrColoc aims to test 711 

the global hypothesis that multiple traits share a common genetic signal at a genomic location 712 

and further uses a clustering algorithm to partition possible clusters of traits with distinct causal 713 

variants within the same genomic region. HyPrColoc provides for each cluster three different 714 

types of output: 1) a posterior probability (PP) that all traits in the cluster share a common 715 

genetic signal, 2) a regional association probability, i.e. that all the metabolites share an 716 

association with one or more variants in the region, and 3) the proportion of the PP explained 717 

by the candidate variant. We considered a highly likely alignment of a genetic signal across 718 

various traits if the regional association probability > 80%. This criterion takes to some extend 719 

into account that metabolites may share multiple causal variants at the same locus and 720 

provides some robustness against violation of the single causal variant assumption. We note 721 

that several protein targets had multiple independent signals at the ABO locus (Supplementary 722 

Tab. S4). We further filtered protein targets with no evidence of a likely genetic signal (p>10-5) 723 

in the region before performing HyPrColoc, which improved clustering across traits due to 724 

minimizing noise. 725 

 726 

  727 
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