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A B S T R A C T   

Background/Purpose: Oropharyngeal cancer (OPC) primary gross tumor volume (GTVp) segmentation is crucial for radiotherapy. Multiparametric MRI (mpMRI) is 
increasingly used for OPC adaptive radiotherapy but relies on manual segmentation. Therefore, we constructed mpMRI deep learning (DL) OPC GTVp auto- 
segmentation models and determined the impact of input channels on segmentation performance. 
Materials/Methods: GTVp ground truth segmentations were manually generated for 30 OPC patients from a clinical trial. We evaluated five mpMRI input channels 
(T2, T1, ADC, Ktrans, Ve). 3D Residual U-net models were developed and assessed using leave-one-out cross-validation. A baseline T2 model was compared to mpMRI 
models (T2 + T1, T2 + ADC, T2 + Ktrans, T2 + Ve, all five channels [ALL]) primarily using the Dice similarity coefficient (DSC). False-negative DSC (FND), false- 
positive DSC, sensitivity, positive predictive value, surface DSC, Hausdorff distance (HD), 95% HD, and mean surface distance were also assessed. For the best model, 
ground truth and DL-generated segmentations were compared through a blinded Turing test using three physician observers. 
Results: Models yielded mean DSCs from 0.71 ± 0.12 (ALL) to 0.73 ± 0.12 (T2 + T1). Compared to the T2 model, performance was significantly improved for FND, 
sensitivity, surface DSC, HD, and 95% HD for the T2 + T1 model (p < 0.05) and for FND for the T2 + Ve and ALL models (p < 0.05). No model demonstrated 
significant correlations between tumor size and DSC (p > 0.05). Most models demonstrated significant correlations between tumor size and HD or Surface DSC (p <
0.05), except those that included ADC or Ve as input channels (p > 0.05). On average, there were no significant differences between ground truth and DL-generated 
segmentations for all observers (p > 0.05). 
Conclusion: DL using mpMRI provides reasonably accurate segmentations of OPC GTVp that may be comparable to ground truth segmentations generated by clinical 
experts. Incorporating additional mpMRI channels may increase the performance of FND, sensitivity, surface DSC, HD, and 95% HD, and improve model robustness 
to tumor size.   

1. Introduction 

Oropharyngeal cancer (OPC), a type of head and neck squamous cell 
carcinoma (HNSCC), is among the most common malignancies globally 
[1]. Treatment for OPC often includes radiotherapy because of its high 
cure rate [2]. Segmentation (also termed contouring) of the primary 
gross tumor volume (GTVp) on radiologic imaging is necessary for the 
OPC radiotherapy workflow. The GTVp, with a clinical and planning 
safety margin, acts as a target volume to deliver the radiotherapy dose. 
Consequently, inadequate GTVp definition may cause under-dosage of 
the tumor or over-dosage of surrounding normal tissues [3,4]. However, 
the current clinical standard is manual segmentation by physician 

experts, which is labor-intensive and subject to high inter-observer 
variation [5–7]. Therefore, an auto-segmentation tool would be a 
promising alternative to the current manual standard in OPC radio
therapy workflows. 

Deep learning (DL) has found wide success in auto-segmentation 
[8,9], with many HNSCC auto-segmentation studies applying DL to CT 
imaging [10–12]. Although CT is the most commonly used imaging 
modality in OPC radiotherapy planning, MRI has been increasingly 
recognized as essential for tumor segmentation because of its excep
tional soft-tissue contrast [13,14]. Additionally, the emergence of MR- 
Linac technology, an image-guided adaptive radiotherapy approach 
[15], has further incentivized the incorporation of MRI in OPC 
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radiotherapy planning. Importantly, we recently demonstrated the 
utility of DL for HNSCC organ-at-risk auto-segmentation using MRI, with 
improvements in performance, execution time, and dosimetric differ
ences compared to other auto-segmentation methods [16]. While 
several DL tumor auto-segmentation studies for nasopharyngeal cancer 
using MRI have been published [17–26], to our knowledge, only one 
study has been published for OPC [27]. Since HNSCC tumors at different 
anatomical sites have distinct anatomic boundaries and characteristics 
[28,29], it is crucial that tumor segmentation models are developed for 
each site accordingly. Thus, there exists an unmet need for OPC DL 
tumor segmentation tools using MRI. 

Multiparametric MRI (mpMRI) incorporates multiple sequence ac
quisitions that highlight anatomical and functional information in tu
mors. For example, dynamic contrast-enhanced (DCE) MRI and 
diffusion-weighted imaging (DWI) can quantify tumor perfusion and 
diffusion patterns, respectively, and may affect OPC treatment guidance 
[30,31]. Recent studies of PET/CT HNSCC DL auto-segmentation 
[11,21,32–37] have demonstrated increased segmentation perfor
mance when combining functional and anatomical modalities. Howev
er, investigations that combine anatomical with functional MRI in 
HNSCC to achieve acceptable DL auto-segmentation performance are 
lacking [38,39]. 

In this pilot study, we evaluated the effects of anatomical and func
tional mpMRI inputs on OPC GTVp segmentation performance. Using 
open-source DL frameworks with standardized clinical trial data, we 
trained and evaluated DL models based on variable mpMRI input 
channels. We then compared the models qualitatively and quantitatively 
to determine which channel combinations led to the best segmentation 
results. Finally, we characterized the clinical acceptability of the best- 
performing model using physician expert observers. 

2. Methods 

Imaging data 

We acquired pre-radiotherapy T2-weighted (T2), contrast-enhanced 

T1-weighted Dixon fat-suppressed (T1), DCE, and DWI MRI sequences in 
Digital Imaging and Communications in Medicine (DICOM) format for 
124 HNSCC patients from a prospective clinical trial investigating lon
gitudinal mpMRI (NCT03145077). Images were collected from August 
2018-August 2019 under a HIPAA-compliant protocol (PA16-0302) 
approved by The University of Texas MD Anderson Cancer Center’s 
institutional review board. All patients provided study-specific informed 
consent. We curated 30 OPC patient data sets with a visible GTVp based 
on the complete availability of T2, T1, DCE, and DWI image sets (Ap
pendix C, Fig. C1). Demographic characteristics of the patients are 
shown in Appendix C Table C1. Imaging was performed on a Siemens 
Aera scanner with a magnetic field strength of 1.5 T and standardized 
acquisition parameters (Appendix C Table C2). All patients were 
immobilized with a thermoplastic mask. Apparent diffusion coefficient 
(ADC) parametric maps were derived from DWI sequences through a 
proprietary Siemens algorithm (Munich, Germany) using a mono
exponential model. The Tofts model was used to generate parametric 
maps from DCE sequences for the volume transfer constant (Ktrans) and 
the extravascular extracellular volume fraction (Ve) [40] (additional 
details can be found in Appendix A). GTVp ground truth structures were 
manually segmented in the DICOM-RT Structure format by a physician 
observer (radiologist with > 5 years of expertise in HNSCC) in Velocity 
AI v.3.0.1 (Atlanta, GA, USA). GTVp ground truth structures were 
segmented on the T2 MRI with all other co-registered images made 
available to the observer during the segmentation process. An example 
of the mpMRI images used in this study and overlying GTVp segmen
tation for one patient is shown in Fig. 1A. 

Image processing 

To ensure adequate MRI comparability between patients [41], we 
performed intensity standardization for all images. Anatomical se
quences (T2, T1) were standardized using a Z-score (mean = 0, standard 
deviation = 1), while functional parametric maps (ADC, Ktrans, Ve) 
were truncated to the 10th and 90th percentile for all patients to remove 
potential outliers and rescaled to [-1, 1] as per a previous study [38]. All 

Fig. 1. Annotation, processing, and analysis of data used in this study. (A) Multiparametric MRI input channels for oropharyngeal tumor segmentation. The white 
dotted line depicts the primary gross tumor volume segmentation. Anatomical sequence images are outlined in grey boxes, while functional sequence parametric map 
images are outlined in red boxes. (B) Image processing steps which included image cropping, resampling, and rescaling. (C) An illustration of the 3D Residual U-net 
model architecture. For illustrative purposes, only one input channel (T2-weighted image) is shown, but multiple input channel combinations were used throughout 
the analysis as separate models. (D) Overall study design which incorporated multi-channel input combinations coupled to a leave-one-out cross-validation (LOOCV) 
evaluation approach. T2 = T2-weighted MRI, T1 = T1-weighted MRI, ADC = apparent diffusion coefficient, Ktrans = volume transfer constant, Ve = extravascular 
extracellular volume fraction, ALL = all five input channels. BN = Batch normalization, PReLU = parametric rectified linear unit activation function. (For inter
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

K.A. Wahid et al.                                                                                                                                                                                                                               



Clinical and Translational Radiation Oncology 32 (2022) 6–14

8

images were cropped to the smallest field of view (Ktrans, Ve) and 
resampled to the T2 resolution. An example of the image processing 
workflow is shown in Fig. 1B. 

Segmentation model architecture and implementation 

A DL convolutional neural network based on the 3D Residual U-net 
architecture [42,43] was implemented in the Medical Open Network for 
Artificial Intelligence (MONAI) software package [44] (Fig. 1C). The 
GTVp mask was used as the ground truth target to train the segmenta
tion model. The MRI images acted as variable-channel inputs to the 
models. We investigated the following channel combinations as separate 
models: T2, T2 + T1, T2 + ADC, T2 + Ktrans, T2 + Ve, and all five input 
channels (ALL). The T2 model acted as a baseline of comparison for all 

other models. We implemented an Adam optimizer with a Sørensen-Dice 
similarity coefficient (DSC) loss function. The models were trained for 
700 iterations with a learning rate of 2 × 10-4 for the first 550 iterations 
and 1 × 10-4 for the remaining 150 iterations based on empirical ob
servations in previous studies [35]. We implemented data augmentation 
to mitigate overfitting, which included random horizontal flips of 50 % 
and random affine transformations with an axial rotation range of 12 
degrees and a scale range of 10 %. Additional details on the DL archi
tecture and implementation are found in Appendix A. 

Model evaluation 

Model performance was primarily assessed using DSC. We also 
implemented additional spatial similarity metrics, including Hausdorff 

Fig. 2. Boxplots comparing evaluation metrics of models built with different input channels. Evaluation metrics correspond to Dice similarity coefficient (DSC) (A), 
Hausdorff distance (HD) (B), false-negative DSC (FND) (C), false-positive DSC (FPD) (D), sensitivity (E), positive predictive value (PPV) (F), surface DSC (G), 95% HD 
(H), and mean surface distance (MSD) (I). Boxes show quartiles and median lines, while whiskers extend to the remaining distribution. Mean ± standard deviation is 
shown inside or adjacent to the corresponding box. The single and double stars above the boxplots correspond to significantly lower or higher values, respectively, 
compared to the baseline model for that metric. T2 = T2-weighted MRI, T1 = T1-weighted MRI, ADC = apparent diffusion coefficient, Ktrans = volume transfer 
constant, Ve = extravascular extracellular volume fraction, ALL = all five input channels. 
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Fig. 3. 2D axial slice representations of ground truth segmentations (red dotted outline) and predicted segmentations (yellow dotted outline) for high- (green), 
medium- (blue), and low- (orange) performance cases. Slices for each case are shown in rows superiorly to inferiorly (top, middle, and bottom). Models are shown in 
columns. The DSC scores for corresponding models are shown in the top left corners. The high-performance case corresponds to a left tonsillar T4 tumor. The 
medium-performance case corresponds to a left base of tongue T4 tumor. The low-performance case corresponds to a right base of tongue T4 tumor. T2 = T2- 
weighted MRI, T1 = T1-weighted MRI, ADC = apparent diffusion coefficient, Ktrans = volume transfer constant, Ve = extravascular extracellular volume fraction, 
ALL = all five input channels. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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distance (HD), false-negative DSC (FND), false-positive DSC (FPD), 
sensitivity, positive predictive value (PPV), surface DSC, 95% HD, and 
mean surface distance (MSD). For surface DSC, a tolerance of 3.0 mm 
was selected as suitable from previous inter-observer variability studies 
on T2 MRI of OPC GTVp [45]. Surface distance metrics were calculated 
using the surface-distance Python package [46], while all other metrics 
were calculated in Elekta ADMIRE v.2.9 (Stockholm, Sweden). Each 
model was trained and evaluated using leave-one-out cross-validation 
(LOOCV) (Fig. 1D). 

Clinical evaluation 

For our best-performing model, we assigned three physician expert 
observers (radiologist from 2.1 > 1-year post-segmenting, two radiation 
oncologists) to evaluate the ground truth and corresponding DL- 
generated segmentations using subjective scoring criteria based on a 
4-point Likert scale. The score categories were: 1 = requires corrections, 
large errors; 2 = requires corrections, minor errors; 3 = clinically 
acceptable, errors not clinically significant; 4 = clinically acceptable, 
highly accurate. Additionally, we asked observers to predict the source 
of the segmentations as either human (ground truth) or DL-generated 
through a modified Turing test [47]. Ground truth and DL-generated 
segmentations for all 30 patients were anonymized and randomly pre
sented to experts for clinical evaluation. Experts were blinded to the 
segmentation source. 

Statistical analysis 

After performing a Shapiro-Wilk test, we found that our data were 
not normally distributed (p < 0.05); therefore, we utilized nonpara
metric statistical tests. We used one-sided Wilcoxon signed-rank tests 
(alternative hypothesis of greater than for DSC, sensitivity, surface DSC, 
and PPV; alternative hypothesis of less than for HD, FND, FPD, 95% HD, 
and MSD) to evaluate differences between our baseline T2 model and 
models with additional channels. Given the utilization of a small number 
of a priori planned comparisons and exploratory nature of this work, 
corrections for multiple hypotheses were not considered. We used 
Mann-Whitney U tests to detect differences in model performance based 
on tumor subsite (base of tongue vs tonsil). Additionally, to assess cor
relations of tumor size with model performance, we calculated Pearson 
correlation coefficients with corresponding p-values of ground truth 
volume against DSC, HD, and surface DSC for every model. Finally, to 
assess the clinical evaluation of ground truth against DL-generated 
segmentations, for each observer we implemented a two-sided Wil
coxon signed-rank test for scores and a McNemar test for source pre
dictions. For all statistical analyses, p-values<0.05 were considered 
significant. Analyses were performed in Python v.3.7.9. Code notebooks 
can be found at GitHub (https://github.com/kwahid/mpMRI_OP 
C_GTVp_segmentation). 

3. Results 

Model performance 

T2 + T1 was the best performing model overall with the best mean 
scores in DSC, HD, sensitivity, surface DSC, and 95% HD, while ALL was 
the worst performing model overall with the worst mean scores in in 
DSC, FPD, and PPV (Fig. 2). To further quantify the impact of specific 
channel combinations in comparison to the baseline T2 model, signifi
cance testing was performed between different channel combinations 
and the baseline model. Of the significant relationships, T2 + T1 had 
better performance (p < 0.05) than the baseline T2 model for HD, FND, 
sensitivity, surface DSC, and 95% HD while T2 + Ve and ALL had better 
performance (p < 0.05) than the baseline T2 model for FND. These 
combined results suggest the T2 + T1 model to be the optimal combi
nation for this segmentation task and was further analyzed in the Clinical 

Evaluation section. A complete heatmap of p-values comparing channel 
combinations to the baseline T2 model can be found in Appendix C 
Figure C2. Subsequent subgroup analysis revealed no significant dif
ferences in model performance for any combination of models and 
metrics based on OPC subsite (base of tongue vs tonsil), as all p-values 
were > 0.05 (Appendix C, Table C3). We further inspected predicted 
segmentation results of the various models for a few select cases based 
on DSC scores across all models (Fig. 3). For the high-performance case, 
the T2 model demonstrates a DSC of 0.88, with the incorporation of 
additional channels leading to DSC scores of 0.87–0.90. For the medium- 

Fig. 4. Dependence of tumor size on the Dice Similarity Coefficient (DSC) (A), 
Hausdorff Distance (HD) (B), and surface DSC (C), for various input channel 
models. T2 = T2-weighted MRI, T1 = T1-weighted MRI, ADC = apparent 
diffusion coefficient, Ktrans = volume transfer constant, Ve = extravascular 
extracellular volume fraction, ALL = all five input channels. 
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performance case, the T2 model demonstrates a DSC of 0.71, with the 
incorporation of additional channels leading to DSC scores of 0.72–0.78. 
For the low-performance case, the T2 model demonstrated a DSC of 0.37 
and many spuriously predicted voxels in the posterior region of the 
head, with the incorporation of additional channels reducing the num
ber of spurious voxels and leading to DSC scores of 0.52–0.61. These 
results indicate improved performance in select cases when incorpo
rating additional input channels. Additional in-depth analysis of this low 
performance case, a second low performance case, and an HPV-negative 
tumor case are explored in Appendix B. 

Size dependence of models 

To determine the impact of tumor size on model performance, we 
investigated correlations comparing tumor size to representative metrics 
of volumetric and surface overlap, i.e., DSC, HD, and surface DSC 
(Fig. 4). The range of values for tumor size were 1.74–45.19 cc. Every 
model showed non-significant positive correlations for DSC (p > 0.05) 
and significant positive correlations for HD (p < 0.005), except for T2 +
Ve (r = 0.33, p = 0.079) and ALL (r = 0.06, p = 0.76). Every model also 
showed significant negative correlations for surface DSC (p < 0.05), 
except for T2 + ADC (r = -0.34, p = 0.07), T2 + Ve (r = -0.30, p = 0.11), 
and ALL (r = -0.30, p = 0.1). 

3.3. Clinical Evaluation: The mean segmentation quality evaluation 
scores for ground truth vs DL-generated segmentations for the selected 
model (T2 + T1) were 3.0 vs 2.5, 2.5 vs 2.7, and 3.0 vs 3.0 for observers 
1, 2, and 3, respectively. Significance testing revealed no observer could 
differentiate between the scores (p > 0.05) or source (p > 0.05) of the 
ground truth segmentations compared to the DL-generated segmenta
tions (Table 1). Sub-analysis of clinical evaluation results for select cases 
can be found in Appendix B. 

4. Discussion 

In this pilot study, we determined the impact of mpMRI input 
channel combinations (T2, T2 + T1, T2 + ADC, T2 + Ktrans, T2 + Ve, 
ALL) on DL model segmentation performance. Recent work has sug
gested that the average agreement between physicians measured in DSC 
for OPC tumor segmentation is exceptionally low [45]. Notably, 
compared to previous fully-automated primary tumor segmentation 
studies of HNSCC patients, we achieved promising average DSC per
formance (Table 2). While it is difficult to directly compare DSCs be
tween studies due to different datasets and model training, our models 
seemingly improve upon the only other fully-automated OPC tumor 
segmentation study to our knowledge, which exclusively investigated 
anatomical MRI [27]. 

The best average DSC performance was achieved by the T2 + T1 

model (DSC = 0.73), which was higher than the baseline T2 model (DSC 
= 0.72) but not statistically significant. Moreover, average DSC 
decreased when combining all input channels (DSC = 0.71), though 
non-significantly. However, a previous similar study by Bielak et al. 
investigating HNSCC tumors with segmentations derived from T2 MRI 
demonstrated an increased DSC after the inclusion of all available 
mpMRI channels [38], which is in direct opposition to our results. 
Importantly, the authors used a smaller number of patients (n = 18) than 
our study and implemented repeat imaging at different time-points, 
which could confound their results. Additionally, their results may be 
more relevant for a specific HNSCC tumor site, but no analysis was 
performed to verify this. Notably, auto-segmentation studies in prostate 
cancer have also reported conflicting results on the additive effects of 
additional mpMRI input channels for DSC when using ground truth 
annotations derived from T2 MRI [48–50]. Therefore, further in
vestigations are likely needed to verify if a significant positive DSC effect 
exists for mpMRI input channel combinations in OPC tumor auto- 
segmentation. 

While most auto-segmentation studies have focused on DSC as an 
evaluation metric, it has been argued that other metrics should also be 
taken into consideration, depending on the use-case of the auto- 
segmentation tool [51,52]. Therefore, to increase the robustness of 
our analysis, we have included complimentary metrics (HD, FND, FPD, 
sensitivity, PPV, surface DSC, 95% HD, and MSD) to evaluate our 
models. Like DSC, most metrics show high performance across various 
models, with some models demonstrating significantly better values 
than the baseline T2 model. Interestingly, we demonstrated that in 
certain edge cases (low-performance example), the inclusion of addi
tional channels could circumvent spurious voxel predictions derived 
from the baseline T2 model (a possible byproduct of model overfitting), 
which may increase model robustness (see further discussion in Ap
pendix B, Case 2). These results indicate that the additional channels 
may contain underlying additive information to improve performance 
for aspects other than traditional DSC-based evaluation. Notably, the 
specific anatomic subsite of the tumor (base of tongue or tonsil) had no 
significant effect on performance for any models for any evaluation 
metric, indicating that the models were robust to the spatial location of 
the OPC. Moreover, while the majority of the cases in our study cohort 
were HPV-positive, our best model (T2 + T1) was minimally affected in 
the evaluation of an HPV-negative case, though other models were 
negatively affected (Appendix B, Case 1). Generally, cases that were not 
well-represented in model training, i.e., irregular tumor presentations, 
led to suboptimal auto-segmentation performance (Appendix B, Cases 2 
and 3). 

Previous studies [17,38] have suggested small tumors may be more 
difficult for DL models to segment, which would hinder the incorpora
tion of models into radiotherapy workflows. Importantly, there were no 

Table 1 
Clinical evaluation and Turing test results for three physician expert observers. Each observer was asked to score blinded ground truth (GT) or deep learning (DL)- 
generated segmentations on a 4-point Likert scale (1 = requires corrections, large errors; 2 = requires corrections, minor errors; 3 = clinically acceptable, errors not 
clinically significant; 4 = clinically acceptable, highly accurate) and asked to identify the source of the segmentation (GT or DL). DL-generated segmentations cor
responded to the best DL model tested (T2-weighted + T1-weighted).  

Observer Score GT (#) DL (#) p-value1 Source GT (#) DL (#) p-value2 

Observer 1 (Radiologist) 1 3 6 0.13 GT 16 10 0.18 
2 7 11 DL 14 20 
3 7 4     
4 13 9     

Observer 2 (Radiation Oncologist) 1 3 6 0.44 GT 14 14 1.00 
2 10 4 DL 16 16 
3 16 13     
4 1 7     

Observer 3 (Radiation Oncologist) 1 1 3 0.98 GT 9 12 0.61 
2 8 6 DL 21 18 
3 11 10     
4 10 11      

1 Two-sided Wilcoxon signed rank tests were used for score comparisons. 2 McNemar tests were used for source prediction comparisons. 
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significant correlations between tumor size and DSC for any of our 
models. However, it should be noted that surface distance metrics, such 
as the HD and surface DSC, demonstrate some size dependence, with 
larger and smaller tumors being easier for our models to segment, 
respectively. Interestingly, the surface distance metrics do not demon
strate a significant size dependence for some models that utilize addi
tional channels, particularly those that correspond to functional 
parametric maps. Therefore, the inclusion of additional channels may 
strengthen the robustness of models to tumor size for surface distance 
metric performance, but further confirmatory work is needed. 

The acceptability of segmentations used in a radiotherapy workflow 
is ultimately determined by physician judgment, with physician rating 
scales considered the gold standard for clinically relevant segmentation 
quality [52]. While subjective evaluation through rating scales is com
mon in auto-segmentation studies, the established variability of OPC 
tumor segmentation between observers [45] highlights the difficulty in 
the interpretation of multi-observer segmentation quality analysis. 
Therefore, we implemented a comparative approach for each observer 
to determine if significant clinical differences were present between the 
ground truth segmentations and the corresponding segmentations of the 
best DL model (T2 + T1). We demonstrated that experts were on average 
unable to determine differences between the ground truth and the DL- 
generated segmentations or identify the source of the segmentations. 
Of note, the radiologist who provided the original ground truth seg
mentations was the closest among the observers to correctly discrimi
nating the segmentation sources but was still unable to achieve 
statistical significance. Additionally, for the radiation oncologist ob
servers the mean clinical acceptability score of the DL-generated seg
mentations was equal to or higher than the ground truth segmentations, 
which may indicate a slight preference towards DL-generated OPC 
tumor segmentations for radiotherapy end users. Importantly, while 
these results are encouraging, they should not be conflated with a 
necessarily positive indication for the desired endpoint of radiation 
therapy planning, which would require further dosimetric studies [52]. 
Moreover, we demonstrate several DL segmentation failure cases 
confirmed by clinical evaluation (Appendix B, Cases 2 and 3), so further 
work is needed to ensure the generation clinically useful segmentations 
using these approaches. 

One limitation of our study is the use of a small cohort of predomi
nately HPV-positive tumors with standardized acquisition parameters, 
thus the generalizability of the tested models as well as their robustness 
to different patient groups and acquisition settings may be restricted. 
However, we have taken steps to optimally utilize our data by imple
menting a LOOCV approach and investigating various evaluation met
rics. Moreover, we plan to include additional prospectively acquired 
data for model training and use external heterogenous validation sets in 
future studies to increase model generalizability. Another limitation of 
our study is that we have constrained our analysis of input image 
channels based on those that were investigated in previous literature 
[38]. However, mpMRI input channels can be further investigated 
through additional quantitative parametric maps (e.g., extended Tofts 
model [53], advanced DWI fitting models [54], etc.). Moreover, addi
tional data sources such as CT and PET could also be integrated into 
existing models to determine their impact on auto-segmentation per
formance. Additionally, we have limited our analysis to primary tumor 
volumes, so the utility of mpMRI DL for metastatic cervical lymph node 
tumor volume segmentation in OPC remains unknown. We plan to 
include additional input channels and incorporate lymph node seg
mentation in future analyses. A final limitation of our study is the lack of 
overt image registration. Our images were acquired from a standardized 
clinical trial with patient immobilization; therefore, implicit co- 
registration was deemed adequate for tumor overlap. However, small 
amounts of motion artifacts may cause the segmentation mask to over
lap improperly on mpMRI image channels, impacting auto- 
segmentation quality. Furthermore, though no geometric distortion 
was observed on any parametric maps, distortions were not explicitly 
quantified. Future studies should investigate the role of additional OPC- 
specific registration algorithms and geometric distortion correction in 
combination with mpMRI DL auto-segmentation algorithms. 

5. Conclusions 

In summary, using mpMRI inputs, we built OPC primary tumor DL 
auto-segmentation models that demonstrated reasonable performance 
across multiple evaluation metrics. While most channels did not 
significantly impact model performance as long as the T2 MRI was 

Table 2 
Survey of relevant DL auto-segmentation literature for comparison with our 
study. Only studies ≤ 3 years old and with sample sizes ≥ 30 were selected for 
comparison. DL = deep learning, N = number of images sets used in study, 
GTVp = primary gross tumor volume, DSC = Dice similarity coefficient, OPC =
oropharyngeal cancer, NPC = nasopharyngeal cancer, HNSCC = head and neck 
squamous cell carcinoma, T2 = T2-weighted MRI, T1 = T1-weighted MRI, DCE 
= dynamic contrast enhanced MRI, DWI = diffusion weighted imaging MRI, 
LOOCV = leave-one-out cross-validation, CV = cross-validation, CNN = con
volutional neural network.  

Author, Year Site Modality DL 
Architecture 

N (Train, 
Test) 

GTVp DSC 
(average) 

This study, 
2021 

OPC MRI (T1, 
T2, DCE, 
DWI) 

3D Residual 
Unet 

30 
(LOOCV) 

0.73 (best 
model, T2 
+ T1) 

Outeiral 
et al., 2021 
[27] 

OPC MRI (T1, 
T2) 

3D Unet 171 
(151, 20) 

0.55 

Andrearczyk 
et al., 2020 
[32] 

OPC CT, PET 2D Unet 202 
(LOOCV) 

0.48 (CT), 
0.58 
(PET), 0.6 
(CT +
PET) 

Moe et al., 
2019 [33] 

OPC CT, PET 2D Unet 197 
(157, 40) 

0.65 (CT), 
0.71 
(PET), 
0.75 (CT 
+ PET) 

Naser et al., 
2020 [35] 

OPC CT, PET 3D Unet 201 (5- 
fold CV) 

0.69 

Iantsen et al., 
2020 [36] 

OPC CT, PET 3D Unet 201 (4- 
fold CV) 

0.75 

Ma et al., 
2018 [19] 

NPC MRI (T1) 3D CNN +
graph-cut 

30 
(LOOCV) 

0.85 

Ye et al., 
2020 [18] 

NPC MRI (T1, 
T2) 

3D Unet 44 (10- 
fold CV) 

0.62 (T1), 
0.64 (T2), 
0.72 (T1 
+ T2) 

Chen et al., 
2020 [21] 

NPC MRI (T1, 
T2) 

3D Encoder- 
decoder 
network 

149 (5- 
fold CV) 

0.72 

Huang et al., 
2019 [26] 

NPC MRI (T1, 
T2) 

2D CNN +
recurrent 
attention 

596 
(430, 
166) 

0.78 

Lin et al., 
2019 [17] 

NPC MRI (T1, 
T2) 

3D CNN 1021 
(818, 
203) 

0.79 

Ke et al., 
2020 [23] 

NPC MRI (T1, 
T2) 

3D DenseNet 
+ multi-task 
learning 

3142 
(2792, 
350) 

0.77 

Li et al., 2018 
[20] 

NPC MRI (T1) 2D CNN 87 
(LOOCV) 

0.89 

Ma et al., 
2019 [25] 

NPC CT, MRI 
(T1) 

2D CNN 90 (5- 
fold CV) 

0.75 

Bielak et al., 
2020 [38] 

HNSCC MRI (T1, 
T2, DCE, 
DWI) 

3D CNN 
(DeepMedic) 

36 
(LOOCV) 

~0.30* 

Ren et al., 
2021 [37] 

HNSCC CT, PET, 
MRI (T1, 
T2) 

3D Residual 
Unet 

153 
(123, 30) 

0.72 (PET 
+ MRI), 
0.74 (CT 
+ PET +
MRI)  

* Average DSC interpreted from manuscript figure. 
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included, we find that adding T1 MRI significantly improved HD, FND, 
sensitivity, surface DSC, and 95% HD and adding Ve or using all input 
channels simultaneously significantly improved FND. Additionally, 
certain favorable aspects of model construction, including decreased 
spurious voxel predictions and robustness to tumor size when consid
ering surface distance metric performance, are apparent for models that 
leverage additional input channels. Finally, blinded physician experts 
could not differentiate ground truth from DL-generated segmentations 
(on average), demonstrating our model shows promise in a Turing test 
scenario, but should be further investigated in dosimetric impact 
studies. Our results should be verified in large independent external 
datasets. Moreover, future studies should investigate if the incorpora
tion of additional images germane to the radiation oncology workflow, 
such as CT and PET, can further improve model performance. Overall, 
our pilot study is an important step towards fully automated MR-guided 
OPC radiotherapy workflows. 
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