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Abstract
Objective and design Our research aimed to investigate the role of CD14 in pulmonary infection by Achromobacter 
xylosoxidans in an experimental murine model.
Methods C57Bl/6 or CD14-deficient mice were infected intratracheally with non-lethal inoculum of A. xylosoxidans. At times 
1, 3 and 7 days after infection, lungs, bronchoalveolar lavage and blood were collected. CD14 gene expression was determined 
by RT-PCR. The bacterial load in the lungs was assessed by counting colony forming units (CFU). Cytokines, chemokines, 
lipocalin-2 and sCD14 were quantified by the ELISA method. Inflammatory infiltrate was observed on histological sections 
stained with HE, and leukocyte subtypes were assessed by flow cytometry. In another set of experiments, C57Bl/6 or CD14-
deficient mice were inoculated with lethal inoculum and the survival rate determined.
Results CD14-deficient mice are protected from A. xylosoxidans-induced death, which is unrelated to bacterial load. The 
lungs of CD14-deficient mice presented a smaller area of tissue damage, less neutrophil and macrophage infiltration, less 
pulmonary edema, and a lower concentration of IL-6, TNF-α, CXCL1, CCL2 and CCL3 when compared with lungs of 
C57Bl/6 mice. We also observed that A. xylosoxidans infection increases the number of leukocytes expressing mCD14 and 
the levels of sCD14 in BALF and serum of C57Bl/6-infected mice.
Conclusions In summary, our data show that in A. xylosoxidans infection, the activation of CD14 induces intense pulmonary 
inflammatory response resulting in mice death.
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Introduction

A. xylosoxidans is a Gram-negative, mobile, biofilm-
forming bacillus and resistant to various antibiotics which 
cause recurrent pulmonary infections in patients with cystic 
fibrosis (CF), contributing to disease progression [1, 2]. CF 
patients infected with A. xylosoxidans present high amounts 
of cytokines in serum and sputum in comparison with health 
individuals [3]. Furthermore, other authors have shown 
that in vitro exposure of human lung lineage cells with 
cytotoxins free of lipopolysaccharide (LPS) extracted from 
A. xylosoxidans, can induce the production of cytokines, 
vacuolization and lung cell death [4]. Recently, our group 
showed that leukotriene  B4  (LTB4) has a protective role 
in a mice model of A. xylosoxidans infection by inducing 
the production of α-defensin-1, an antimicrobial peptide 
responsible for reduction of bacterial load in the lungs, and 
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control of inflammation [5]. Together, these data seem to 
point to the importance of the inflammatory process in the 
outcome of A. xylosoxidans infection.

The recognition of LPS, the main component of the wall 
of Gram-negative bacteria, is well described [6, 7]. Soluble 
Lipopolysaccharide-Binding Protein (LPB) binds to bacterial 
membrane sites rich in LPS, forming aggregates, which are 
recognized by CD14 and then presented to the MD2-TLR4 
complex, resulting in the activation of transcription factors, 
such as NF-κB, and induction of pro-inflammatory genes [8, 
9]. CD14 is a myeloid differentiating glycoprotein, expressed 
mainly in immune cells, such as macrophages, monocytes 
and neutrophils [10, 11], although it is also expressed 
in non-immune cells, such as epithelial cells [12] and 
hepatocytes [13]. CD14 can be anchored to the membrane 
(mCD14) by a tail of glycosylphosphatidylinositol (GPI) 
or soluble (sCD14) in plasma and biological fluids [14]. In 
addition to being considered a co-receptor in the recognition 
of LPS, studies have shown that CD14 is important in the 
clearance of apoptotic cells [15], potentiates cardiovascular 
and metabolic complications in obesity [16] and mediate 
lung inflammation induced by scorpion venom as previously 
reported by our group [17, 18].

CD14 signaling has divergent impacts, depending on 
stimulus and tissue location [19]. Previously, we showed 
that CD14 controls macrophage metabolism, which varies 
according to the stimulus and origin of these cells [20]. 
In addition, the blockade or deficiency of CD14 has been 
shown to confer resistance to mortality induced by systemic 
infection of E. coli and endotoxemic shock induced by LPS, 
with reduction in bacteremia and levels of TNF-α and IL-6 in 
serum [21–23]. In contrast, the role of CD14 in the outcome 
of lung infections caused by Gram-negative bacteria still 
controversial [24]. Despite advances in understanding some 
aspects of A. xylosoxidans infection in recent years, the 
mechanisms involved in the recognition of this bacillus and 
the receptors involved, remain poorly understood. Therefore, 
in this work, we evaluated the role of CD14 in a mice model 
of pneumonia induced by A. xylosoxidans.

Materials and methods

Mice

C57Bl/6 (wild-type) and Cd14−/− mice aged 8–9 weeks 
and weighing 24–26  g were purchased from Jackson 
Laboratory (Bar Harbor, ME, USA) and housed in ventilated 
shelf with free access to water and food at the Faculty of 
Pharmaceutical Sciences of Ribeirão Preto, University of 
São Paulo (FCFRP-USP). All procedures performed were 

approved by the FCFRP Animal Use Ethics Committee 
(CEUA) under protocol number 17.1.820.60.0.

A. xylosoxidans culture

The LMG1836 strain of A. xylosoxidans from the Belgian 
Co-ordinated Collections of Micro-organisms BCCM/LMG 
was used. For each experiment, the strain was grown in brain 
and heart infusion broth (BHI) with agar (Difco, Detroit, MI, 
USA) and maintained at 37 ºC for 18 h. The colonies were 
resuspended in sterile PBS and the number of bacteria was 
quantified by spectrophotometer (600 nm) for later infection 
[5].

Intratracheal infection, collection 
of bronchoalveolar lavage fluid (BALF), blood 
collection and experimental design

C57Bl/6 and Cd14−/− mice were anesthetized via 
intraperitoneal (i.p.) administration of ketamine (75 mg/
kg body weight) and xylazine (10 mg/kg) and infected 
intratracheally (i.t.) with 100 µL of bacterial inoculum 
containing 2.0 ×  107 bacilli (non-lethal inoculum) in the 
kinetic experiments, for assessment of lung pathology, cell 
recruitment and production of inflammatory mediators in 
lungs and blood. On days 1, 3 and 7 d.p.i., the mice were 
anesthetized and euthanized by cervical dislocation to collect 
BALF (n = 3–7 mice/group). In another set of experiments 
(n = 3–6 mice/group), blood and lungs were collected 
without performed the BALF. The control groups received 
i.t. 100 µL of sterile PBS. The blood was collected in a tube 
without anticoagulant and centrifuged at 1500g for 12 min, 
at 4  ºC, to obtain the serum. To determine the survival 
curve, a separate group of C57Bl/6 and Cd14−/− mice (n = 8/
group) were infected with 6.3 ×  107 bacilli and the mortality 
monitored daily.

Histopathological analysis of the lungs 
and immunohistochemistry

The middle right lobe of the lungs of the mice from the 
different groups were removed and fixed in 10% buffered 
formaldehyde for 7  days and then prepared in paraffin 
blocks. Histological sections of 5 µM thick were stained with 
hematoxylin and eosin (HE). Seven random photos were 
taken of each lung (400 × magnification) to assess the area 
of tissue injury using ImageJ software (U.S. NIH, Bethesda, 
MD, USA) as described [25]. Immunohistochemistry was 
performed to mark CD14 in the lungs of C57Bl/6 mice. 
The sections were dewaxed and incubated with peroxidase 
blocking reagent. The sections were treated with 1% bovine 
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serum albumin (BSA) to block nonspecific reactions. 
Clone [1H5D8] anti-CD14 antibody (Abcam, Burlingame, 
CA, USA) was applied to the cuts followed by improved 
horseradish peroxidase (HRP) based on improved luminol 
(ECL) (GE Healthcare, Chicago, IL, USA). The reaction 
was developed with diaminobenzidine (DAB) (Vector 
Laboratories, Burlingame, CA, USA) and the sections were 
counterstained with HE.

Bacterial burden and flow cytometry of lungs cells

The left upper pulmonary lobe was digested at 37ºC for 
45 min in 1 mL per lung of digestion buffer [RPMI 1640, 
0.05  mg/mL liberase (Roche, Basel, Switzerland) and 
DNAse 0.5 mg/mL (Sigma–Aldrich, St. Louis, Missouri, 
USA)]. 50  µL of these suspensions were diluted and 
cultivated on BHI agar and maintained at 37 ºC for 36 h 
to count the CFU. The bacterial burden was expressed as 
an absolute number of CFU/gram of lung. The rest of the 
suspensions were filtered through a cell filter with 100 µm 
pore (BD Biosciences, Franklin Lakes, New Jersey, USA) 
to characterize the lung cells. The resulting suspension was 
centrifuged at 300g at 4 ºC for 10 min. The red cells present 
were lysed with ammonium potassium chloride (ACK). 
The number of viable cells was determined to 2 ×  106 using 
Trypan blue and Neubauer chamber [26]. Following fixation 
and blocking, the antibodies used were: CD11b (clone: 
M1/70), CD11c (clone: N418), F4/80 (clone: BM8), MHC-II 
(clone: M5/114.15.2), CD14 (clone: rmC5-3), Ly6G (clone: 
1A8), CD45 (clone: 30F11), CX3CR1 (clone: SA011F11), 
Ly6C (clone: HK1.4), all purchased from eBioscience (San 
Diego, CA) or BD Biosciences (Franklin Lakes, New Jersey, 
USA). After labeling, the cells were resuspended in Cytofix 
fixation buffer (BD Biosciences Franklin Lakes, New Jersey, 
USA). 2 ×  106 events were acquired on the LSR Fortessa 
cytometer (BD Biosciences, Franklin Lakes, New Jersey, 
USA) and analyzed using FlowJo software v.10.0.7 (BD 
Biosciences, Franklin Lakes, New Jersey, USA).

Quantification of sCD14

The BALF was centrifuged at 500 g for 10 min at 4ºC and 
the supernatant was frozen at – 80 ºC. To quantify sCD14 
in the BALF supernatant and animal serum, the CD14 
quantikine ELISA kit mouse (range 62.5–4000 pg/mL; 
R&D Systems, Minnesota, MN, USA) was used and the 
optical density was read at 450 nm in a spectrophotometer, 
according to the manufacturer's specifications.

Quantification of cytokine and total proteins

The upper and lower right lung lobes were homogenized 
in 2 mL RPMI-I with Ultra-Turrax (IKA, Labortechnik, 

Staufen, Germany) and the suspensions obtained were 
centrifuged. The supernatants of the lung homogenates and 
the serum were used for quantification of cytokines (IL-
6, TNF-α, IL-1α, IL-1β, IL-17, IFN-γ) and chemokines 
(CXCL1, CCL2, CCL3) by ELISA (R&D Systems, 
Minnesota, MN, USA), according to the manufacturer's 
instructions. Total proteins were quantified in the lungs and 
BALF supernatants, using the Bradford colorimetric method 
(Coomassie reagent, Pierce Chemical, Rockford, IL, USA), 
according to the manufacturer's instructions.

Nitrite quantification

For indirect quantification of nitric oxide, the supernatants 
of the BALF and lung homogenates were used to quantify 
nitrite  (NO2

−) using the Griess method as described [27].

RNA extraction from the lungs and qRT‑PCR

To evaluate the CD14 gene expression in C57Bl/6 
mice, the lower left lobe of the lungs was removed and 
homogenized for mRNA extraction with Purelink RNA 
MiniKit kit (Life Technologies, Carlsbad, California, USA) 
according to the manufacturer's recommendations. The 
cDNA was synthesized using the High Capacity cDNA 
Reverse Transcription kit (Applied Biosystems, Waltham, 
MA, USA). Real-time quantitative PCR was performed 
using the TaqMan system in Step One Plus (Applied 
Biosystems, Waltham, MA, USA). The Cd14 expression 
values (primer: Mm00438094_g1; Life Technologies—
CA, EUA) were normalized by the expression values of the 
constitutive Gapdh gene (primer: Mm99999915_g1; Life 
Technologies—CA, EUA). For representation of the results, 
the gene expression of the uninfected mice was considered 
as reference samples, with  2−ΔΔCT equal to 1 [28].

Statistical analysis

Statistical analysis was performed using the GraphPad Prism 
software (Gran Pad Software Inc., San Diego, CA, USA) 
by ANOVA one-way with multiple Tukey’s comparisons. 
For analysis of the survival curves, the Log-Rank test and 
Mantel-Cox test were performed in the post-test. Differences 
were considered significant when p values < 0.05. The 
correlation analysis between sCD14 and total proteins was 
performed using Pearson r statistical test.
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Results

The absence of CD14 protects against A. 
xylosoxidans‑induced mortality without changing 
the bacterial load

To investigate whether A. xylosoxidans infection increases 

CD14 in the lungs, we infected C57Bl/6 mice intratracheally 
with 2.0 ×  107 A. xylosoxidans bacilli (non-lethal inoculum) 
and evaluated CD14 expression. As shown in Fig. 1A, the 
Cd14 gene was up-regulated in the lungs on days 1 and 
3 after infection when compared to the uninfected group 
(PBS control group). Similarly, CD14 protein labeling 
in the lungs was increased after infection (Fig. 1B). The 

Fig. 1  CD14 is increased in the lungs after infection and 
mediates A. xylosoxidans-induced mortality, but does not change 
the bacterial burden. A.  Cd14 gene expression in the lungs of 
C57Bl/6 mice infected with 2.0 ×  107  CFU (non-lethal inoculum) 
evaluated by RT-PCR. The values were normalized by the values 
of Gapdh expression. B.  Representative photomicrographs 
showing the expression of CD14 in the lungs of C57Bl/6 mice at 
1 and 3 d.p.i., stained with anti-CD14 by immunohistochemistry 
(400 × magnification, scale bar: 50  µm). C.  The survival rate of 
C57Bl/6 and Cd14−/−-infected mice with 6.3 ×  107  CFU (lethal 
inoculum) was monitored during 7 days post-infection. D. Bacterial 

burden determined by A. xylosoxidans CFU counts in the lungs of 
C57Bl/6 or Cd14−/− mice infected with 2.0 ×  107 bacilli (non-lethal 
inoculum). E. Concentrations of lipocalin-2 measured by ELISA 
in lungs of infected mice. A, B, D and E are representative of two 
independent experiments (n = 4–5 animals), data were analyzed 
by one-way analysis of variance (ANOVA) with Tukey’s multiple 
comparisons test, and are expressed as mean ± s.e.m. *p < 0.05. C is 
representative of three independent experiments (n = 8/experiment) 
analyzed by Log-rank test and Mantel-Cox post-test. *infected vs 
PBS, #Cd14.−/− vs C57Bl/6
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role of CD14 in pneumonia induced by Gram-negative 
bacteria is controversial, in some models it is harmful, as 
it induces intense pulmonary inflammation, in others it is 
essential, as it induces microbicidal mechanisms and control 
of bacterial load [24, 29]. Therefore, to assess the role of 
CD14 in our pneumonia model, we used CD14-deficient 
mice. To evaluate the survival curve, mice were infected 
with 6.3 ×  107 A. xylosoxidans bacilli (lethal inoculum), and 
as shown in Fig. 1C, on the 5th day after infection 100% of 
C57Bl/6 mice died, whereas all mice deficient for CD14 
survived 7 days after infection. Surprisingly, we did not 
detect differences in bacterial load in the lungs (Fig. 1D) 
and in the production of nitric oxide (data not shown), but 
we observed reduced production of lipocalin-2 in the lungs 
of CD14-deficient mice on the 3 d.p.i. when compared to the 
C57Bl/6 animals (Fig. 1E). Taken together, our data show 
that A. xylosoxidans infection increases CD14 expression, 
and that the absence of this molecule protects mice from 
pneumonia-induced lung injury and mortality.

CD14 deficiency protects mice from lung injury 
induced by A. xylosoxidans infection.

We observed that CD14-deficient mice presented less lung 
injury and edema and are protected from mortality, despite 
showing no difference in bacterial load when compared 
to C57Bl/6 mice. To investigate a putative mechanism 
that induces mortality in C57Bl/6 mice, we evaluated the 
inflammation in the lungs of infected mice. Macroscopically, 
the lungs of infected C57Bl/6 mice showed hemorrhagic 
foci and more intense lung damage (Fig. 2A) and more 
pronounced lung edema (Fig.  2B) when compared to 
CD14-deficient mice. We confirmed the reduction in lung 
inflammation in the absence of CD14 through histological 
analysis. As we reported before [5], we observed that A. 
xylosoxidans infection induces intense recruitment of 
leukocytes to the lungs of C57Bl/6 mice, especially at 3 
d.p.i.; however, CD14-deficient animals presented significant 
reduction in cellular recruitment (Fig. 2C), resulting in 
reduced damage in the architecture of the lung (Fig. 2D). In 
addition, Cd14−/− mice exhibited lower BALF total protein 

Fig. 2  The absence of 
CD14 restrains pulmonary 
inflammation induced by A. 
xylosoxidans. A. Macroscopic 
aspect of the lungs of mice 
infected with 2,0 ×  107 A. 
xylosoxidans at 3 d.p.i. 
showing the intensity of lung 
damage. B. Weight of the 
lungs of mice infected with A. 
xylosoxidans. C. Representative 
photomicrographs of the 
lung pneumonia of mice 
infected with A. xylosoxidans, 
stained with HE, at 100× 
(scale bar:100 µm) and 400× 
(scale bar: 50 µm, in inset) 
magnification. D. Percentage 
of inflamed area in the 
lungs of mice infected with 
A. xylosoxidans, analysis 
performed by ImageJ software. 
E. Total proteins in BALF 
of infected mice. A, B, E 
and F are representative 
of two independent 
experiments (n = 4–6), C, 
D are representative of one 
experiment (n = 4–6). Data 
were analyzed by one-way 
ANOVA with Tukey’s multiple 
comparisons test, and are 
expressed as mean ± s.e.m. 
*p < 0.05.* infected vs PBS, # 
Cd14.−/− vs C57Bl/6
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concentration on the 3 d.p.i. when compared to C57Bl/6 
mice, indicating less vascular leakage in the lungs (Fig. 2E).

Absence of CD14 alters the population of cells 
recruited into the lungs

To evaluate the impact of CD14 deficiency on the population 
of cells recruited during A. xylosoxidans infection, C57BL/6 
and Cd14−/− mice were infected with 2 ×  107 CFU and cell 
subpopulations were characterized in the lungs, applying 
the flow cytometric gating hierarchy shown in the Suppl. 
1A. Initially, we analyze the complexity of lung cells in a 
two-dimensional way and displayed their distribution in 
relation to the  CD45+ population. The t-SNE map of the 
populations of some innate cells was produced according 
to the combination of surface markers expressed by each 
population (Fig. 3A). The analysis of the frequency of these 
cells in the lungs of mice infected with A. xylosoxidans 
showed that CD14-deficiency promotes a reduction in 
alveolar macrophages accompanied by a significant 
increase in dendritic cells at 3 d.p.i., and reduction of 
patrolling monocytes, at 7 d.p.i. (Suppl 2A-D). In addition, 
although we did not observe differences in the frequency 
of neutrophils between C57Bl/6 and Cd14−/− mice, CD14-
deficiency results in significant decrease in the absolute 
number of neutrophils in the lungs, at 1 and 3 d.p.i. 
(Fig. 3B), whereas the number of interstitial (Fig. 3C) and 
alveolar macrophages (Fig. 3D) only decreased at 3 d.p.i. 
The number of inflammatory monocytes was significantly 
reduced in the Cd14−/− mice when compared with C57Bl/6 
mice at 1 d.p.i. (Fig. 3D). We did not observe differences 
in the absolute number of dendritic cells between C57Bl/6 
and Cd14−/− mice (Suppl. 2E). Interestingly, the number of 
patrolling monocytes was reduced at 7 d.p.i. in the lungs of 
Cd14−/− mice (Suppl. 2F). These data show that CD14 plays 
an important role for the influx of leukocytes into the lungs 
after A. xylosoxidans infection.

CD14 signaling induces chemokines 
and pro‑inflammatory cytokines during A. 
xylosoxidans infection

The rapid recruitment of leukocytes to the lungs after an 
infection is coordinated by the production of chemokines 
by the resident cells [30]. In agreement with the decrease 
in immune cells in the lungs of CD14-deficient mice, the 
amount of CXCL1, CCL2 and CCL3 chemokines was also 
reduced at 3 d.p.i. (Fig. 4A-–C). CD14 signaling regulates 
the production of cytokines and others mediators of 
inflammation [31, 32]. The leukocytes recruited during an 
infection, such as neutrophils, macrophages and DCs, are 
important sources of pro-inflammatory cytokines, which 
potentiate the inflammatory response at the site of infection 
and can also reach the systemic circulation [33]. Based on 
this, we evaluated the impaction of the absence of CD14 
on the production of cytokines in the lungs and the serum 
after A. xylosoxidans infection. Compared to C57Bl/6 mice, 
IL-6 was reduced at 3 d.p.i. in the lungs of Cd14−/− mice 
(Fig. 4A); on the other hand, TNF-α modulation varied with 
time, at 1 d.p.i. there was less production of this cytokine in 
the lungs of Cd14−/− mice, but at 3 d.p.i. TNF-α increased 
in the absence of CD14 (Fig. 4B). Although the infection 
induced production of IL-1α (Fig. 4C), IL-1β (Fig. 4D), 
IL-17 (data not shown) and IFN-γ (data not shown) in the 
lungs of C57Bl/6 mice, we did not observe differences 
when compared to Cd14−/− animals. In serum, we observed 
the reduction of IL-6 at 1 d.p.i. in CD14-deficient mice 
(Fig. 4E), whereas TNF-α was reduced at 3 d.p.i when 
compared to C57Bl/6 mice (Fig. 4F). Taken together, these 
data show that CD14 is a strong inducer of pro-inflammatory 
mediators in response to A. xylosoxidans infection.

A. xylosoxidans infection increases  CD14+ leukocytes 
in the lung and sCD14 in BALF and serum

So far, our data show that infection by A. xylosoxidans 
increases the expression of CD14 in the lung parenchyma 
and that this receptor is essential to induces inflammation 
and injury of the lungs. Our next step was to investigate 
the main source of CD14 during the infection, and for 
that, we infected C57Bl/6 mice with 2.0 ×  107  CFU of 
A. xylosoxidans and evaluate of CD14 in distinct forms. 
When we evaluated the absolute number of membrane-
bound  CD14+ leukocytes (mCD14) recruited to the lung, 
we observed that the infection induces an increase in 
neutrophils (Fig. 5A), interstitial (Fig. 5B) and alveolar 
macrophages (Fig. 5C) expressing CD14 at 3 d.p.i. when 
compared to the PBS group. On the other hand, we did not 
observe variations in the median fluorescence intensity 

Fig. 3  CD14 modulates the recruitment of neutrophils, macrophages 
and DCs to the A. xylosoxidans-infected lungs. A.  t-SNE map 
show the representative neutrophils  (CD45+  CD11b+  Ly6G+), 
interstitial macrophages  (CD45+  CD11b+ F4/80+MHC-II+), 
alveolar macrophages  (CD45+ F4/80+  CD11c+ Siglec-F+) and 
DCs  (CD45+  CD11c+  CD11b+ MHC-II+). Absolute number of 
neutrophils B, interstitial macrophages C, alveolar macrophages 
D and inflammatory monocytes E in lungs. Data are representative 
of two independent experiments (n = 4–6), analyzed by one-way 
ANOVA with Tukey’s multiple comparisons test, and are expressed 
as mean ± s.e.m. *p < 0.05.* infected vs PBS, # Cd14.−/− vs C57Bl/6

◂
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in the evaluated macrophages, but only a decrease in 
neutrophils at 7 d.p.i. when compared to the uninfected 
group (Suppl. 3). As CD14 is also secreted in the soluble 
form (sCD14) after an inflammatory stimulus [34], we also 
evaluated sCD14. Interestingly, in C57Bl/6 BALF infected 
with A. xylosoxidans there is an increase in sCD14 at all 
times evaluated, peaking at 3 d.p.i. (Fig.  5D). We also 
detected increase in sCD14 at 3 d.p.i. in the serum (Fig. 5E), 
indicating that the intense inflammatory process that occurs 
in the lungs may reflect on the blood circulation. Interesting, 
the increase in sCD14 after infection positively correlates 
with the augment of total proteins in BALF at 3 d.p.i., 
indicating pulmonary edema (Fig. 5F), and thus, impaired 
lung function, which leads to mouse mortality.

Discussion

Recognition of PAMPs by immune cells is the first step to 
start the immune response, whose objective is to eliminate 
the pathogen and to restore the homeostasis [35, 36]. Innate 
immunity receptors, such as TLRs, are sensors that detect 
molecules expressed by pathogens, such as LPS. This 
molecule is the main component of the outer membrane of 
Gram-negative bacteria, and is classically recognized by 
TLR4 and the CD14 co-receptor [6, 37]. The role of CD14 
in the outcome of infections by Gram-negative bacteria 
is controversial and may be related to the induction of a 
protective immune response or exacerbation of inflammation 
[19, 24]. In this study, we characterized for the first time the 
deleterious role of CD14 in pulmonary infection induced by 

Fig. 4  The absence of CD14 impacts in the production of 
inflammatory mediators of mice infected with A. xylosoxidans. 
Concentration of chemokines CXCL1 A, CCL2 B and CCL3 C, and 
cytokines in the lungs, IL-6 D, TNF-α E, IL-1α F, IL-1β G, and 
IL-6 H and TNF-α I in the serum, determined by ELISA. A–G are 

representative of two independent experiments (n = 4–6), H-I are 
representative of one experiment (n = 3–5). Data were analyzed by 
one-way ANOVA with Tukey’s multiple comparisons test, and are 
expressed as mean ± s.e.m. *p < 0.05.* infected vs PBS, #Cd14.−/− vs 
C57Bl/6
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A. xylosoxidans, an emerging nosocomial bacillus whose 
host responses are not yet to be elucidated.

Previous studies have shown that in pulmonary diseases 
induced by infection there is an increase in membrane and 
soluble CD14 expression [38–40]. However, there are 
conflicting results, reinforcing the fact that CD14 expression 
and its role varies according to the stimulus and site of 
infection [19, 24]. Some studies show that CD14 has a 
protective role in the intestine, by increasing the intestinal 

barrier function in a colitis model [41], and by controlling 
the bacterial burden of Shigella flexneri [42]. In contrast, 
in sepsis models, in LPS-induced endotoxemia or lung 
infections, CD14 activation appears to have a deleterious 
role [21, 22, 43, 44], despite a study showing that in cecal 
ligation and puncture (CLP)-induced sepsis the P2X7 
purinergic receptor maintains high levels of CD14 in serum, 
which contributes to the control of bacterial dissemination 
[45]. Here, we show that beside A. xylosoxidans inducing 

Fig. 5  A. xylosoxidans infection increases mCD14 in leukocytes 
and sCD14 in lung and serum. Absolute number of neutrophils A, 
interstitial B and alveolar macrophages C expressing CD14 in lungs 
evaluated by flow cytometry. sCD14 levels in BALF D and serum 
E detected by ELISA. F. Correlation study between sCD14 in lung 
and total proteins in BALF at 3 d.p.i. A–E are representative of two 

independent experiments (n = 3–7), data were analyzed by one-way 
ANOVA with Tukey’s multiple comparisons test, and are expressed 
as mean ± s.e.m. *p < 0.05. *infected vs PBS. F correlation was 
performed using Pearson r statistical test. Each spot is representative 
of each mouse (n = 6) and the values of r and p are specified in the 
graph
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a significant increase in the expression of CD14 in the 
lung parenchyma (at 1 and 3 d.p.i.), its absence attenuates 
inflammation, as observed by the decreases in leukocyte 
influx, production of inflammatory mediators, lung damage 
and lipocalin-2. Lipocalin-2, also known as neutrophil 
gelatinase-associated lipocalin (NGAL), is a protein 
normally present in neutrophil granules, but can also 
be expressed in macrophages, and it is associated with 
antibacterial activity and intense injury and inflammation 
[46]. Interesting, CD14 absence did not interfered with the 
bacterial load, suggesting that CD14 is more related to the 
induction of the inflammatory process than to bacterial 
clearance in this model. Similarly, CD14-deficient mice 
with pneumonia caused by Acinetobacter baumannii also 
show a reduction in polymorphonuclear cells (PMNs) and 
TNF-α in the BALF, but, contrary to our findings, there is 
an increase in the bacterial load in the lungs in the first hours 
after infection, indicating that CD14 may be relevant only in 
the first hours to control bacterial burden [47]. Interesting, 
CD14-deficient neutrophils infected with Burkholderia 
pseudomallei have the same phagocytic capacity as 
neutrophils from non-deficient animals, suggesting that the 
CD14-dependent bacterial load reduction mechanism does 
not occur via phagocytosis and killing capacity [44], but it 
is associated with increased release of trappin-2 in the lungs, 
an essential antimicrobial peptide in the elimination of P. 
aeruginosa [48].

The influx of neutrophils into the lungs is important 
for the control of an infection, but if exacerbated, it can 
contribute to lung damage through the release of NETs and 
enzymes with proteolytic activity, such as neutrophil elastase 
[49], or the release of lipocalin-2 and other molecules that 
increase chemokine production by PMNs [50]. After A. 
xylosoxidans infection, we observed that CD14-deficient 
mice show a reduction in lipocalin-2, as well as a lower 
number of neutrophils in the lungs, in addition to less 
pulmonary damage, resulting in longer survival rate than 
wild-type animals. In agreement with our results, the lung 
parenchyma of CD14-deficient animals is more preserved 
during S. pneumoniae infection when compared to WT mice, 
in addition to having a lower concentration of total proteins 
in the lungs, and a reduction in IL-1β, IL-6 and CXCL1 
in lungs and plasma of infected mice [51]. In tuberculosis, 
CD14 also mediates PMN recruitment and release of pro-
inflammatory cytokines in the lungs, culminating in lung 
injury and higher animal mortality [52].

CD14 was first described as anchored to the membrane of 
macrophages and monocytes, but after inflammatory stimuli 
such as LPS, CD14 can be released in soluble form via the 
action of proteases or even after escaping from binding to 
GPI in post-translational modifications [29, 53]. Defining a 
pattern of CD14 expression in leukocytes from pneumonia 
patients or from infected mice is a challenge. Patients with 

tuberculosis have lower CD14 expression on monocytes 
when compared to healthy individuals [54], and similarly, 
mCD14 expression is reduced in alveolar macrophages 
from mice infected with E. coli when compared to cells 
from wild-type mice [55]. In contrast, the expression 
of mCD14 on monocytes and macrophages of children 
with pneumonia is higher when compared to the control 
group [56]. In our model of pulmonary infection by A. 
xylosoxidans, although we did not observe an increase in 
CD14 MFI on the surface of the evaluated leukocytes, we 
found an increase in the absolute number of neutrophils and 
macrophages expressing CD14 that are recruited to the lung, 
suggesting that the increase in cells capable of signaling 
via mCD14 contribute to the exacerbation of pulmonary 
inflammation. sCD14 is considered a potential marker of 
pneumonia in children [56] and a predictor of severity of 
coronavirus disease 2019 (COVID-19) [57]. Furthermore, 
sCD14 is considered an acute phase marker [34], and it was 
even shown that this molecule is capable of inducing pro-
inflammatory cytokines independent of LPS in CF patients, 
contributing to the persistence of inflammation in these 
patients [58, 59]. Corroborating these findings, we observed 
that A. xylosoxidans induces sCD14 release in the BALF and 
serum of infected animals, suggesting that part of mCD14 of 
leukocytes or others cells, such epithelial cells, is shedding 
to the soluble profile during infection. The dynamics of 
sCD14 release by other leukocytes and non-immune cells 
needs to be further investigated.

Taken together, our findings highlight the detrimental role 
of CD14 in A. xylosoxidans-induced pneumonia, mediated 
by pulmonary and systemic release of sCD14, which likely 
maintains leukocyte recruitment to the lungs and impairs 
pulmonary homeostasis. Furthermore, these results reinforce 
that CD14 inhibition may be a possible alternative therapy 
for patients with chronic lung inflammation caused by A. 
xylosoxidans.
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