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Daily torpor is a means of saving energy by controlled lowering of the meta-
bolic rate (MR) during resting, usually coupled with a decrease in body
temperature. We studied nocturnal daily torpor under natural conditions
in free-living common swifts Apus apus resting in their nests as a family
using two non-invasive approaches. First, we monitored nest temperature
(Tnest) in up to 50 occupied nests per breeding season in 2010–2015. Drops
in Tnest were the first indication of torpor. Among 16 673 observations, we
detected 423 events of substantial drops in Tnest of on average 8.6°C.
Second, we measured MR of the families inside nest-boxes prepared for
calorimetric measurements during cold periods in the breeding seasons of
2017 and 2018. We measured oxygen consumption and carbon dioxide pro-
duction using a mobile indirect respirometer and calculated the percentage
reduction in MR. During six torpor events observed, MR was gradually
reduced by on average 56% from the reference value followed by a decrease
in Tnest of on average 7.6°C. By contrast, MR only decreased by about 33% on
nights without torpor. Our field data gave an indication of daily torpor,
which is used as a strategy for energy saving in free-living common swifts.
1. Introduction
Torpor is a highly controlled and reversible physiological state of hypometabo-
lism [1,2] observed in many endotherms (i.e. birds and mammals) [3–6]. In
birds, torpor usually lasts less than 24 h, called daily torpor [4]. The metabolic
rate (MR) during daily torpor may be lowered by about 50% [7–9] up to 95% in
hummingbirds [6]. MR lowering can be accompanied by a temporary decrease
in body temperature (Tb by approximately 5–30°C [9,10]) depending on the
ambient temperature [7].

Among other functions [11,12], daily torpor enables endotherms to copewith
times of energetic stress due to food shortage and/or cold periods [13,14]. Many
birds escape unfavourable environments by migration; hence, daily torpor can
often be found in resident species like mousebirds and New Zealand wrens
[15–18]. However, migratory birds can be confronted to energetic stress when
staying at their breeding sites, leading to an occasional use of daily torpor
[19,20]. This applies especially to bird species breeding in unpredictable environ-
ments with varying food availability [21], such as in insectivorous birds like
nightjars [19,20,22] or swifts [23].
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Table 1. Number of monitored nests observed for at least 30 days per breeding season, number of observations (no. nests × nights), number of nests with
Tnest drops (difference between Tnest and Ta≤ 7°C), number of nights with Tnest drops, percentage of nests with at least one Tnest drop and percentage of nights
with Tnest drops.

year
no. observed
nests

no. observations (no.
nests × nights)

no. nests
with Tnest
drops

no. nights
with Tnest
drops

percentage of
nests
with at least one
drop in Tnest

percentage of nights
with Tnest drops

2010 24 1507 11 24 46 1.6

2011 34 2181 20 25 59 1.1

2012 43 3078 38 82 88 2.7

2013 43 3149 43 187 100 5.9

2014 50 3393 32 61 64 1.8

2015 48 3365 29 44 60 1.3

2017 48 3131 29 46 60 1.5

2018 41 2553 11 16 27 0.6
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The common swift Apus apus often faces cold periods at
their breeding sites, which span across Europe and beyond
the Arctic Circle [24–26]. Anecdotally, it was reported that
free-living breeding common swifts enter a nocturnal torpid
state during harshweather conditions which lower the activity
of airborne insects for several days (personal observation by
J.R., [27,28]). Previous laboratory studies in fasting common
swifts kept in respirometry chambers showed that both juven-
ile (from 13 to 15 days of age) and adults can lower Tb andMR
reversibly during resting in times of food and water depri-
vation at low ambient temperature (Ta) [29–32]. However,
there have been no systematic studies on the occurrence and
frequency of nocturnal daily torpor in free-living common
swifts in thewild during the short breeding season. Therefore,
we studied families of common swifts resting at their nests at a
German breeding site for 8 years. To minimize disturbance,
we used two non-invasive methods: (i) we measured drops
in nest temperature (Tnest) with temperature loggers fixed
inside nests in 2010–2015 and 2017–2018, a method validated
for quantifying torpor [33] and nest attendance [34–37]. (ii)
Since a substantial drop in Tnest is not sufficient to detect
torpor [38], as shown, e.g. for Tb in tropical animals [39,40],
we additionally measured MR of the families directly at their
nests in 2017–2018.

Based on the high dependence on airborne food and there-
fore on weather, previous anecdotal evidence and former
laboratory studies, we predict that daily torpor events (here-
after ‘torpor’), indicated by a lower MR accompanied by a
Tnest drop, would regularly occur in families of resting
common swifts during breeding seasons on nights with
comparatively low Ta.
2. Methods
A detailed description of the methods is given in the electronic
supplementary material. Fieldwork was conducted at a common
swift colony of 29–55 pairs breeding in natural open nests inside
walk-in chambers of a concrete highway bridge (51°0202800 N,
7°4903600 E) near the city of Olpe, Germany, during breeding sea-
sons in 2010–2015 and 2017–2018. Throughout each breeding
season (end of April to early August), we embedded iButton™
temperature loggers (type DS1922 L; accuracy ± 0.5°C; Maxim
Integrated™, USA) into the lower part of nest walls to measure
Tnest at 5 min intervals (electronic supplementary material,
figure S1). Ta inside the walk-in chambers was measured near
the nests with a data logger. We analysed Tnest of 24–50 nests per
breeding season that were continuously occupied during nights
for at least 30 days (table 1). As an indicator of torpor [33], we
counted substantial Tnest drops (i.e. a drop with a difference
between Tnest and Ta≤ 7°C, a criterion validated in a pilot study
with video-taped nests using infrared video cameras and
iButtons™ embedded in the nest). Thereby, the pattern of Tnest

drops has to resemble the Tb profile during torpor cycles recorded
in laboratory studies [29–32].

In addition, in 2017 and 2018, seven pairs nested inside
wooden boxes (40 × 20 × 20 cm, v. 16 l) equipped for metabolic
measurements (electronic supplementary material, figure S2).
We used one mobile indirect calorimetry system CaloBox™ (elec-
tronic supplementary material, figure S3) [41] to record oxygen
consumption ( _VO2 )and carbon dioxide production ( _VCO2 ) of
resting families up to six individuals.

We recorded gas exchange on 31 nights between 26 June and
28 July 2017 and the same number of nights from 13 June to 17
July 2018: three nests (nest IDs 142, 175, 183) with 1–4 nestlings
(age 17–48 days) in 2017 and two nests (nest IDs 173, 175) with
three eggs and 2–3 nestlings (age 0–27 days) in 2018 (electronic
supplementary material, table S1). Since number of birds and
total body mass in the nest are major determinants of _VO2 , we
controlled for the number of parents present, from none to
both adults at the nest, on nine of the 62 nights. We know
from a previous study in the same colony [42] and other sites
[27,28], that adults do not leave (or enter) the nest during dark-
ness. Hence, we assumed that the number of birds did not
vary during the calorimetric measurements. Total mass of all
birds during measurements ranged from approximately 47 g
(one nestling, nest ID 175) to 239 g (four nestlings and two
adults, nest ID 183; electronic supplementary material, table S2).

Following the general definitions of torpor in the literature,
torpor is often characterized by an approximately 50–95%
decrease in MR for individuals [8,9,43]. Although we are aware
that we are measuring groups of birds and that there is no
clear threshold for torpor events, we used a relative reduction
in resting MR by approximately 50% in our study as a conserva-
tive guideline for torpor events, accompanied by a substantial
Tnest drop [43]. We know from video monitoring that adults
arrive near sunset at the nest and start resting a few minutes
later after feeding the young. To be sure that we measured _VO2

during resting, we used the _VO2 value half an hour after _VO2
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Figure 1. Oxygen consumption (_VO2 ), nest temperature (Tnest) and ambient temperature (Ta) inside the bridge during six nights each without (a,c,e,g,i,k) and with
torpor (b,d,f,h,j,l) in two nests (nest ID 183: a–j; nest ID 175: k,l). Area shaded grey indicates night. Number of individuals at the nest are given in brackets (ad. =
adult; ne. = nestling).
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peak (triggered by the adults’ arrival) as a reference value
(MRref ) to calculate relative MR reduction (%) based on the for-
mula (MRref - MRmin) × 100/MRref with MRmin being the lowest
_VO2 value during the night. Based on MR reduction (greater or
lower than approximately 50%), we separated the 62 nights
with metabolic data into nights with and without torpor. As
the initial value for drop in Tnest, we used the value at the time
from which Tnest decreased continuously after the arrival of the
adults. Relationships between the parameters of Tnest and MR
(e.g. duration, relation to sunset or sunrise) were assessed
using Pearson’s product-moment correlation. We compared
absolute Tnest and relative _VO2 reduction on nights with torpor
with an equal number of nights without torpor from the same
nests. We assessed non-torpor nights which were either before
or after nights with torpor events, based on weather forecasts
and the time period of measurements at each nest (electronic
supplementary material, table S1). Since Ta affects all nests
equally, we included all days with complete MR measurements
(total n = 60) in the comparisons of the daily averaged Ta
during days previous to nights with torpor with the daily Ta
during days previous to nights without torpor. For these com-
parisons, we applied linear mixed models (LMM, R-packages
‘lme4’ [44] and ‘sjPlot’ [45]). Year and nest ID were random fac-
tors. Model assumptions (e.g. normal distribution of residuals
and Tukey–Anscombe plot) were assessed graphically following
[46]. All data analyses were performed in R [47].
3. Results
In 2010–2015, we found 24 to 187 substantial drops in Tnest

per breeding season (table 1; total of 423 events in 16 673
observations; 1.1–5.9% of examined nights per season) with
at least one Tnest drop in 70 ± 20% (range: 46–100%) of occu-
pied nests (range: 24–50 nests). On average, Tnest dropped by
8.6 ± 2.7°C (range: 3.0–18.0°C) and a Tnest drop lasted around
10.8 ± 3.3 h (range: 4–22 h, n = 423 events). In 2017 (48 nests)
and 2018 (41 nests), we counted 46 and 16 Tnest drops,
respectively (table 1; total of 62 events in 5684 observations;
1.5% and 0.6% of nights examined). Of this total of 62 Tnest

drops, 29 and nine drops, respectively, were detected
during the period of the MR measurements (31 nights per
year).

The arrival of adults at the nests near sunset was evident
from a steep increase in _VO2 . We found a substantial decrease
in _VO2 for five of the 31 nights in 2017 (nest ID 183, 3–4 nest-
lings and 1–2 adults, figure 1). In 2018, which was the
warmest year since weather records began in Germany, we
found a substantial decrease in _VO2 in one of the 31 nights
(nest ID 175, two nestlings and one adult; figure 1). In these
two nests (nest ID 183 and 175), MR decreased on average
by 56 ± 6% of MRref (range: 49–62%) on the six nights where
torpor was used, and MR reduction was 33 ± 9% (range:
23–46%) in the equal number of nights without torpor (n = 6;
figure 1). _VO2 reduction on the six nights with torpor started
19 ± 42 min after sunset (range: 20 min before to 88 min after
sunset) and ended 45 ± 35 min before sunrise (range: 7–
102 min). The later the _VO2 reduction started after sunset, the
shorter the bout duration (r = 0.84, p = 0.04). By contrast,
there was no correlation between bout duration and the start
of arousal relative to sunrise (r =−0.37, p = 0.47), meaning
that short and long torpor bouts have a similar temporal
distance to sunrise. The lowest _VO2 value measured was
94 ± 39 min (55–146 min) before sunrise.

On the six nights with a substantial decrease in _VO2 in
2017 and 2018, Tnest decreased on average by 7.6 ± 1.8°C
with a mean lowest temperature of 24.3 ± 1.8°C (range: 21–
26°C; figure 1). This drop was 3.6 ± 1.2°C on the six nights
without torpor with a mean lowest temperature of 30.1 ±
1.8°C (range: 28–32°C). On nights with torpor, Tnest declined



Table 2. Ambient temperature (Ta) inside the bridge (mean and confidence intervals CI of LMM) on days with or without torpor.

parameter
days with nocturnal
torpor n = 6 CI

days without nocturnal
torpor n = 54a CI n R2 p-value

mean Ta [°C] 17.3 14.9–19.7 20.8 18.3–23.3 60a 0.138 0.005

min. Ta [°C] 16.2 13.8–18.6 19.5 17.2–21.8 60a 0.130 0.006

max. Ta [°C] 18.5 16.1–20.9 22.6 19.7–25.5 60a 0.183 0.001
aIncomplete Ta measurements by the CaloBox™ on the first and last day were excluded.
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81 ± 46 min (range: 11–130 min) after onset of _VO2 decrease.
The lowest Tnest values on nights with torpor were negatively
correlated with duration of Tnest drops (8.6 ± 1.9 h, range
6.0–11.2 h; r =−0.93, p < 0.01) but not with duration of MR
reduction (7.6 ± 0.7 h, r = 0.07, p = 0.90). There was a positive
correlation between absolute Tnest decrease and relative _VO2

decrease on the six torpor nights (r = 0.84, p = 0.04). Average
Ta was significantly lower during days previous to nights
with torpor than during days previous to nights without
torpor (table 2).
4. Discussion
We regularly detected substantial drops in Tnest, indicating
daily torpor in families of free-living common swift under
natural conditions at a low frequency of 1–6% of nights
within a season. Such drops in Tnest were found at least
once in the majority of nests per season, except for 2018
(only 27% of nests). In 2017 and 2018, we detected six
events of substantial _VO2 decrease by 56 ± 6% (relative to
MRref) in two nests with groups of up to six individuals
accompanied by a Tnest drop during nights with compara-
tively low Ta. MR reductions started shortly before or after
sunset whereas increases were always initiated before sun-
rise. Given the magnitude of our chosen conservative
threshold for torpor, i.e. MR reduction of about 50%, we con-
clude that the observed MR declines in free-living common
swifts represent nocturnal torpor among some or all individ-
uals resting together in a nest. As Willis et al. [33], we found
time-lagged correlations between Tnest- and MR-defined
torpor entry, arousal onset and completion.

Laboratory studies in juvenile and adult common swifts
under fasting conditions provided the only evidence of
torpor in common swifts to date [29–32]. Koskimies [29,30]
found that individuals’ relative _VO2 decreased by approxi-
mately 39% and 69% in two juveniles and about 60% in an
adult, which corresponds with our findings ranging from
49% to 62% for a group. Due to the nature of our field
study, we could only record torpor events within a family
or a breeding pair. The calculation of individual energy sav-
ings requires further technical equipment (thermal imaging
cameras [48]) or invasive methods (implants to monitor
heart rate [49]), which are hardly applicable in common
swifts. Defining torpor for a group is complicated because
individual members can differ in body mass, size, energy
reserves, and thus, in the propensity to undergo torpor
[44,50,51]. However, other bird species resting in a group
are known to be highly synchronized in Tb and MR as
shown e.g. in mousebirds [15,52,53] or bronze mannikins
(Spermestes cucullatus) [54]. Moreover, social thermoregulation
can facilitate and even enhance energy savings, e.g. of 50% in
free-ranging white-backed mousebirds (Colius colius) [15].
Therefore, it is possible that individual torpor is masked by
the higher MR of other family members [55]. In this case,
we might underestimate the numbers of actual torpor
events in our study.

To conclude, three open questions arise: (i) what supports
the arousal from torpor, (ii) what is the adaptive value of
torpor and (iii) what impact does torpor have on life-history
decisions? Brown adipose tissue, used for non-shivering ther-
mogenesis (NST) in eutherian mammals, has not yet been
found in birds [56,57]. Therefore, muscle NST likely supports
the arousal from torpor in birds [57–60] together with active
muscle shivering and increasing heart rate, which has been
observed in captive common swifts [32]. From these swifts,
we know that fasting can induce torpor bouts, which
become more pronounced with prolonged food deprivation.
Therefore, we assume that food shortage is also the main
cause for torpor in free-living common swifts similar to
Alpine swifts (Tachymarptis melba) [23]. Since food avail-
ability, i.e. abundance of airborne insects, is reduced at low
temperatures [61], it is expectable that we found indications
for torpor rather rarely because cold weather is infrequent
during the warm breeding season. We hypothesize that the
ability to reduce MR helped common swifts to expand their
breeding range into northern Palaearctic regions. Daily
torpor might enable common swifts to cope with potentially
increasing extreme weather events due to climate change [62].
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