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Abstract: Heat stress (HS) compromises dairy cattle reproduction by altering the follicular dynamics,
oocyte maturation, and normal physiological function of ovarian granulosa cells (GCs), eventually
resulting in oxidative damage and cell apoptosis. To protect the cells from oxidative damage, the
Superoxide dismutase-1 (SOD1) degraded the hydrogen peroxide (H2O2) to oxygen (O2) and water.
The objective of the current study was to investigate the impact of SOD1 silencing on intracellular
ROS accumulation, cell viability, MMP, hormone synthesis (P4, E2), cell proliferation, and apoptosis in
GCs under HS. The mechanistic role of SOD1 regulation in the heat-stressed GCs was explored. SOD1
gene was successfully silenced in GCs and confirmed at both transcriptional and translational levels.
We found that silencing of SOD1 using siRNA under HS aggravated intracellular accumulation of
reactive oxygen species, apoptosis, disrupted the mitochondrial membrane potential (MMP), altered
transition of the cell cycle, and impaired synthesis of progesterone (P4) and estrogen (E2) in GCs. The
associative apoptotic, steroidogenic, and cell cycle genes (BAX, Caspase-3, STAR, Cyp11A1, HSP70,
PCNA, and CyclinB1) were used to confirm the results. These results identify a novel role of SOD1 in
the modulation of bovine ovarian GC apoptosis, which provides a target for improving the fertility
of heat-stressed dairy cows in summer.

Keywords: bovine granulosa cells; heat stress; SOD1 silencing; oxidative stress; apoptosis;
cell proliferation

1. Introduction

Environmental temperature significantly affects animal breeding and reproduction [1].
Heat stress causes infertility in dairy cows, a significant source of economic loss in the
cattle industry [2–5]. Loses related to HS due to decreased milk production and a decline
in pregnancy rates cost U.S. producers about one billion dollars annually [6]. The ovarian
follicle is composed of oocytes surrounded by several layers of GCs. GCs play an important
role in supporting and nurturing the developing oocyte. Subsequently, the matured oocyte
further participates in the fertilization and formation of an embryo [7]. Heat stress has
long been considered a challenging issue that negatively affects the reproductive functions
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of dairy cattle, altering the developmental competence of oocytes during fetal growth [8].
Moreover, the conception rate in dairy cows is lower if there are five weeks of HS before
breeding [9,10]. Likewise, heat-tolerant Gir (Bos indicus) cows have less follicular growth,
oocyte developmental competence, and follicular steroidogenic ability, with these effects
continuing to exist for more than 100 days even after the end of the HS period [3].

The ovarian pool of follicles and their enclosed GCs and oocytes are highly susceptible
to HS among the female reproductive system contents [8]. Follicular development is highly
dependent on the function of GCs. The follicular GCs have an important role in oocyte
nurturing and hormonal synthesis, facilitating functional crosstalk with the developing
oocyte [10,11]. The synthesis of two main reproductive hormones (E2 and P4) is one of
the major roles of GCs [12,13]. Ovarian follicular development, oocyte maturation, and
proliferation of endometrium are highly dependent on the production of E2 by GCs [14].
However, HS compromises the normal physiology and functions of GCs. Heat stress is
well known to promote the intracellular accumulation of ROS such as H2O2, superoxide
radical (O2), and hydroxyl radicals (OH) abundance in GCs, thereby causing oxidative
stress [15,16] and apoptosis [17]. Cellular redox status plays a critical role in cell survival,
growth, and death signaling. At the same time, an overwhelming increase in intracellular
ROS due to HS could cause a series of damage to GCs, including apoptosis, altered cell
proliferation, disruptive MMP, and impaired synthesis of E2 and P4 [18–21].

To combat oxidative stress, cells express various antioxidant enzymes such as super-
oxide dismutases (SODs), glutathione peroxidases, and catalases (CAT). SODs are well
known for mediating the dismutation of the superoxide radicals into O2 and H2O2; hence
play an important role against oxidative stress [22,23]. Therefore, SODs are considered
to be the very first line of defense against ROS [22]. SOD1 and SOD2 are two distinct
intracellular SOD isoenzymes [24]. SOD1 is a Cu/Zn enzyme mostly expressed in the
cytosol, with a little amount in mitochondrial intermembrane space. [25–27].

Moreover, many studies have explored the regulation of SOD1 in GCs under HS, but
no attempt has been taken so far to functionally validate the impact of SOD1 gene silencing
on GCs functions under HS. Our previous study on transcriptomic analysis of GCs under
HS showed a significant upregulation of the SOD1 gene [16]. For instance, the current study
was aimed to explore the role of SOD1 on intracellular ROS accumulation, cell viability,
MMP, hormone synthesis (P4, E2), cell proliferation, and apoptosis in GCs under HS. For
instance, we silenced the SOD1 gene in GCs under HS. Recently, RNA interference (RNAi)
has been proven to be able to modulate and modify a particular gene knockdown model in
many species [28]. After successful transfection, GCs were examined for ROS abundance,
cell viability, MMP, hormone synthesis, cell proliferation, and apoptosis. We found that
SOD1 has an essential role in the regulation of these parameters under HS.2.

2. Materials and Methods
2.1. Ethical Approval

This study protocols for collecting bovine ovaries from experimental animals were
reviewed and approved by the institutional animal care and use committee of China
Agricultural University Beijing, China (permit number: DK996).

2.2. The Isolation, Culture, Identification, and Treatment of Granulosa Cells

All techniques involved in ovaries collection from Holstein cattle, isolation of GCs,
identification of GCs by immunofluorescence staining, and cell culture were performed
using a previously described procedure [29]. After culturing primary GCs for 48 h, different
treatment conditions were applied to the GCs. To construct the HS model, three parallel
groups were set up: 38 ◦C + negative control (NC), 40 ◦C + NC, and 40 ◦C + small interfering
SOD1 (siSOD1; that silences the SOD1 gene). The cells were then grown for 24 h at 38 ◦C.
After the cultivation, the cells and culture media were collected for further analysis.
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2.3. Production of siRNA and GCs Transfection

RNA interference was carried out for SOD1 silencing using small interfering RNAs
directed against cow SOD1 (siSOD1) (the sense and antisense sequence of siRNA are
5′-CCAUCAGUUUGGAGACAAUTT-3′, 5′-AUUGUCUCCAAACUGAUGGTT-3′, respec-
tively) and negative control (NC) (Gene Pharma, Shanghai, China). Bovine GCs were
cultured in six-well plates for 48 h until 60% confluence and then transfected with Lipo-
fectamineTM 3000 (Invitrogen, Carlsbad, ON, Canada) following the manufacturer’s
instructions. Subsequently, cells were immediately suspended in DMEM/F-12 (Gibco, Life
Technologies Inc., Grand Island, NY, USA) medium and incubated at 38 ◦C under 5% CO2
in humidified air. After 24–48 h of transfection, GCs were collected for protein and RNA
extraction to validate the effective reduction of SOD1 expression through western blotting
and RT-qPCR. In addition, culture media was taken to estimate hormone levels.

2.4. Quantitative Reverse Transcription PCR (RT-qPCR)

Total RNA was extracted from GCs using an RNA kit (Tiangen, Beijing, China). RNA
concentration determined using NanoDrop 2000 spectrophotometer (Thermo Scientific,
Waltham, MA, USA). The expression of the selected genes was quantified through the real-
time PCR analysis using iTaq™ Universal SYBR® Green Supermix (Bio-Rad Laboratories
GmbH, Munich, Germany) in applied Biosystem® StepOnePlus™ (Applied biosystems, CA,
USA). The GAPDH was kept as a housekeeping gene to normalize the relative expression
of target genes, i.e., SOD1, Bcl-2 associated x-protein (BAX), Caspase-3, proliferating cell
nuclear antigen (PCNA), CyclinB1, heat shock protein 70 (HSP70), Steroidogenic acute
regulatory protein (STAR), and Cytochrome, P450, family 11, Subfamily A, polypeptide 1
(Cyp11A1). To design gene-specific primers, the Primer3, web version 4.0.0 (http://bioinfo.
ut.ee/primer3/ accessed on 12 November 2021) and primer-Blast (http://www.ncbi.nlm.
nih.gov/tools/primer-blast/ accessed on 12 November 2021) were used (Table 1). Data
was collected using the second derivative maximum method and then analyzed further.
The gene expression levels were calculated using the 2-CT technique [30].

Table 1. List of gene primers used for RT-qPCR.

Gene Accession No. Forward 5′→3′ Reverse 5′→3′

SOD1 NM_201527.2 TCAATAAGGAGCAGGGACGC AAGCCGTGTATCGTGCAGTT
BAX XM_003355974.2 GGCTGGACATTGGACTTCCTTC TGGTCACTGTCTGCCATGTGG

Caspase-3 XM_005671704.1 CTGGACTGTGGCATTGAGAC GCAAAGGGACTGGAGAACC
CyclinB1 NM_001170768.1 AAGACGGAGCGGATCCAAAC CCAGTGACTTCACGACCCAT

PCNA NM_001291925.1 GCGTTCATAGTCGTGTTCCG TTCAAGATGGAGCCCTGGAC
STAR NM_174189.3 CCCATGGAGAGGCTTTATGA TGATGACCGTGTCTTTTCCA

Cyp11A1 NM_176644.2 CTGGCATCTCCACAAAGACC GTTCTCGATGTGGCGAAAGT
HSP70 NM_001014912.1 GGGGCCATGAAAACTGTTCG TGGTGGAGATGTCTCAGGCT

GAPDH NM_001034034.2 GGTGCTGAGTATGTGGTGGA GGCATTGCTGACAATCTTGA

2.5. Protein Extraction and Western Blotting

RIPA lysis buffer (Beyotime, Shanghai, China) containing proteinase inhibitors was
used to lyse bovine GCs from each group. The extracted protein content was determined
using a BCA Protein Assay Kit (Beyotime). Samples containing 50 µg were separated on
sodium dodecyl sulfate-polyacrylamide gels (SDS-PAGE, 12% acrylamide gel containing
0.1% SDS), and transferred onto a polyvinylidene difluoride (PVDF) membrane (BioTra-
ceNT, Pall Corp., Port Washington, NY, USA). Membranes were then blocked for 1 h at
37 ◦C with 5% (w/v) skim milk in Tris-buffered saline (TBS) with 0.1% Tween 20 (TBST).
Primary antibodies against SOD1 (CST 2770S), BAX (CST2772S), Caspase-3 (CST 9662S),
PCNA (CST 81628S), CyclinB1 (CST 60691S), STAR (ab237908), Cyp11A1 (ab175408), HSP70
(CST 4872S), and β-actin (CST 4967S) were incubated overnight at 4 ◦C on the membranes
(Cell Signaling Technology, Beverly, MA, Abcam, USA). The membranes were then washed
three times with TBST and incubated at room temperature for one hr with HRP-conjugated
secondary antibody (Zhongshan Biotechnology, Beijing, China). Finally, the protein bands
were visualized using enhanced chemiluminescence (ECL) detection kit (Tanon, Shanghai,
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China). Proteins were quantified by densitometry using Image J 1.44p software, and β-actin
was used as loading controls for normalization.

2.6. Estimation ROS

ROS was estimated in heat stress GCs following the protocol, previously carried out
by [28]. GCs from the treated and control groups ((NC, 40 ◦C + NC, and siSOD1 + 40 ◦C)
were trypsinized and collected 48 h after culturing to study the net intracellular ROS
production using a fluorescence microscope (Olympus, Tokyo, Japan). The GCs were
rinsed in PBS after treatment, and 10 mol/L H2DCFDA was added to each well. GCs were
washed once in 0.1% PVA/DPBS and inspected under a fluorescence microscope after
incubation for 30 min at 38 ◦C in the dark (Olympus, Tokyo, Japan).

2.7. Estimation of Apoptotic and Dead GCs

Bovine GCs were detected for apoptosis using the Annexin V-FITC kit (Beyotime
Biotechnology, China). GCs were extracted and washed three times with pre-heated PBS
after receiving the relevant treatments. Following collection, GCs were incubated with
Annexin VFITC for 20 min in the dark and propidium iodide (PI) for 2 min, followed by
flow cytometry (BD Biosciences, CA, USA). The apoptotic rate is expressed as the sum
of the percentage of early (Annexin V+/PI-) and late (Annexin V+/PI-) apoptosis cells.
Furthermore, the number of dead cells was determined under a laser-scanning confocal
microscope (TCS SP8, Leica, Germany). FlowJo software (version Win 64-10.4.0) was used
to analyze the flow cytometry data (version Win 64-10.4.0).

2.8. Analysis of Cell Cycle

The GCs cell cycle was detected using a cell cycle and apoptosis analysis kit (Beyotime,
China). From each treated group, the GCs were harvested in a 15 mL Falcon tube (Thermo
Fisher Scientific, Germany), followed by centrifugation at 750× g for 7 min and washing
twice with 1x PBS. A minimum of 1 × 106 cells was fixed in pre-chilled 70% ethanol at
4 ◦C overnight. Ethanol was then removed using centrifugation, and the GCs pellets were
washed twice with 500 µL of 1× PBS. Cellular DNA was stained with 50 µg/mL of PI and
50 µg/mL of RNase, incubated for 30 min at 37 ◦C in the dark, and instantly processed
in FACS Calibur (BD Biosciences, CA, USA). The percentage of cells in each cell division
phase (G0–G1, S, and G2–M) was estimated using data received from the FL2-A channel
using ModFit LT Version 4.1 software (http://www.vsh.com/products/mflt/index.asp
accessed on 12 November 2021).

2.9. Assessment of Mitochondrial Membrane Potential

Briefly, to examine the MMP of GCs in all treated groups, the mitochondrial membrane
potential assay kit with JC-1 (Beyotime, China) was used according to the manufacturer’s
instructions. Enzymatic digestion using trypsin was used to harvest the GCs and washed
with warm PBS. After collection, the MMP assay kit with JC-1 (Beyotime, China) was
used to stain GCs. Flow cytometry was used to count labeled cells using a fluorescence
activating cell sorter (FACS) and a Calibur flow cytometer (BD Biosciences, CA, USA). The
data was analyzed using FlowJo software (version Win 64-10.4.0).

2.10. Cell Viability Assay

The viability of bovine GCs from all treatment groups was determined using the
MTT cell proliferation and cytotoxicity test kit (njjcbio, Nanjing, China). In brief, the
detached cells were inoculated into 96-well plates, and after the indicated treatments, a
50 µL 1 ×MTT solution was added to each well and incubated for 4 h. After 4 h, the
solution was replaced with 150 µL DMSO, and the absorbance was measured at 570 nm
using ELX microplate reader (BioTek, Winooski, VT, USA).

http://www.vsh.com/products/mflt/index.asp


Vet. Sci. 2021, 8, 326 5 of 14

2.11. E2 and P4 Levels Determination

To estimate E2 and P4 levels, the cell culture media from all groups (NC, 40 ◦C + NC,
and siSOD1) were used. In addition, enzyme-linked immunosorbent (ELISA) kits for
P4 and E2 (ENZO life sciences, Germany) were used to estimate their concentrations,
according to the manufacturer’s instructions.

2.12. Statistical Analysis

All data were expressed as mean ± SEM. In each group, three biological replicates
(n = 3) of GCs were used. SPSS 16.0 and GraphPad Prism5 software were used for statis-
tical analysis (GraphPad Software Inc, SanDiego, CA). A one-way ANOVA was used to
compare the differences between the control and treatment groups, followed by a multiple
comparisons post hoc test. At p < 0.05, differences were judged statistically significant.

3. Results
3.1. Identification of GCs

A multitude of cells makes up the ovarian follicle (GCs, theca cells etc.). Since our
study focuses on bovine GCs, immunofluorescence microscopy was used to separate GCs
from the rest of the follicular cells. Propidium iodide (PI) was used to stain the GCs, or an
anti-FSHR antibody was used to incubate them. According to our findings, the GCs tested
positive for FSHR (Figure 1).
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Figure 1. Identification of ovarian GCs by immunofluorescence. (A) Propidium iodide (PI) positively stained nuclei.
(B) FSHR positive cells. (C) the merge of (A,B). More than 90% of the cells in the isolated, cultured cells were granulosa cells
depicted that the purity of GCs was above 90%. For magnification, a 100 µm scale bar was used.

3.2. Efficacy of SOD1 Transfection

SOD1 was silenced with the help of siSOD1. After successful transfection, the GCs
were separated into three groups (NC, 40 ◦C + NC, and 40 ◦C + siSOD1). SOD1 expression
was measured at both the translational and transcriptional levels in all groups. For the GCs
transfected with siSOD1, RTqPCR revealed that SOD1 mRNA expression was significantly
(p < 0.05) lower (Figure 2A). Likewise, western blot results showed a similar protein
expression depicting that SOD1 was successfully silenced with siSOD1 (Figure 2B,C).

3.3. Silencing of SOD1-Induced Intracellular ROS Accumulation under Heat Stress

The oxidation sensitive probe 6-carboxy-2′,7′-H2DCF-DA was utilized to examine the
intracellular accumulation of ROS in all groups (NC, 40 ◦C + NC, and 40 ◦C +siSOD1).
The results showed that the intracellular abundance of ROS in the 40 ◦C + NC group was
considerably (p < 0.05) higher than in the NC group. Likewise, compared with 40 ◦C + NC
group, the fluorescence of intracellular ROS production significantly (p < 0.05) increased
in 40 ◦C + siSOD1 group. Furthermore, our results demonstrated that SOD1 silencing
induced intracellular ROS production (Figure 3A–D).
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of n = 3. The bars with totally distinct lettering show a statistically significant difference (p < 0.05).
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Figure 3. Under heat stress, SOD1 regulates the intracellular buildup of ROS and the viability of GCs. NC (A) and
HS (40 ◦C + NC, 40 ◦C + siSOD1) intracellular ROS production assessed by DCF fluorescence (B,C). Analysis of relative
fluorescence emission in a quantitative manner (D). For magnification, a 100 µm scale bar was used. The cells transfected
with siRNA under HS were used for the MMT cell viability assay (E). The bars with totally distinct lettering show a
statistically significant difference (p < 0.05). Optical density (OD), Negative control (NC).

3.4. Silencing of SOD1-Altered Viability of GCs under Heat Stress

The viability of GCs was measured through MTT assay. It was documented that the
viability of GCs in the 40 ◦C + NC group was significantly (p < 0.05) lower than that of
the NC group. Similarly, a significant decline in cell viability was noted in 40 ◦C + siSOD1
group than in NC and 40 ◦C + NC groups (Figure 3E). As a result of the oxidative stress
generated by ROS production under HS, the viability of GCs was affected, and SOD1
silencing worsened the viability of GCs, demonstrating its importance in the regulation of
cell viability.
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3.5. Silencing of SOD1 Promoted Apoptosis and Cell Death in GCs under Heat Stress

The involvement of SOD1 in the regulation of GC apoptosis under HS was explained
using the Annexin VFITC kit. The flow cytometry results showed a significant increase in
the apoptotic rate in the 40 ◦C + NC group compared with that in the NC group. Similarly,
inhibiting SOD1 in GCs at 40 ◦C enhanced the apoptotic rate considerably (p < 0.05) com-
pared to 40 ◦C + NC alone (Figure 4A,B). The results of Fluorescence microscopy showed
that the number of dead cells was significantly (p < 0.05) higher when GCs were exposed to
40 ◦C + NC and 40 ◦C +siSOD1 compared to NC group (Figure 4C–F). In addition, SOD1
gene regulation also altered the mRNA and protein expression of pro-apoptotic genes
(BAX and Caspase-3) under HS. As shown in Figure 4G–I, compared with that in the NC
group, mRNA expression and protein level of BAX and Caspase-3 were significantly higher
in the 40 ◦C + NC group. Consequently, on transcriptional and translational levels, the
siSOD1 + 40 ◦C group demonstrated a substantial (p < 0.05) increase in BAX and Caspase-3
compared to the 40 ◦C + NC group. Therefore, we can postulate that SOD1 silencing
promoted HS-induced cell apoptosis by activation of BAX and Caspase-3. Our findings
depicted that SOD1 has an important role in the regulation of GCs apoptosis.
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Figure 4. Apoptosis regulated by SOD1 of GCs under heat stress. (A,B) Flow cytometric analysis of GCs cultured under
indicated treatments (40 ◦C + NC, 40 ◦C + siSOD1) and corresponding NC (38 ◦C). (C–F) Fluorescent photomicrographs
of GCs stained with Annexin V/PI FACS for indicated groups. For magnification, a 100 µm scale bar was used. Western
blotting (G,H) and RT-qPCR (I) analysis for BAX and Caspase-3 proteins expression. β-Actin and GAPDH was kept as
housekeeping genes, respectively. Values are expressed as mean ± SEM of n = 3. The bars with completely distinct lettering
denote a significant difference (p < 0.05).

3.6. Silencing of SOD1 Altered Cell Cycle Transition in GCs under Heat Stress

To check whether SOD1 is involved in the mediation of cell proliferation under the
influence of HS, flow cytometry was performed to examine the cell-cycle profile. The cell
cycle distributions were estimated at the indicated groups (40 ◦C + NC, 40 ◦C + siSOD1
and NC). Figure 5A,B demonstrated that after exposure of GCs to 40 ◦C and silencing
of SOD1 (siSOD1) significantly (p < 0.05) decreased the proportion of cells in the G0/G1
phase associated with subsequent decline in the S (DNA synthesis) phase and G2/M phase
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compared to NC group. The transcriptional and translational regulation of cell proliferation
genes (PCNA, CyclinB1, and HSP70) were used to confirm the above findings. The mRNA
and protein levels of PCNA and CyclineB1 were significantly down-regulated while HSP70
was up-regulated in 40 ◦C + NC and 40 ◦C +siSOD1 groups compared with the NC group
(Figure 5C–E). Collectively, these findings suggested that at the G0/G1 and G2/M phases
the GCs were arrested for repairing DNA damage caused by siRNA. Thus, the cell cycle
progression was regulated by SOD1 under HS.

Vet. Sci. 2021, 8, x  8 of 14 
 

 

blotting (G,H) and RT-qPCR (I) analysis for BAX and Caspase-3 proteins expression. β- Actin and GAPDH was kept as 
housekeeping genes, respectively. Values are expressed as mean  ±  SEM of n = 3. The bars with completely distinct letter-
ing denote a significant difference (p < 0.05). 

3.6. Silencing of SOD1 Altered Cell Cycle Transition in GCs under Heat Stress 
To check whether SOD1 is involved in the mediation of cell proliferation under the 

influence of HS, flow cytometry was performed to examine the cell-cycle profile. The cell 
cycle distributions were estimated at the indicated groups (40 °C + NC, 40 °C+ siSOD1 and 
NC). Figure 5A,B demonstrated that after exposure of GCs to 40 °C and silencing of SOD1 
(siSOD1) significantly (p < 0.05) decreased the proportion of cells in the G0/G1 phase as-
sociated with subsequent decline in the S (DNA synthesis) phase and G2/M phase com-
pared to NC group. The transcriptional and translational regulation of cell proliferation 
genes (PCNA, CyclinB1, and HSP70) were used to confirm the above findings. The mRNA 
and protein levels of PCNA and CyclineB1 were significantly down-regulated while HSP70 
was up-regulated in 40 °C + NC and 40 °C+siSOD1 groups compared with the NC group 
(Figure 5C–E). Collectively, these findings suggested that at the G0/G1 and G2/M phases 
the GCs were arrested for repairing DNA damage caused by siRNA. Thus, the cell cycle 
progression was regulated by SOD1 under HS. 

 
Figure 5. Cell cycle distribution regulated by SOD1 in GCs under heat stress. The changes in the cell cycle in different cell 
treatment recorded through flow cytometric profiles groups (A,B). Western blotting was used to examine the protein 
expressions of PCNA, CyclinB1, and HSP70 (C,D) and RT-qPCR (E). β-Actin and GAPDH were kept as housekeeping genes, 
respectively. Values are shown as mean ± SEM of n = 3. The bars with completely distinct lettering denote a significant 
difference (p < 0.05). 

3.7. Disruption of Mitochondrial Membrane Potential of GCs under Heat Stress Caused by 
Silencing of SOD1 

The goal of this study was to see if SOD1 intervention was linked to the control of 
the mitochondrial pathway, which is implicated in GC apoptosis under HS. Flow cytom-
etry was used to determine the MMP of GCs. We found that The MMP was significantly 
(p < 0.05) lower in the 40 °C + NC group compared to the NC group. Likewise, the MMP 
was also significantly (p < 0.05) lower in 40 °C + siSOD1 than 40 °C + NC group (Figure 
6A,B). Therefore, based on these findings, we can argue that under HS, the SOD1 has 
shown an essential role in the regulation of MMP in GCs. 

Figure 5. Cell cycle distribution regulated by SOD1 in GCs under heat stress. The changes in the cell cycle in different
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3.7. Disruption of Mitochondrial Membrane Potential of GCs under Heat Stress Caused by
Silencing of SOD1

The goal of this study was to see if SOD1 intervention was linked to the control of the
mitochondrial pathway, which is implicated in GC apoptosis under HS. Flow cytometry
was used to determine the MMP of GCs. We found that The MMP was significantly
(p < 0.05) lower in the 40 ◦C + NC group compared to the NC group. Likewise, the
MMP was also significantly (p < 0.05) lower in 40 ◦C + siSOD1 than 40 ◦C + NC group
(Figure 6A,B). Therefore, based on these findings, we can argue that under HS, the SOD1
has shown an essential role in the regulation of MMP in GCs.

3.8. Impairment of the Synthesis of P4 and E2 in GCs under Heat Stress with SOD1 Silencing

We used ELISA to estimate P4 and E2 concentrations to see how SOD1 silencing
affected hormonal shifts. Our findings established that E2 concentrations were significantly
(p < 0.05) lower in 40 ◦C + NC group than in the NC group. Likewise, compared with
40 ◦C + NC group, E2 and P4 levels were significantly lower (p < 0.05) than those in
40 ◦C + siSOD1 group. However, P4 did not show any significant difference with that in
NC and 40 ◦C + NC groups (Figure 7A,B). The transcriptional and translational expression
of steroidogenesis regulatory genes (STAR and Cyp11A1) further confirmed the above
findings. The mRNA and protein levels of STAR and Cyp11A1 were significantly down-
regulated in 40 ◦C + NC and 40 ◦C + siSOD1 groups compared to NC group (Figure 7C–E).
These results confirmed that HS impaired the concentration of P4 and E2 in GCs while
SOD1 plays a key role in regulating these hormones.
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Figure 7. Regulation of P4 and E2 synthesis in GCs under heat stress by SOD1. The P4 and E2 concentrations in the culture
medium were released by the GCs in different treated groups (40 ◦C + NC and 40 ◦C + siSOD1) and the corresponding
NC group (A,B). The STAR and Cyp11A1 protein expressions were analyzed by western blotting (C,D) and RT-qPCR (E).
β-Actin and GAPDH were kept as housekeeping genes, respectively. Values are shown as mean ± SEM of n = 3. The bars
with completely distinct lettering denote a significant difference (p < 0.05).

4. Discussion

In bovine, the high environmental temperature can elevate the body temperature up to
41 ◦C [28]. The increase in internal body temperature related to short and long-term HS is
responsible for the impaired reproductive performance of dairy cattle [31]. The deleterious
effect of HS involves alterations in follicle development, impaired steroidogenesis [32],
irregular follicular dynamics that affect GC function [33], disruptive oocyte maturation,
fertilization, and preimplantation embryonic development [34,35]. Heat-induced is pro-
teotoxic and results in protein denaturation that may become cytotoxic by boosting ROS
production [36]. Thus, the apoptosis caused by heat stress in GCs is one of the most
compromising factors affecting dairy cow fertility.

It has been well established that SOD1 enzyme counteracts oxidative stress by convert-
ing superoxide anion radicals to O2 and H2O2 [25]. The present study unravels and sheds
light on the noxious effects of HS on GCs viability and functions, depicting that SOD1
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plays a vital protective role against oxidative damage and apoptosis. Despite evidence
for a regulation of SOD1 under HS triggered by ROS accumulation in cells [31,37], its
functional significance in heat-stressed GCs had not been investigated. In the current
study, we revealed a key role of SOD1 in regulating apoptosis and proliferation of GCs
under HS (40 ◦C). In general, our findings verified that HS could trigger the expression of
SOD1, while silencing or over-expression of SOD1 significantly regulated the production
of intracellular ROS, cell proliferation, apoptosis, the MMP and steroidogenesis in GCs.
These findings infer that SOD1 this gene is involved in oxidative stress in bovine GCs with
a mitigation of HS-induced anomalies (Figure 8).
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x-protein (BAX), Proliferating cell nuclear antigen (PCNA), Steroidogenic acute regulatory protein
(STAR), and Cytochrome, P450, family 11, Subfamily A, polypeptide 1 (Cyp11A1).

Our previous study showed that HS (40 ◦C) increases the intracellular ROS abundance,
apoptosis, confirmed by the up-regulation of pro-apoptotic genes, i.e., BAX and Caspase-
3 [28]. Moreover, a study had documented that oxidative stress due to the increased
intracellular ROS production plays a critical role in HS-induced apoptosis [38]. Consistently,
the impairment of MMP function under HS has been found to be involved in mitochondrial
pathway which leads to GCs apoptosis, as indicated by increases in both cleaved Caspase-3
expression and the Bax/Bcl-2 ratio [39–41]. The mitochondria release Cytochrome c the
cytosol when the mitochondrial function is altered. The key apoptotic program effector
(Caspase-3) is regulated by the released cytochrome c, promoting the condensation of
chromatin and fragmentation of DNA [42,43]. Interestingly, we found that the silencing of
SOD1 under HS drastically increased ROS production and apoptosis in GCs. Likewise, the
altered MMP and viability in the heat-stressed SOD1 silencing group played an important
role in regulating survival and apoptosis in GCs. These findings were further manifested
by the up-regulation of BAX and Caspase-3 genes in the heat-stressed SOD1 silencing
group. Here, we show that silencing of SOD1 promoted HS-mediated oxidative stress and
apoptosis in GCs.

High ambient temperature is considered to have adverse effects on reproductive
processes by inhibiting GCs proliferation and ovarian steroidogenesis [44–48]. In swine
GCs, PCNA and CyclinB1 are considered key proteins for cell proliferation [49,50]. PCNA
has been considered a biological indicator for cell proliferation and is mainly regulated
during cell proliferation and mainly regulated during the S phase [51]. In addition, CyclinB1,
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required for the transition of cells from G2 to M cell cycle phase, is mainly regulated during
the G2/M phase of the cell cycle [52]. Biomarkers for proliferation and cell cycle such as
PCNA and CyclinB1 were downregulated in swine GCs under in vitro HS [47]. Our results
revealed that the silencing of SOD1 under HS to arrest in the G1 cell cycle phase. SOD1
silencing also inhibited the proliferation of GCs, decreased the number of cells in the S
phase. These results were further verified by the downregulation of PCNA and CyclinB1
in the heat-stressed SOD1 silencing group both on transcriptional and translational levels.
These results suggested that SOD1 is a critical player under HS in controlling the cellular
progression in GCs.

Moreover, the regulation of genes associated with hormone synthesis (E2 and P4),
such as STAR and Cyp11A1 was negatively affected by HS [28]. Positive regulation of
Cyp11A1 in the ovarian follicle stimulates the biosynthesis of E2 [53]. Furthermore, P4
being a steroid hormone, plays a fundamental role in bovine estrous cyclicity, and its
production is associated with the positive regulation of STAR and Cyp11A1 [54,55]. Some
studies reported an over-secretion of ovarian hormones in porcine ovarian GCs under high
temperatures [56]. In addition, it was suggested that E2 boost GCs viability by inhibiting
apoptosis [21]. This is in line with the results of our previous study, which showed that
HS could significantly decrease the levels of P4 and E2 in the GC culture media as well
as down-regulated the expression of STAR and Cyp11A1 [28]. In the current study, we
found that the biosynthesis of P4 and E2 in GCs was impaired in the heat-stressed SOD1
silencing group by down-regulating the STAR and Cyp11A1 gene at transcriptional and
translational levels. Thus, we can postulate that under HS, SOD1 silencing can further
aggravate apoptosis by altering the secretion of E2 and P4 in GCs. Our research can further
be extended to understand the mechanism of how SOD1 regulation can influence bovine
oocyte and embryo development modulation under HS.

5. Conclusions

Altogether we concluded that HS induces apoptosis, alters cell proliferation, disrupts
mitochondrial membrane potential, and impairs E2 and P4 synthesis in GCs by increasing
intracellular ROS accumulation. Interestingly, the SOD1 is widely expressed in bovine
ovaries, and it was found to alleviate the apoptosis of GCs triggered by HS. In current study
we proved that the silencing of SOD1 under HS further deteriorated the GCs functions by
promoting apoptosis and ROS generation and suppressed the proliferation of cells. This
was further verified by regulating steroidogenic, associative apoptotic, and cell cycle genes
(BAX, Caspase-3, STAR, Cyp11A1, HSP70, PCNA, and CyclinB1). These results identify a
novel role of SOD1 in the modulation of bovine ovarian GCs apoptosis, which provides a
target for improving the fertility of heat-stressed dairy cows in summer.
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