
Frontiers in Endocrinology | www.frontiersi

Edited by:
Carlos Dieguez,

University of Santiago de Compostela,
Spain

Reviewed by:
Ismael González-Garcı́a,
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The protein kinase with PAS domains (PASK) is a nutrient and energy sensor located in the
cells of multiple organs. Many of the recent findings for understanding PASK functions in
mammals have been reported in studies involving PASK-deficient mice. This minireview
summarizes the PASK role in the control of fasting and feeding responses, focusing
especially on the hypothalamus and liver. In 2013, PASK was identified in the
hypothalamic areas involved in feeding behavior, and its expression was regulated
under fasting/refeeding conditions. Furthermore, it plays a role in coordinating the
activation/inactivation of the hypothalamic energy sensors AMPK and mTOR/S6K1
pathways in response to fasting. On the other hand, PASK deficiency prevents the
development of obesity and non-alcoholic fatty liver in mice fed with a high-fat diet. This
protection is explained by the re-establishment of several high-fat diet metabolic
alterations produced in the expression of hepatic transcription factors and key enzymes
that control the main metabolic pathways involved in maintaining metabolic homeostasis
in fasting/feeding responses. This minireview covers the effects of PASK inactivation in the
expression of certain transcription factors and target enzymes in several metabolic
pathways under situations such as fasting and feeding with either a standard or a high-
fat diet.

Keywords: food intake, metabolic sensors, mTOR/S6K, Per-Arnt-Sim kinase, obesity, diabetes, glucose, high-
fat diet
INTRODUCTION

Nutrient sensors are molecules that detect nutritional changes and coordinate adaptation responses
to them in order to maintain cellular metabolic and energy homeostasis. The Per-Arnt-Sim (PAS)
kinase (PASK) protein, also termed PASKIN, is a metabolic sensor that has been preserved during
the evolution from yeast to human. PASK has been described as a regulator of several metabolic and
energy processes (1–3). Our main understanding of PASK functions in mammals began with the
inactivation of PASK in mice in 2003 (4). Initial studies showed that PASK-deficient mice had no
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developmental, growth or reproductive defects (4). The first and
most revealing data on the importance of PASK were
forthcoming when PASK-deficient mice were subjected to a
high-fat diet (HFD) (5). This led to the study of how PASK
deficiency protects against the development of obesity brought
on by HFDs, being partly due to a high metabolic rate in skeletal
muscle. In addition, the role of PASK in insulin and glucagon
secretion has already been described (6, 7). This review contains
the most recent evidence and advances made involving the
mechanisms that allow PASK to play a decisive role in the
control of multiple cellular functions particularly related to
cellular and organ response to fasting/feeding adaptation.
PASK EXPRESSION AND FUNCTION IN
HYPOTHALAMIC AREAS

In 2013, PASK was identified in the hypothalamic areas involved
in feeding behavior, and its expression was regulated under
fasting/refeeding conditions (8, 9). Both the ventromedial
hypothalamus (VMH) and the lateral hypothalamus (LH)
areas were referred to as the centers of satiety and hunger,
respectively (10). They play opposite functions in regulating
food intake. The PASK expression is regulated in vivo in
response to fasting/refeeding conditions. This effect is clearer
in the LH: PASK-coding mRNAs are reduced by fasting and
increased by refeeding conditions (9). The effect observed after
refeeding in vivo is the opposite to the glucose effect found in the
VMH and LH in hypothalamic organotypic cultures and
neuroblastoma N2A cells. However, the effect is similar to
those produced in the presence of both glucose and the
anorexigenic glucagon-like peptide-1 (GLP-1) - an incretin
release from intestinal L-cells in response to feeding (11–13).
This suggests that the changes observed in PASK expression in
response to fasting/refeeding in vivo are the sum of the effects of
glucose and hormonal levels.

Hypothalamic metabolic sensors play an important role in the
control of feeding and energy homeostasis. They respond to
changes in nutrients and to orexigenic peptides such as ghrelin
(14, 15), or anorexigenic ones such as leptin (14, 16), and their
activation/inhibition regulates hunger or satiety responses, and
therefore food intake. For example, the hypothalamic AMP-
activated protein kinase (AMPK) is activated by fasting and
inhibited by refeeding (17–19). Furthermore, most orexigenic
signals, such as ghrelin (14, 20, 21), adiponectin (22) and
cannabinoids (23) activate AMPK. By contrast, AMPK is
inhibited by anorexigenic signals, such as leptin (14, 17),
GLP-1 (24), estradiol (25, 26), and insulin (17, 27). Other
hypothalamic sensors involved in the control of feeding and
the regulation of energy balance are the pathway of the
mammalian target of rapamycin (mTOR) and S6 kinase (S6K).
This pathway is activated by glucose and amino acids, inhibiting
food intake (16, 19, 28).

The activities of both pathways (AMPK and mTOR/S6K) are
reciprocally coordinated and inversely regulated (i.e., when
AMPK is activated, the mTOR/S6K pathway stops, and vice
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versa), ensuring the precise adjustment of intake. AMPK thereby
phosphorylates the tuberous sclerosis complex 2 (TSC2),
inducing mTORC1 inhibition mediated by the TSC1-TSC2
complex (29). AMPK also phosphorylates the rapamycin-
sensitive adaptor protein of mTOR (RAPTOR) in mTORC1,
prompting this complex’s downregulation (30). Likewise, S6K1
phosphorylates and inhibits AMPKa2 in the hypothalamus
during the activation of the mTOR/S6K1 pathway (31)
(Figure 1A).

PASK plays a role in coordinating the regulation in response
to the activation/inactivation of the hypothalamic AMPK and
mTOR/S6K1 pathways. PASK-deficiency impairs the
coordination of the AMPK and mTOR/S6K1 pathways, which
means both pathways are activated at the same time under
fasting and feeding conditions (9). The inhibition of mTOR/
S6K through AMPK activation requires the coordinated
phosphorylation of TSC2 by glycogen synthase kinase 3b
(GSK3b) (29), which is a PASK substrate in vitro (Figure 1A).
PASK deficiency could therefore alter hypothalamic GSK3b
activity (32).

The relationship between PASK deficiency and the impaired
response of the AMPK and mTOR/S6K pathways has been
confirmed in PASK-silenced N2A cells (8). PASK knockdown
N2A cells under low glucose concentrations have higher ATP
content, a lack of stimulation of AMPK, and enhanced activation
of S6K. Schematic diagrams are provided of the activation degree
of the AMPK and mTOR/S6K pathways under fasting and
refeeding conditions in control wild-type (WT) mice [Figure
1B (a)] and PASK-deficient mice [Figure 1B (b)] and in PASK-
silenced cells [Figure 1B (d)] or control N2A cells [Figure 1B
(c)] under low or high glucose concentrations.

The deregulation of these signaling pathways could induce
eating disorders that may lead to other pathologies such as
obesity and type 2 diabetes. The hypothalamic PASK function
could be decisive for maintaining nutritional and energy
homeostasis. Modified responses of hypothalamic AMPK
activity have been previously correlated to obesity and type 2
diabetes (33). The use of a specific AMPKa2-knockout in both
neuronal populations, expressing orexigenic and anorexigenic
peptides with opposite effects on food intake, modifies feeding
behavior and energy and body weight homeostasis (34, 35). The
AMPKa2-knockout in neuronal populations expressing
orexigenic peptides therefore develops an age-dependent lean
phenotype (34), while the AMPKa2-knockout in the neuronal
population expressing anorexigenic peptides leads to obesity
(34). In turn, the AMPKb1-knockout mice recorded reduced
food intake and total body weight (36) while AMPKb2 deletion
develops hyperinsulinemia and glucose intolerance under an
HFD (37).

The mTOR/S6K hypothalamic pathway has also been related
to orexigenic or anorexigenic responses (16, 28, 38–40). TSC1-
deficient mice in the neuronal population expressing
anorexigenic peptides, which promote increased mTOR
activation, have developed an orexigenic response (41).
However, S6K1-deficient mice are protected against diet-
induced obesity (40).
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PASK-deficient mice downregulate the expression of mRNAs
encoding AMPKa2 and also modulate the GLP-1 effects in the
hypothalamus (9); this suggests that both effects may be
regulating thermogenesis in brown adipose tissue (BAT) and
the browning of white fat, as both processes are mediated by the
inhibition of hypothalamic AMPK (42, 43).

Peripheral and brain glucoregulatory systems cooperate to
maintain glucose homeostasis and diabetes (44). In addition to
acting in the hypothalamic functions, PASK also has key
Frontiers in Endocrinology | www.frontiersin.org 3
functions in the peripheral tissues. For example, diabetes and
PASK have been linked, as a human mutation of the PASK gene
has been correlated to the maturity-onset diabetes of the young
(MODY). This mutation increases kinase activity and decreases
glucose-stimulated insulin secretion by the pancreas (45). In
addition, decreased PASK expression in pancreatic islets has
been reported in human type 2 diabetics (6). The PASK function
in peripheral tissues could be crucial for maintaining metabolic
and energy homeostasis.
A

B

FIGURE 1 | (A) Per-Arnt-Sim kinase (PASK) signaling interaction with other metabolic pathways. PASK substrates and selected physiological effects due to
activation or inhibition (direct: solid lines; indirect: dashed lines) of certain signaling pathways. (B) PASK function in the activation of AMPK and S6K in response to
glucose availability. Panels (a) and (b): In vivo AMPK and S6K activities under fasting or refeeding conditions in the LH in WT mice and PASK-deficient mice,
respectively. Panels (c) and (d): Response of AMPK and S6K activities to low or high glucose in neuroblastoma N2A cells or PASK-silenced N2A cells.
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PASK AND THE NUTRITIONAL
ADAPTATION OF THE LIVER

The first steps in understanding the role of PASK in liver
metabolism involved analyzing the effect of an HFD in PASK-
deficient mice, which recorded a reduced accumulation of liver
triglyceride (5). However, these analyses also reported that this effect
did not depend on changes in AMPK and S6K activities (5). The
excessive accumulation of triglycerides in the liver in obesity has
been related to the main regulator of lipogenesis, the sterol
regulatory element binding protein (SREBP1c); a transcription
factor that stimulates the expression of the enzymes involved in
fatty acids and triglyceride synthesis (46, 47). PASK promotes the
proteolytic maturation of SREBP1c (48); PASK-deficiency decreases
the expression of the hepatic target genes of SREBP1c explaining the
lower accumulation of triglyceride previously described (48).

An important finding in PASK’s role in controlling obesity is
that its deficiency modifies the physiological response to fasting and
refeeding (49, 50). One of the main hepatic functions is maintaining
metabolic homeostasis during the adaptation to intermittent
situations of food supply and fasting. This means that during
fasting the liver plays a crucial role in maintaining blood glucose
levels, initially through glycogenolysis, and subsequently through
gluconeogenesis, while fatty acid oxidation provides part of the
necessary energy. In the feeding condition, glucokinase facilitates
glucose metabolism and the accumulation of its excess through the
synthesis and storage of glycogen. In parallel, glycolytic pathway
products are used to synthesize fatty acids and triglycerides, with
both processes reflecting the liver’s role in quickly controlling
glucose circulating levels after food intake. Although initial
studies did not find a relationship between PASK and AMPK or
S6K activity, subsequent studies have indicated that PASK
deficiency alters the long fasting/feeding responses of AMPK and
S6K in the liver. AMPK activity is higher under refeeding
conditions than under fasting, and the activation level of S6K in
this condition is significantly higher than in WT mice (9). The
differences observed in the activation/inactivation status of both
enzymes measured by phosphorylation degree might depend on the
sample processing method in both studies, as we have previously
reported the importance of inactivating phosphatases immediately
to avoid variations over time (19).

Our studies indicate that the role of PASK in hepatic
metabolism is especially important in the adaptation to fasting/
feeding states, where PASK deficiency influences the expression
of several transcription factors and key enzymes in different
metabolic pathways (49–52). Figure 2A therefore provides a
summary of the more salient effects of PASK deficiency at
transcriptional level observed in baseline conditions (non-
fasted) and under fasting.

It is surprising how the inactivation of the kinase function in
PASK modifies the expression of a significant number of
transcription factors and key proteins of the main metabolic
pathways responsible for maintaining homeostasis under fasting
and feeding conditions.

PASK takes part in the complex regulatory mechanisms that
facilitate the response to nutrient changes in the liver modulating
Frontiers in Endocrinology | www.frontiersin.org 4
the expression of several transcription factors and modifying the
activities and stability of several enzymes involved in
gluconeogenesis and mitochondrial fatty acid transport during
fasting. For instance PASK deficiency modified the protein
kinase B (AKT) activity, phosphoenolpyruvate carboxykinase
(PEPCK) protein stability, and Carnitine Palmitoyltransferase
1A (CPT1A) gene expression altering its fasting response (50).
Under feeding conditions in PASK-deficient mice, glucokinase
activity is reduced together with a decrease in hepatic lipogenesis
(50). Additionally, glycogen metabolism could also be modified
because glycogen synthase is a PASK substrate (53). However,
PASK deficiency does not cause detectable changes in the
maintenance of blood glucose homeostasis during prolonged
fasting periods (9).

PASK also plays an important role in conditions that generate
some type of stress, such as fasting, which generate oxidative
stress. In this situation, PASK regulates many mitochondrial
functions in liver, from biogenesis to mitochondrial dynamics,
playing a role in maintaining mitochondrial quality and
antioxidant response mechanisms. Figure 2A shows the
changes observed at transcriptional level of genes involved in
hepatic oxidative stress metabolism and mitochondrial dynamics
in PASK-deficient mice under non-fasting and fasting states (51).
Likewise, PASK deficiency under fasting conditions induces the
overexpression of antioxidant enzymes in liver, such as
Glutamate-cysteine ligase (GCLm), Heme Oxygenase 1 (HO1),
and proteins that modulate mitochondrial dynamics and
mitophagy as Mitofusin 1/2 (MFN1/2), Optic atrophy 1
(OPA1), Mitochondrial receptor protein, Fission 1 (FIS1),
BCL2 and adenovirus E1B 19-kDa-interacting protein (BNIP3)
and Phosphatase and Tensin homolog (PTEN)-induced kinase 1
(PINK1) (51). The changes observed maintain ROS at steady
levels and improve the regenerative state.

Another one of PASK’s main functions in the liver is to help
avoid many of the deleterious effects produced by HFDs in liver
metabolism to maintain metabolic homeostasis. Figure 2B
summarizes some of the differences of expression of the
transcription factors and enzymes that regulate the main
metabolic pathways in PASK-deficient mice. The changes in
those genes activated by feeding are shown in Figure 2B, left
panel, and those activated during fasting in Figure 2B,
right panel.

All the differences due to PASK deficiency lead to an
improvement in glucose tolerance and insulin sensitivity,
preventing weight gain and alterations in triglyceride and
blood cholesterol values (49). The effects of pharmacologic
PASK inhibition also confirm its role restoring insulin
sensitivity and reducing the hepatic fat content and fibrosis
associated with HFDs (54).

Although organisms are able to store calories and then
consume them when they are needed, there are diets
(e.g., HFDs) that induce disorders, altering all established
regulatory mechanisms and causing obesity, insulin resistance,
dyslipidemias, and alterations of caloric homeostasis. PASK’s
roles at hepatic and central level contribute to caloric
homeostasis. PASK deficiency does not cause detectable
December 2020 | Volume 11 | Article 594053
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changes in the maintenance of blood glucose homeostasis at
basal state during fasting or refeeding periods (9). Nevertheless, it
is interesting to note that improved glucose tolerance and insulin
sensitivity have been observed in HFD-fed PASK-deficient
mice (49).
PASK EPIGENETICS AND
DIFFERENTIATION

PASK participates in the differentiation process of myogenic
progenitor cells, embryonic stem cells, and adipogenic
progenitor cells. PASK’s role is mediated by its substrate Wdr5,
as described recently, which is part of the complexes that catalyze
the methylation of the lysine 4 of histone H3. The modification of
Frontiers in Endocrinology | www.frontiersin.org 5
histone tails alters the chromatin structure and the accessibility of
transcriptional machinery. This epigenetic modification thus
regulates gene expression by promoting the repression/activation
of gene promoters. PASK phosphorylates Wdr5, activating the
trimethylation of the lysine 4 of histone H3 (H3K4me3) and the
subsequent expression of myogenin, prompting muscle
differentiation (55) (Figure 1A). PASK has been found to
associate with the mammalian H3K4 MLL2 methyltransferase
complex (56). PASK’s ability to regulate epigenetic modifications
may explain how this protein kinase regulates the expression of a
large number of genes. This PASK function also involves an
interrelation with the other metabolic sensors, requiring the
previous phosphorylation of PASK by the mTORC1 complex to
initiate the initial stages of myogenesis, and the final stages of
myogenesis require mTORC1-S6K signaling (57).
A

B

FIGURE 2 | (A) Regulation of hepatic metabolic gene expression (mRNA) by Per-Arnt-Sim kinase (PASK) deficiency. Expression of genes (mRNA levels) that
were upregulated (green) or downregulated (red) in PASK-deficient mice under fasting or non-fasting status. Grey represents non-significant variations. (B)
Regulation of hepatic metabolic gene expression (mRNA) by a high-fat diet (HFD) in wild-type (WT) or PASK-deficient mice. Expression of transcription factors
and enzymes that are usually upregulated by feeding (left panel) or by fasting (right panel). The bars represent upregulation (green) or downregulation (red) of
mRNA levels under an HFD compared to a standard diet. Solid bars are data from WT mice. Dashed bars are data from PASK-deficient mice. Gray represents
non-significant variations.
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CONCLUSIONS

PASK is a nutrient sensor whose expression responds to fasting/
feeding in at least regulatory hypothalamic areas and the liver.
Changes in PASK expression help the body to adapt to periods of
fasting/feeding. Hypothalamic PASK contributes to the control of
feeding and energy homeostasis. Hepatic PASK might mediate
metabolic and caloric homeostasis during fasting/feeding cycles
through the control of the expression of several transcription factors
and key enzymes in the metabolic pathways activated or inhibited by
nutritional changes.PASK’s role in epigenetic regulationmay facilitate
its ability to modify the expression of transcription factors and target
enzymes in the main metabolic pathways: glycolysis, lipogenesis, and
gluconeogenesis, which help the whole organism to adjust to periods
of fasting/feeding for maintaining metabolic and caloric homeostasis.
Frontiers in Endocrinology | www.frontiersin.org 6
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