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Abstract: Poly(dimethylosiloxane) (PDMS) cross-linked by metal-ligand coordination has a potential
functionality for electronic devices applications. In this work, the molecular dynamics of bipyridine
(bpy)–PDMS-MeCl2 (Me: Mn2+, Fe2+, Ni2+, and Zn2+) are investigated by means of broadband
dielectric spectroscopy and supported by differential scanning calorimetry and density functional
theory calculations. The study of molecular motions covered a broad range of temperatures and
frequencies and was performed for the first time for metal-ligand cross-linked PDMS. It was found
that the incorporation of bpy moieties into PDMS chain prevents its crystallization. The dielectric
permittivity of studied organometallic systems was elevated and almost two times higher (ε′ ~4
at 1 MHz) than in neat PDMS. BpyPDMS-MeCl2 complexes exhibit slightly higher glass transition
temperature and fragility as compared to a neat PDMS. Two segmental type relaxations (α and αac)
were observed in dielectric studies, and their origin was discussed in relation to the molecular
structure of investigated complexes. The αac relaxation was observed for the first time in amorphous
metal-ligand complexes. It originates from the lower mobility of PDMS polymer chains, which are
immobilized by metal-ligand coordination centers via bipyridine moieties.

Keywords: PDMS metal-ligand complexes; molecular dynamics; broadband dielectric spectroscopy;
glass transition; fragility index; constrained amorphous phase

1. Introduction

Nowadays, flexible organic electronics hold a great potential in “next generation” applications,
such as foldaway displays [1,2], wearable printable electronics [3–5], advanced biomedical
sensors [3,6,7], communication technology [8,9], and virtual reality devices. Its unique combination of
properties, such as flexibility, light weight, potential biodegradability, elasticity, and ductility with a
possibility of production by means of cheap, solution-based techniques like spin-coating and printing,
generated the tremendous attention of scientist and engineer communities [1–10].

Currently, the fast-growing market of organic electronics requires constant development of
new elastomeric materials with an elevated value of dielectric permittivity (ε′) [11]. Chemically or
physically cross-linked polymers, which possess a low value of glass transition temperature (Tg) and
reversible deformation [12] belong to this type of materials. One of the most popular elastomers
commonly used in this area is cross-linked poly(dimethylosiloxane) (PDMS). Moreover, PDMS is
characterized by the lowest Tg ~153 K among polymers, is not expensive and susceptible to chemical
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modification [13]. Numerous strategies of increasing ε′ of PDMS have been reported. Ouyang et al. [14]
proposed the addition of inorganic nanoparticles with high ε′ into the PDMS matrix. A nanocomposite
with optimized electro-mechanical properties (ε′ ~4 at 100 Hz) was obtained by adding 5 wt% TiO2

nanoparticles. Similar methodology was described by Bele et al. [15], where siloxane composites
based on polydimethylsiloxane-α,ω-diols with different chain lengths as matrices and BaTiO3 particles
(1, 2, and 5 wt%) as filler were prepared and crosslinked to obtain electroactive elastomeric composite
films. The maximum dielectric permittivity value was 4.41 at 10 Hz, for the filler content of 5 wt%.
The described approach efficiently raises the value of ε′, but at the same time, leads to lower stretchability
and higher roughness of the material [15]. Dünki et al. [11] described a series of novel polysiloxanes
obtained by introducing nitrile pendant polar groups. The dielectric properties of these materials
can be fine-tuned using different proportions of polar nitrile groups, because of their large dipole
moment. Due to high dielectric permittivity (up to 18), such polymers are great candidates for dielectric
elastomer actuators and flexible electronics.

Currently, very promising organometallic elastomers, cross-linked via noncovalent metal-ligand
interactions, are widely explored [16–18]. The significant advantage of these materials is the additional
polarizability of the metal–ligand bond, which can potentially increase the dielectric permittivity of
PDMS. For the flexible electronic devices, it means a reduction in operating voltage and decreased
power consumption. Oh et al. [18] reported imidazole modified PDMS cross-linked by zinc-ligand
coordination. High ε′ (8.30 at 1 MHz) was explained by the dipolar nature of the coordination bond.
Recently, Bao et al. [16] introduced Fe(III)-2,6-pyridinedicarboxamide coordination complex into a
linear PDMS matrix. The synthesized material possesses the ability to restore a high dielectric strength
after recovery from mechanical damage. Later on [17], they described a dielectric elastomer obtained
by the incorporation of metal (Fe2+ and Zn2+)−ligand (bipyridine-5,5-dicarboxylic amide) coordination
as cross-linking sites in PDMS. Such materials exhibited increased dielectric permittivity up to 3.5 in
comparison to non-modified PDMS (ε′ ~2.2).

The use of PDMS cross-linked via noncovalent metal-ligand interactions in advanced technologies,
especially in organic electronics, requires a good understanding of the impact of the material structure
on its properties. There are only few physical methods, which can provide information about the
molecular motions in polymeric materials. Broadband dielectric spectroscopy (BDS) is an excellent
tool, which allows a detection of the relaxation processes in a broad temperature and frequency range.
A careful analysis of the obtained dielectric spectra can provide information about relaxation processes
(their dielectric strength and characteristic relaxation times) in investigated materials [19].

In the case of neat PDMS, there are numerous studies focused on the investigation of its molecular
dynamics [20–22]. Kirst et al. [20] employed BDS to study linear PDMS of various molecular weights.
They observed that the α-relaxation shifts towards lower temperatures with decreasing molecular
weight, which is in a good accordance with the Fox–Flory model, whereas the relaxation time distribution
was found to be independent of length for the linear PDMS chains. They also described an additional
slower and broader αac relaxation process, which was assigned to the relaxation of the amorphous
fraction of PDMS in a close surrounding of crystalline lamellas [20]. Jancelewicz et al. [22] reported
that chemical modification by the grafting of alkyl groups into PDMS chain prevents the crystallization
process. They also investigated the molecular dynamics of linear PDMS and alkyl-modified PDMS
melts, where it was found that segmental dynamics connected with Tg changed linearly in relation to
the modifier content increase.

As described above, molecular relaxations of materials depend on many factors—on the one hand,
on the chemical composition and structure of the studied systems, which can be controlled by synthesis
and processing methods and, on the other hand, on the type and amount of additives, above all, on the
specific interactions between different moieties. In the case of functional materials with a complex
structure, the key aspect is to define and correctly assign the molecular relaxations and transitions
with regard to chemical composition, as well as describe their influence on the operational parameters.
According to our best knowledge, only a few studies have been reported for PDMS-based complex
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materials, and they have concerned an examination of viscoelastic properties (complex modulus),
done by dynamic mechanical spectroscopy [23,24].

In the present study, we focused on the dielectric properties and analysis of the molecular
dynamics of series PDMS cross-linked by different metal-ligand coordination. BDS, differential
scanning calorimetry (DSC), and density functional theory (DFT) calculations have been implemented
to understand the relationship between molecular structure and dielectric properties of investigated
materials for the first time.

2. Materials and Methods

The methodology for the synthesis of 2,2′-bipyridine-terminated poly(dimethylsiloxane) from
2,2′-bipyridine-4,4′-dicarboxylic acid 4,4′-dimethyl-2,2′-bipyridine (bpy) and aminopropyl terminated
poly(dimethylsiloxane) is illustrated in Figure 1. A recently-reported synthesis route [25] was used.
Its modification, described in detail below, included the use of a different ligand moiety (derived from
2,2′-bipyridine-4,4′-dicarboxylic acid) and optimized purification process.
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Figure 1. Synthesis scheme and molecular structure of the bpyPDMS-Me(II) system.

Aminopropyl terminated poly(dimethylsiloxane), referred to later as PDMS (Mn = 3350 g/mol,
Gelest Inc.) was used for the amide condensation reaction. The reaction was held under nitrogen
atmosphere. To the cooled (273 K) mixture of 2,2′-bipyridine-4,4′-dicarboxylic acid (0.100 g, 1.2 eq.),
4-dimethylaminopyridine (0.007 g, 0.2 eq.) dissolved in dry methylene chloride (DCM, 30 mL) and
N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDCI, 0.170 g, 2.5 eq.) dissolved
in DCM (20 mL) was added. After 30 min of stirring at 273 K, PDMS (1.07 mL, 1 eq.) dissolved
in DCM (30 mL) was added dropwise and stirred for 30 min at 273 K, and then for 15 h at room
temperature (~293 K). The resulting solution was diluted with DCM (100 mL) and washed twice
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with 0.5 M NaOHaq (50 mL), to remove unreacted 2,2′-bipyridine-4,4′-dicarboxylic acid, and with
0.5 M HClaq (50 mL), to remove side products of EDCI. The organic phase was washed with saturated
NaHCO3aq (50 mL) and saturated NaClaq (50 mL). Next, the organic phase was concentrated under
reduced pressure. The resulting polymer was dissolved in a minimal amount of DCM (~0.5 mL) and
precipitated upon addition of methanol (2 mL). Yield: 55% (0.6 g, purity ~90%). 1H NMR (250 MHz,
CDCl3, δ/ppm): 8.81 (d, J = 5.2, 2H), 8.66 (bs, 2H), 7.82–7.78 (m, 2H), 6.52 (bs, NH, 2H), 3.53–3.45 (m, 4H),
1.75–1.62 (m, 4H), 0.67–0.56 (m, 4H), 0.07 (bs, 500H). NMR and FTIR spectra of PDMS and obtained
product of synthesis (bpyPDMS) are presented in Figures S1–S4 (Supporting Information).

In order to obtain BpyPDMS-MeCl2, 0.1 g (2.8 × 10−5 M) bpyPDMS was dissolved in 10 mL of
toluene and left overnight. Then, 30 µL (9.3 × 10−6 M) aliquot of methanol solution containing MeCl2
salt (Me: Mn2+, Fe2+, Ni2+, and Zn2+, all received from Tokyo Chemical Industry) was subsequently
added to the bpyPDMS solution, to obtain PDMS cross-linking by metal-ligand coordination with
1:3 metal:ligand coordination stoichiometry [25].

2.1. Density Functional Theory Calculations

Density functional theory (DFT) calculations for [Me(bpy)3]2+ (Me: Mn2+, Fe2+, Ni2+, Zn2+) were
performed using the Gaussian09 program [26]. B3LYP correlation-exchange potential was used for the
calculations. It is a hybrid potential containing Lee-Yang-Parr correlation energy functional [27] and
Becke’s three-parameter hybrid functional [27]. The 6-31G (d,p) valence double-zeta polarized basis
set [28,29] was used to perform geometry optimization. In addition, ECP LanL2DZ pseudopotential [30]
was used for transition metal atoms. The natural bonding orbitals (NBO) analysis [31,32] was used to
obtain more accurate partial charges.

2.2. Differential Scanning Calorimetry (DSC)

DSC thermograms were recorded with the DSC 3 instrument from Mettler Toledo. Samples
were heated at a rate of 10 K/min with a 2 mL/min nitrogen gas purge in standard, sealed aluminum
crucibles. Measurements were performed in a temperature range from 133 to 373 K, and results of the
second heating run were analyzed. The temperature and heat flow were calibrated using indium and
zinc melting point standards. Values of Tg were defined as midpoints of respective glass transition
step determined by means of STARe Evaluation Software.

2.3. Broadband Dielectric Spectroscopy (BDS)

BDS measurements were performed using a Novocontrol® GmbH Concept 80 Broadband Dielectric
Spectrometer. Measurements were performed in a frequency range from 10−1 to 106 Hz in the
temperature regimes during heating trace 143–373 K. The temperature was controlled using a
Novocontrol® Quatro Cryosystem nitrogen cryostat, with a stability better than 0.1◦. The analysis of
all experimental dielectric data was done using Novocontrol WinFit software. For all measurements of
high quality Novocontrol interdigitated electrodes with diameter 15 mm, electrode basic structure size
75 µm, and loss factor tan(δ) ~0.001 were used.

3. Results and Discussion

3.1. Density Functional Theory Calculations

For the sake of simplicity, the DFT calculations were performed for a single metal-ligand
complex of each type. All optimized complexes had octahedron-like geometry (Figure 2, Figure S5
(Supporting Information)).
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Figure 2. Geometry of optimized Me-bpy coordination complex on the example of bpyPDMS-NiCl2.

The total spin in the ground state and the average geometry parameters for each complex used in
the calculations are shown in Table 1. Ground-state spins of the complexes were determined based on
literature data [33,34]. The values of standard deviations were used to determine the irregularities of
the molecule’s geometry Table 2. The detailed geometry-optimized structure of Me-bpy complexes is
listed in Table S1 (Supporting Information).

Table 1. The total spins of the complexes in the ground state [33,34].

Complex Cationic Metal Electronic Structure Ground State (S)

[Fe(bpy)3]2+ [Ar]4s03d6 0
[Ni(bpy)3]2+ [Ar]4s03d8 2/3
[Zn(bpy)3]2+ [Ar]4s03d10 0
[Mn(bpy)3]2+ [Ar]4s03d5 5/2

Table 2. The average length of coordinate bonds rMe-N, average values of angles ^N–Me–N and dipole
moment of coordinate bonds µb for the optimized structures with values of standard deviations for
bonds length σr and angles σ^.

[Fe(bpy)3]2+ [Zn(bpy)3]2+ [Ni(bpy)3]2+ [Mn(bpy)3]2+

rMe-N [Å] 1.9544 2.2594 2.1407 2.3115
σr [Å] 0.0004 0.0009 0.0006 0.0011

^ N–Me–N [◦] 89.26 87.78 88.51 87.55
σ^ [◦] 5.33 10.22 8.08 11.36
µb [D] 3.09 21.05 12.86 19.20

Coordination bond lengths are arranged in the following order: rFe-N < rNi-N < rZn-N < rMn-N.
Based on the standard deviation and the ground state parameters, it can be concluded that the
bpy-ZnCl2 and bpy-MnCl2 differ the most from the octahedral structure.
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Due to the symmetry of the investigated complexes, the overall dipole moments of each system is
close to zero. For this reason, the dipole moment was calculated only for coordination bonds, in order
to better reflect the differences between individual complexes. Partial charges were calculated based on
the NBO method. None of the created complexes exhibit perfect octahedral organization (see Table 2),
where standard deviations σ^ [◦] exhibit a rate of deviation from perfect assumed symmetry. According
to this, contribution to dipole moment created from the complex will be highest for systems with the
highest rate of deviation, for Mn and Zn, and the smallest for Ni and Fe.

3.2. Differential Scanning Calorimetry (DSC)

Figure 3 shows DSC thermograms obtained from PDMS, bpyPDMS, and bpyPDMS, crosslinked
by metal-ligand coordination (organometallics). Measured PDMS is characterized by Tg at 147 K, cold
crystallization temperature at 204 K, and melting temperature at 230 K, which is in good agreement
with literature data [25].
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Figure 3. DSC thermograms of PDMS, bpyPDMS, and metalloorganic complexes (thermograms are
vertically shifted for better visualization).

The bpyPDMS material does not exhibit peaks corresponding to the crystallization and melting of
the PDMS chains, due to the fact that the bpy units can act as a spacer and prevent siloxane unit from
specific ordering, and thus inhibit crystallization. The Tg value for this material was found to be 150 K,
i.e., 3 K higher than in neat PDMS. This may come from the linkage of PDMS chains through bpy that
causes the hindering of segmental motions of the chains.

Further analysis of DSC measurements for bpyPDMS-Me(II) materials allowed to state that Tg for
all complexes is around 150 K [23], which is similar to bpyPDMS. Therefore, it can be concluded that
complexing by using chosen metal ions has no influence on Tg value of final complexes. The obtained
materials demonstrated outstanding elasticity above Tg, which is very important in connection with
the potential applications of these materials in, for example, organic electronics [17].

3.3. Broadband Dielectric Spectroscopy

Isothermal representation of dielectric response for the studied systems. The complex dielectric
function ε* can be expressed as: ε* = ε′ − iε′′, where: ε′ and ε′′ are the real and the imaginary (loss)
parts of dielectric permittivity, respectively, and i is an imaginary number, being a solution of the
equation i2 = −1.
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Isothermal studies of real-part dielectric permittivity (Figure 4) showed flat response over a broad
frequency range. Each of the obtained coordinated systems exhibited a higher value of dielectric
permittivity than neat PDMS. Introducing metal-ligand coordination bonds into the polymer networks
improved the dielectric properties of material, because of the dipolar nature of the coordination
bonds [16,18]. All cross-linked bpy-PDMS systems displayed elevated dielectric permittivity values.
The highest value of ε′ = 4.3 at 1 MHz was observed for bpyPDMS-ZnCl2, which is almost twice as
high as neat PDMS. This correlates with the values of dipole moments of coordination bonds obtained
in the DFT calculations.
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It is commonly known that the value of dielectric permittivity is directly proportional to
polarizability, and this comes from the chemical nature of the material. Polarizability (P) is given by:

P = N0 <µ> (1)

where N0 is number of identical molecules having effective dipole moments and the electric dipole
moment <µ>:

<µ> = αEloc = (αe + αa + αo + αch)Eloc (2)

Dipole moment <µ> is equal to multiplication of polarizability (α) and electrical local field (Eloc),
where polarizability (α) may come from different contributions, like: electronic, atomic, orientation,
and space charge, (αe + αa + αo + αch), respectively.

As in a homogeneous, linear, non-dispersive and isotropic dielectric medium, the polarization is
connected and proportional to the electric field E by the formula:

P = (ε′ − 1) ε0E = χ’ ε0E (3)

where ε0 is the vacuum permittivity, and χ’ is the real part of electric susceptibility of the medium
(in this case simplifies to a scalar) and E is an electric field.

Comparing the bpyPDMS system with Me-bpyPDMS, we can assume that the atomic and electron
polarization will be unchanged in the mentioned systems. Due to the creation of the metal-ligand
complex system, which deviates from perfect octahedral symmetry, thus exhibiting no zero dipole
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moment, we enhance the contribution of orientation polarization in the investigated materials.
Accordingly, the values of ε′ for metalloorganic complexes increased in a direct proportion to the
theoretically calculated increase of the dipole moment of the metal-ligand bonds (Table 2). Such an
observation is in good agreement with the already presented theoretical expectations. In line with
Equation (2), we observed higher values of dielectric permittivity as compared to neat PDMS, as well
as bpyPDMS. The observed dielectric permittivity for investigated complexes is the highest when
standard deviations σ^ [o] possess the highest value. Frequency dependence of loss tan is presented in
Figure S6 (Supporting Information).

Temperature Dependence of Dielectric Relaxation. Figure 5 shows different molecular phenomena
that can be detected in the investigated systems upon heating. The representation of the imaginary part
of epsilon (ε′′) has been chosen to reveal the presence of different transitions. PDMS is a well-known
type B polymer, where the dipole moment is rigidly attached perpendicular to the chain skeleton,
and for that reason only, segmental motions, called α-processes, are observed. Starting from the
lowest temperature, the first segmental type relaxation in PDMS is assigned as α, and at frequency
~1 Hz, it appears at a temperature of 153 K. The second relaxation αac is the α process in a constrained
amorphous phase, which arises at the higher temperature of 164 K at a frequency ~1 Hz. No secondary
relaxation processes were detected.
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The α relaxation can be assigned to the cooperative movements within the main chain of polymer
backbone of PDMS, thus can be connected with Tg, whereas αac can be associated with lower mobility,
i.e., constrained motions of PDMS chains that participate in the creation of crystalline phase [21,35].
At a temperature of about 230 K (Figure 5a), one can observe an increase of imaginary part of dielectric
permittivity that results from the melting of crystalline lamellas of PDMS and release of dipoles
from crystalline phase. At a higher temperature, the representation of ε′′ is complex and comprises
conductivity phenomena. The analysis of conduction mechanism in PDMS and its metalloorganic
complexes at higher temperatures is not a goal of this work, and will be discussed in a further paper.

In Figure 6, dielectric loss ε” vs. temperature at frequency 1 Hz plots for different samples are
compared. One can observe a shift of α relaxation process in bpyPDMS and metal-ligand coordination
to a slightly higher temperature, as compared to neat PDMS.

It is important to point out that the maximum α relaxation process of bpyPDMS and its complexes
is located at a similar position, that is, in good agreement with the DSC results (Figure 3). These findings
can be explained by definition of Kuhn segment [36], claiming that PDMS polymer chains return to their
original mobility at distance above 5 monomers from the point of immobilization. Thus, immobilization
of bpyPDMS chain by metal-ligand complex formation does not significantly affect the maximum
position of the α relaxation process, but affects dielectric parameters describing this phenomenon.
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It should be pointed out that the αac relaxation was detected in PDMS and its metalloorganic
complexes, but the molecular assignments of this phenomenon in investigated compounds are
completely different.

The behavior of the αac process in the investigated systems cross-linked by metal-ligand complexes
seems to be unusual and very interesting, because it is created in fully amorphous compounds.

We would like to underline that complex formation in investigated systems influences both
relaxations, i.e., α and αac. In the case of α relaxation, it is clearly visible by looking at Figure 6, as well
as by analyzing the delta epsilon parameters of this process, presented in Table 2. One can notice that
the dielectric strength of α relaxation increases, along with an increase of the dipole moment of created
complexes (see Table 2). The slower αac process is characterized by a much lower relaxation strength as
compared to α relaxation, however, looking at Figure 6, one can notice a similar increase in dielectric
strength of αac process, which is in agreement with calculated dipole moment, where αac amplitude
is the highest for Zn-bpy and Mn-bpy complexes. In the case of the Mn-bpy complex, it should be
point out that the created structure of this complex is the most deviated from the perfect octahedral
symmetry, which is typical for investigated metal-bpy complexes. Based on the standard deviation
and the ground state parameters, it can be concluded that bpy-ZnCl2 and bpy-MnCl2 differ the most
from the octahedral structure.

In the case of neat PDMS, the αac relaxation comes from the constrained mobility of PDMS chains
that participate in creation of crystalline phase, whereas for the PDMS complexes BDS and DSC,
measurements evidenced that chemical incorporation of bpy moieties suppresses the crystallization
process of PDMS and leads to the creation of fully amorphous systems (see Figure 3). For this reason,
it can be supposed that that αac relaxation in bpyPDMS and its metal complexes is due to the lower
mobility of PDMS polymer chains that are immobilized by bpy moieties. In Figure 7, one can see a
schematic illustration of origin for α and αac relaxations in neat PDMS and its metalloorganic complexes.



Polymers 2020, 12, 1680 10 of 16

Polymers 2020, 12, x FOR PEER REVIEW 10 of 16 

 

crystallization process of PDMS and leads to the creation of fully amorphous systems (see Figure 3). 
For this reason, it can be supposed that that αac relaxation in bpyPDMS and its metal complexes is 
due to the lower mobility of PDMS polymer chains that are immobilized by bpy moieties. In Figure 
7, one can see a schematic illustration of origin for α and αac relaxations in neat PDMS and its 
metalloorganic complexes. 

 

Figure 7. Schematic illustration of origin of α and αac relaxations in (a) non-modified PDMS and (b) 
PDMS cross-linked by metal-ligand coordination (size of the metal-ligand complexes is enlarged to 
show the structure of the material). 

In order to examine the influence of metalloorganic complex formation on the segmental 
relaxation process of PDMS chains, i.e., the α relaxation, we analyzed their dielectric response by 
applying the Havriliak–Negami (HN) equation: 𝜀∗ = 𝜀  + ∆( ( )  )   (4) 

where ω is an angular frequency, ∆ε is the dielectric relaxation strength defined as ∆𝜀 = 𝜀  –  𝜀  
(𝜀  and  𝜀  are the low and the high frequency limits of the real part of the dielectric function, 
respectively), τ is the characteristic relaxation time, whereas  𝛼  and  𝛽  are HN parameters, 
which correspond to the width and asymmetry of the loss peak, respectively. 

Figure 8 shows the normalized representation of ε’’ (T) collected for PDMS and chosen 
metalloorganic complexes compounds in order to exhibit influence of bpy incorporation and 
complex formation on segmental PDMS dynamics. For this reason, different dielectric parameters, 
like: τ (characteristic relaxation time), τmax (relaxation time taken from maximum of detected 
process), dielectric strength, as well as αHN, βHN describing width and asymmetry, respectively, were 
analyzed in Table 3. Mentioned parameters were obtained from fitting of the α process at the 
temperature of 163 K. Figure 8, showed changes in the width and symmetry of these relaxation 
processes after the incorporation of bpy moieties to PDMS. The temperature 163 K was selected, 
because at this temperature, the maximum of α relaxation is located in the middle of the frequency 
window that guarantees the proper visibility of low and high frequency shoulders of this process, 
which is needed for further procedure of the normalization It is important to point out that the 
segmental relaxation time of α process for PDMS and its complexes is almost unchanged, as 
revealed in similar relaxation time values (τ), whereas τmax values (relaxation time calculated from 
maximum of ε” representation) increase after the incorporation of bpy moieties to PDMS. The 

Figure 7. Schematic illustration of origin of α and αac relaxations in (a) non-modified PDMS and
(b) PDMS cross-linked by metal-ligand coordination (size of the metal-ligand complexes is enlarged to
show the structure of the material).

In order to examine the influence of metalloorganic complex formation on the segmental relaxation
process of PDMS chains, i.e., the α relaxation, we analyzed their dielectric response by applying the
Havriliak–Negami (HN) equation:

ε∗ = ε∞+
∆ε(

1 + (iωτ)αHN
)βHN

(4)

where ω is an angular frequency, ∆ε is the dielectric relaxation strength defined as ∆ε = εst – ε∞ (εst and
ε∞ are the low and the high frequency limits of the real part of the dielectric function, respectively),
τ is the characteristic relaxation time, whereas αHN and βHN are HN parameters, which correspond to
the width and asymmetry of the loss peak, respectively.

Figure 8 shows the normalized representation of ε′′ (T) collected for PDMS and chosen metalloorganic
complexes compounds in order to exhibit influence of bpy incorporation and complex formation on
segmental PDMS dynamics. For this reason, different dielectric parameters, like: τ (characteristic
relaxation time), τmax (relaxation time taken from maximum of detected process), dielectric strength,
as well as αHN, βHN describing width and asymmetry, respectively, were analyzed in Table 3. Mentioned
parameters were obtained from fitting of the α process at the temperature of 163 K. Figure 8, showed
changes in the width and symmetry of these relaxation processes after the incorporation of bpy
moieties to PDMS. The temperature 163 K was selected, because at this temperature, the maximum of
α relaxation is located in the middle of the frequency window that guarantees the proper visibility
of low and high frequency shoulders of this process, which is needed for further procedure of the
normalization. It is important to point out that the segmental relaxation time of α process for PDMS
and its complexes is almost unchanged, as revealed in similar relaxation time values (τ), whereas τmax

values (relaxation time calculated from maximum of ε′′ representation) increase after the incorporation
of bpy moieties to PDMS. The incorporation of bpy into PDMS chains apparently slows down the
segmental relaxation time, that was evidenced by an increase of Tg value (Figure 3) and the shift of
α relaxation maximum to higher temperatures (Figure 6). One can notice also, that incorporation of
bpy moieties into PDMS leads to the broadening of distribution of relaxation time, as reflected in the
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decrease of αHN parameter from 0.79 (for PDMS) to ca. 0.6 value for bpyPDMS and its metalloorganic
complexes. In turn, more than 30% of the larger value of the βHN parameter, as obtained for the
metalloorganic polymers compared to the neat PDMS, reflects a significant decrease in asymmetry
of the α process in the investigated systems. In Figure 8, where normalized loss curves for PDMS
and chosen complexes are shown, one can observed that bpy presence broadens the distribution and
improves the symmetry of α relaxation time.

Polymers 2020, 12, x FOR PEER REVIEW 11 of 16 

 

incorporation of bpy into PDMS chains apparently slows down the segmental relaxation time, that 
was evidenced by an increase of Tg value (Figure 3) and the shift of α relaxation maximum to higher 
temperatures (Figure 6). One can notice also, that incorporation of bpy moieties into PDMS leads to 
the broadening of distribution of relaxation time, as reflected in the decrease of αHN parameter from 
0.79 (for PDMS) to ca. 0.6 value for bpyPDMS and its metalloorganic complexes. In turn, more than 
30 % of the larger value of the βHN parameter, as obtained for the metalloorganic polymers compared 
to the neat PDMS, reflects a significant decrease in asymmetry of the α process in the investigated 
systems. In Figure 8, where normalized loss curves for PDMS and chosen complexes are shown, one 
can observed that bpy presence broadens the distribution and improves the symmetry of α 
relaxation time. 

 

Figure 8. Normalized loss curves for PDMS, bpyPDMS and chosen metalloorganic complexes 
collected at 163 K. Symbols correspond to experimental points, whereas drawn lines are curves 
obtained from a WinFit analysis (Figure S7). 

Table 3. Havriliak–Negami (HN) parameters for α-relaxation processes in studied PDMS, bpyPDMS, 
and metalloorganic complexes obtained from the analysis of dielectric spectra at 163 K. 

Sample τ (s) τmax (s) Δε αHN βHN 
PDMS 1.1 × 10⁻5 4.8 × 10⁻6 0.66 0.79 0.49 

bpyPDMS 1.3 × 10⁻5 1.0 × 10⁻5 0.67 0.59 0.85 
bpyPDMS-FeCl2 9.8 × 10⁻6 7.6 × 10⁻6 0.43 0.60 0.85 
bpyPDMS-NiCl2 1.1 × 10⁻5 8.9 × 10⁻6 0.40 0.59 0.88 
bpyPDMS-ZnCl2 1.2 × 10⁻5 9.2 × 10⁻6 0.60 0.59 0.86 
bpyPDMS-MnCl2 1.1 × 10⁻5 1.0 × 10⁻5 0.54 0.55 0.96 

VFTH analysis – relaxation maps and fragility. The temperature dependences of detected 
relaxations for all samples are presented as relaxation maps (Figure 9). 

Figure 8. Normalized loss curves for PDMS, bpyPDMS and chosen metalloorganic complexes collected
at 163 K. Symbols correspond to experimental points, whereas drawn lines are curves obtained from a
WinFit analysis (Figure S7).

Table 3. Havriliak–Negami (HN) parameters for α-relaxation processes in studied PDMS, bpyPDMS,
and metalloorganic complexes obtained from the analysis of dielectric spectra at 163 K.

Sample τ (s) τmax (s) ∆ε αHN βHN

PDMS 1.1 × 10−5 4.8 × 10−6 0.66 0.79 0.49
bpyPDMS 1.3 × 10−5 1.0 × 10−5 0.67 0.59 0.85

bpyPDMS-FeCl2 9.8 × 10−6 7.6 × 10−6 0.43 0.60 0.85
bpyPDMS-NiCl2 1.1 × 10−5 8.9 × 10−6 0.40 0.59 0.88
bpyPDMS-ZnCl2 1.2 × 10−5 9.2 × 10−6 0.60 0.59 0.86
bpyPDMS-MnCl2 1.1 × 10−5 1.0 × 10−5 0.54 0.55 0.96

VFTH analysis–relaxation maps and fragility. The temperature dependences of detected relaxations
for all samples are presented as relaxation maps (Figure 9).

For all these systems, the segmental dynamics (α and αac relaxations) were interpreted in terms of
the Vogel–Fulcher–Tammann–Hesse (VFTH) approach. The obtained temperature dependencies of the
segmental relaxation times (Figure 9a,b) were fitted with the VFTH equation [37,38].

τ = τ0 exp
(

B
T − T0

)
(5)

where τ0 and B are constants, T0 is the ideal glass transition or Vogel temperature, usually 30–70 K
below Tg [39]. The obtained parameters from fitting VFTH are listed in Table 4.
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Table 4. VFTH and fragility parameters for the segmental relaxation processes of PDMS, bpyPDMS
and metalloorganic complexes determined from dielectric studies.

Sample Ln|τ0 (s)| B T0 (K) Tg
DRS (K) F

PDMS −30.0 ± 0.7 588 ± 36 129.9 ± 0.8 150.8 88
bpyPDMS −34.9 ± 0.6 860 ± 38 126.7 ± 0.7 152.5 86

bpyPDMS-FeCl2 −34.0 ± 0.9 792 ± 54 127.8 ± 1.0 152.5 86
bpyPDMS-NiCl2 −34.8 ± 1.3 854 ±80 126.6 ± 1.5 152.5 85
bpyPDMS-ZnCl2 −33.2 ± 1.1 760 ± 65 128.3 ± 1.2 152.5 86
bpyPDMS-MnCl2 −34.5 ± 1.0 838 ± 61 126.9 ± 1.1 152.5 85

The α process is assigned to the segmental motions, and is sometimes referred to in the literature
to the dynamic glass transition temperature Tg

DRS, which can be calculated using the obtained VFTH
parameters, according to the procedure proposed by Saad et al. [19]:

TDRS
g = Tre f =

B

ln
(

1
τ0

) + T0 (6)

where Tref is the temperature at which the segmental relaxation time s is 1 s. It is worth noting that in
the literature another practice can also be found e.g., Tref, at which τ = 100 s [40].
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In the next step, it is possible to calculate the fragility (F), which is a measure of the ability of
material to change its conformation across the glass transition region. Thus, the fragility reflexes
cooperativity of the system and its correlation with the degree of intermolecular coupling of polymer
chains. The relation between VFTH parameters and F value [41] is given by:

F =

(
B

Tre f

)
/

ln(10)/
(
1−

T0

Tre f

)2 (7)

The values of VFTH parameters (τ0, B, T0) obtained from the fitting and the calculated F values,
are collected in Table 4.

The fragility value (F) of 88, calculated for linear PDMS, is in accordance with the literature-reported
values (85–90) [41,42]. An incorporation of bpy moieties and metal-ligand complexes do not change
the fragility of the PDMS chain significantly (see Table 4).

The interpretation of the fragility index in PDMS is rather complex, and a few theoretical works
were already proposed. Sokolov et al. [42] reported that an increase in molecular weight does not
have a large influence on structural relaxation with regard to the flexibility of the polymeric chain.
Furthermore, in the case of PDMS, there is no dependence of fragility on molecular weight [43,44].
Dudowicz et al. [45] suggested that the flexibility of the polymer backbone and side group plays a
crucial role in a polymer fragility, because of the different frustration of chain packing for each polymer.
PDMS is the highly flexible polymer. This feature is caused by the presence of the Si–O–Si– backbone.
Accordingly, it is expected that an increase in the molecular weight of flexible polymer should not
significantly modify its properties, for the reason that motions of different parts of the molecules
become decoupled on a short distance along the backbone [42]. Our findings are in good agreement
with above presented interpretation.

In Figure 9b, an activation maps for cooperative motions in the constrained phase, i.e.,αac relaxation
is shown. One can observe a different trace of neat PDMS αac curve as compared to the PDMS
metalloorganic complexes. The observed difference comes from the different origin of αac relaxation
in PDMS and bpyPDMS complexes, as already discussed earlier. In a neat PDMS, αac relaxation is
connected with the presence of crystalline phase, whereas in the case of bpyPDMS-MeCl2 samples,
αac relaxation exists because of the immobilization of a fragment of the main PDMS chain, which is
directly connected to metal-bpy complexes, see Figure 7a,b. We suppose that behavior of αac relaxation
is affected by coordination bond lengths between metal-bpy and their dipole moments.

In the case of bpyPDMS-MnCl2, one can clearly observed the shift of αac relaxation to higher
temperature (i.e., lower values 1000/T), with an increase of Me-bpy bond lengths and dipole moments
of coordinates, as compared to other samples (Figure 9b).

4. Conclusions

Through a combination of experimental BDS and DSC methods and DFT theoretical calculations,
molecular dynamics in poly(dimethylosiloxane) cross-linked by metal-ligand coordination were
investigated. A direct dependence between the real part of dielectric permittivity (ε′) and dipole
moment of investigated metal-ligand complexes was described for the first time. The highest value
of ε′ = 4.3 at 1 MHz was reported for bpyPDMS-ZnCl2, which is almost twice as high as neat PDMS.
The chemical incorporation of bpy moieties significantly suppressed crystallization in investigated
PDMS polymeric chains. For all these systems, the segmental motions were interpreted in terms of
VFTH approach. The segmental relaxation time of α process for PDMS and its complexes is almost
unchanged, as revealed in similar relaxation time values (τ), whereas τmax values increase after
incorporation of bpy moieties to PDMS. An observed increase of Tg as seen by DSC measurements is
the result of increases in relaxation time distribution in investigated complexes. The relaxation process
of amorphous constrained phase (αac) in neat PDMS originated from lower mobility of the polymeric
chain, connected with the crystalline phase. Relaxation αac in systems cross-linked by metal-ligand
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coordination was described for the first time and assigned to the immobilization of a fragment of
PDMS chain by bpy-metal complexes. The fragility index was similar for all investigated samples,
which is consistent with no change in α relaxation. In summary, the research strategy proposed in
this work permits a better understanding of structure-dynamic relationship of novel metal-ligand
cross-linked polymers. This approach can be further extended to similar organometallic networks for
evaluating their usability in flexible electronic devices.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/12/8/1680/s1.
Figure S1: 1H NMR spectrum of 4,4′-dimethyl-2,2′-bipyridine (bpy) in D2O; Figure S2: 1H NMR spectrum
of aminopropyl terminated poly(dimethylsiloxane) (PDMS) in CDCl3; Figure S3: 1H NMR spectrum of
2,2′-bipyridine-terminated poly(dimethylsiloxane)(bpyPDMS) in CDCl3; Figure S4: FT-IR spectra of bpy, bpyPDMS,
and PDMS in the range of 1500–2000 cm−1; Figure S5: Geometry of optimized coordination compounds (Me: Mn2+,
Fe2+, Ni2+, Zn2+); Table S1: Geometry-optimized structure of 2,2′-bipyridine complexes; Figure S6: Frequency
dependence of loss tangent at 293 K of PDMS and its metalloorganic complexes; Figure S7: Exemplary of fitting
procedure using WinFit software for bpyPDMS-FeCl2 metalloorganic complex.
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