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A B S T R A C T   

The existence of widespread COVID-19 infections has prompted worldwide efforts to control and manage the 
virus, and hopefully curb it completely. One important line of research is the use of machine learning (ML) to 
understand and fight COVID-19. This is currently an active research field. Although there are already many 
surveys in the literature, there is a need to keep up with the rapidly growing number of publications on COVID- 
19-related applications of ML. This paper presents a review of recent reports on ML algorithms used in relation to 
COVID-19. We focus on the potential of ML for two main applications: diagnosis of COVID-19 and prediction of 
mortality risk and severity, using readily available clinical and laboratory data. Aspects related to algorithm 
types, training data sets, and feature selection are discussed. As we cover work published between January 2020 
and January 2021, a few key points have come to light. The bulk of the machine learning algorithms used in 
these two applications are supervised learning algorithms. The established models are yet to be used in real- 
world implementations, and much of the associated research is experimental. The diagnostic and prognostic 
features discovered by ML models are consistent with results presented in the medical literature. A limitation of 
the existing applications is the use of imbalanced data sets that are prone to selection bias.   

1. Introduction 

Coronaviruses are large RNA viruses that are known to have existed 
since the mid-1960s. They are responsible for causing mild to moderate 
upper respiratory tract illnesses, similar to the common cold [1,2]. Two 
well-known coronaviruses are severe acute respiratory syndrome corona-
virus (SARS-CoV) and Middle East respiratory syndrome coronavirus 
(MERS-CoV). SARS-CoV was identified in 2003, when it first appeared in 
the Guangdong province of southern China [3]. MERS-CoV originated in 
Saudi Arabia in 2012 [4]. In December 2019, new coronavirus infections 
appeared in the Chinese city of Wuhan, Hubei Province. On January 7, 
2020, the novel virus was identified as COVID-19. Its symptoms may 
include fever, dry cough, myalgia, gastrointestinal symptoms, and 
anosmia [5]. From December 2020 to March 2020, the world witnessed 
a huge spread of COVID-19 infections, and the World Health Organi-
zation (WHO) declared a pandemic. According to the WHO [6], as of 
January 22, 2021, over 96 million COVID-19 cases and two million 
COVID-19 deaths have been reported globally. 

Countries worldwide have been affected by the virus, resulting in 
various measures being enforced, including country lockdowns, 

curfews, and travel restrictions. Although common symptoms of COVID- 
19 infection are usually mild, for some patients the infection can cause 
serious, and occasionally deadly, complications. Managing the soaring 
numbers of COVID-19 cases is a huge challenge that has overwhelmed 
health care facilities worldwide; however, there is still insufficient in-
formation about the virus. Since the emergence of the COVID-19 
infection, researchers from various disciplines have explored this 
novel virus. Machine learning (ML) is a branch of artificial intelligence 
(AI) that focuses on producing systems that are able to learn from ex-
amples and improve without being explicitly programmed [7]. ML has 
been applied successfully in many fields, including health care [8] and 
medical informatics [9]. One important research direction leverages ML 
to understand and fight COVID-19. Numerous lines of research have 
been initiated for the application and development of COVID-19-related 
ML algorithms. As of January 2021, a simple search of PubMed yielded 
94,609 publications related to COVID-19. 

A number of review papers have been published on the use of ML in 
COVID-19 research. Agbehadji et al. [10] summarized how big data 
platforms, AI models, and nature-inspired algorithms can be used for 
case detection and contact tracing of COVID-19. Bullock et al. [11] 
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discussed how AI is used to address the challenges of COVID-19 at 
different scales, including molecular, medical, and epidemiological ap-
plications. Naudé [12] highlighted the actual and potential applications 
of AI in fighting COVID-19. Many applications were discussed, 
including: tracking and prediction, diagnosis and prognosis, treatments 
and vaccines, and social control. Albahri et al. [13] performed a sys-
tematic review of state-of-the-art techniques for developing COVID-19 
prediction algorithms based on data mining and ML algorithms. Swap-
narekha et al. [14] conducted a systematic analysis of the use of ML, 
deep learning, mathematical, and statistical approaches for COVID-19 
prediction and screening. Lalmuanawma et al. [15] investigated exist-
ing ML techniques for COVID-19 screening, predicting, forecasting, 
contact tracing, and drug development. A recent survey by Tayarani-N 
[16]. covered how AI approaches have been employed to tackle the 
pandemic, including clinical applications, processing of 
COVID-19-related images, and pharmaceutical and epidemiological 
studies. Various AI techniques have been investigated in the literature, 
including deep learning, ML, artificial neural networks (ANN), and 
evolutionary algorithms. An overview of publicly available COVID-19 
data sets was also summarized in Ref. [16]. Wu et al. [17] surveyed 
the application of big data technology for preventing and managing 
COVID-19 in China. 

The above surveys summarized ML methods applied in the context of 
COVID-19. However, this research field is very active and the number of 
related publications is growing rapidly. Currently, numerous ML algo-
rithms are readily available in data analysis software, such as Weka 
[18], which makes them easy to apply without the need for technical 
expertise. 

The aim of this paper is to highlight ongoing efforts to use state-of- 
the-art ML algorithms during this pandemic. The novelty of this study, 
as compared to the previously published reviews, is that we mainly focus 
on ML diagnostic and prognostic models using simple clinical and lab-
oratory data that can be readily available (within an hour). These ap-
proaches represent faster and cheaper diagnostic alternatives to the 
reverse transcription polymerase chain reaction (RT-PCR) test, with 
comparable, although inferior, performance [19]. Moreover, predicting 
unfavorable outcomes of intensive care unit (ICU) admission or death as 
early as the time of admission is essential to optimize decision-making 
and prioritize the allocation of limited resources during peaks. 

The main contributions of this work can be summarized as follows. 
(i) We review the recent ML algorithms in this field and focus on their 

potential in two main applications: diagnosis of COVID-19 and predic-
tion of mortality risk and severity, using simple clinical and laboratory 
data. (ii) We analyze the main features that were found to be the most 
relevant to these applications. (iii) Open issues and future lines of 
research are highlighted based on the findings of this survey. 

The remainder of this paper is structured in the following manner. In 
Section 2, we briefly describe some of the basic state-of-art ML algo-
rithms. Then, in Section 4, we review recent literature on using ML for 
diagnosis and prediction of severity and mortality risk in COVID-19. In 
Section 5, we discuss the factors that have been found to be relevant to 
classification tasks elated to COVID-19 applications, and other issues of 
the existing models. Finally, in Section 6, we conclude the review and 
highlight future work. All the abbreviations used in this manuscript are 
presented in Table 1. 

2. Machine learning 

ML is a branch of AI that focuses on producing systems that are able 
to learn from examples and improve without being explicitly pro-
grammed [7]. Over the years, the ML field has gained much popularity 
for solving numerous real-world problems. ML techniques can be 
divided into three main categories: supervised learning, unsupervised 
learning, and reinforcement learning. In supervised learning, the algorithm 
is allowed to learn from a data set with pre-defined labels. Classification 
and regression are the two main types of supervised learning. By 

contrast, unsupervised algorithms attempt to learn from unlabeled data 
sets. The algorithms work by processing the unlabeled data set to extract 
features and identify patterns. Examples of unsupervised ML algorithms 
include clustering and dimensionality reduction of large and 
high-dimensional data sets. In reinforcement learning, the algorithm 
learns through trial and error. Thus, a reward and punishment mecha-
nism is employed in the training phase. 

Data in electronic health records (EHRs) can be complex, nonlinear, 
multidimensional, and heterogeneous. ML can assist in fully utilizing 
clinical data in EHRs to facilitate fact interrogation and complex 
decision-making [20]. In addition, ML algorithms can be trained using 
millions of patient EHRs, can learn extremely complex relationships 
among features, and can beat human capabilities in performing complex 
tasks such as classification of images and discerning patterns in histor-
ical data [21]. “Combining machine-learning software with the best 
human clinician ‘hardware’ will permit delivery of care that out-
performs what either can do alone.” [22]. 

The present study focuses on two main applications: diagnosis of 
COVID-19 and prediction of mortality risk and severity. Both are usually 
formulated as classification (or regression) problems. 

Well-known algorithms used for classification tasks for COVID-19 
data sets include the following.  

• Naive Bayes (NB) is a simple probabilistic classifier based on Bayes’ 
theorem. Given a record X and a number of m classes C1,C2, ..Cm, NB 
classification maximizes P(Ci|X) using Bayes’ theorem, as follows: 

P(Ci|X)=
P(X|Ci)P(Ci)

P(X)
(1)  

where, P(Ci), P(X|Ci), and P(X) may be estimated from the given data. 
The word naive refers to the main assumption of conditional 

Table 1 
Nomenclature of abbreviations.  

Acronyms Definition 

ALC absolute lymphocyte count 
ALT alanine aminotransferase 
AST aspartate aminotransferase 
BUN blood urea nitrogen 
CKD chronic kidney disease 
CRP C-reactive protein 
cTnT cardiac troponin T 
cTnI cardiac troponin I 
hsCRP high-sensitivity C-reactive protein level 
IL-6 interleukin-6 
INR international normalized ratio 
LDH lactate dehydrogenase 
MCHC mean corpuscular hemoglobin concentration 
MCV mean corpuscular volume 
RDW red blood cell distribution width 
WBC white blood cells 
TWRF trees weighting random forest 
NB naive Bayes 
LR logistic regression 
SVM support vector machine 
KNN k-nearest neighbors 
GBDT gradient boosted decision tree 
XGBDT extreme gradient boosted decision tree 
NN neural network 
XGBoost extreme gradient boosting 
DNN deep neural networks 
DT decision tree 
ET extremely randomized trees 
PLS partial least squares 
EN elastic net 
FDA bagged flexible discriminant analysis 
LASSO least absolute shrinkage and selection operator 
BN Bayesian network 
SGD stochastic gradient descent 
MLP multilayer perceptron  
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independence. NB assumes independence among class attributes. This is 
not necessarily true in real-world applications.  

• Support vector machine (SVM) is a classification algorithm that 
transforms a training data set into a higher dimension [23]. It opti-
mizes a hyperplane that separates the two classes with minimum 
classification errors. The hyperplane is represented as follows: 

W.X + b = 0 (2)  

where W is a weight vector, and b is a scalar denoting bias.  

• Decision tree (DT) is an algorithm that produces a tree-structured 
model to describe the relationships between attributes and a class 
label [24]. It works by recursively dividing observations based on the 
most informative attribute with the highest gain ratio value calcu-
lated as follows: 

gain ratio(A)=
Gain(A)

SplitInfoA(D)
(3)  

where, SplitInfoA(D) denotes the possible information provided by par-
titioning the dataset, D, into v partitions and Gain(A) denotes the 
amount of information obtained by partitioning the dataset based on 
attribute A [25].  

• Random forest (RF) is a DT ensemble method that creates multiple 
trees through a re-sampling process called bagging (bootstrap ag-
gregation) [26]. Numerous DTs are constructed by re-sampling using 
bootstrapping with replacement. Each node of the tree is split using a 
subset of the attributes that are selected randomly for each tree. Class 
membership for a new example is identified as the most commonly 
predicted class from the (aggregated) DTs by a simple unweighted 
majority vote. 

• AdaBoost, which stands for adaptive boosting, is an ensemble algo-
rithm used to combine the results from multiple learning models 
using boosting [27]. It builds the models sequentially. The successive 
model is boosted by the re-weighting of instances in accordance with 
previous model outputs.  

• K-nearest-neighbor (KNN) is a classifier that learns by comparing a 
given unlabeled data point with the training data set [28]. It searches 
for the K most similar data points, referred to as the KNNs. A distance 
metric, such as Euclidean distance, is usually used to measure close-
ness. The algorithm then finds the most common class among its 
KNNs and assigns it to the given data point. 

• Gradient-boosted DT (GBDT) is an ensemble method that sequen-
tially builds a set of trees [29]. In each iteration, a tree is improved on 
the basis of its performance in the previous iteration. A GBDT com-
prises three elements: a loss function, a weak learner (e.g., a DT), and 
an additive model.  

• Logistic regression (LR) models the probability of data points 
belonging to a certain class based on the value of independent fea-
tures. It then uses the model to predict the probability that a given 
data point belongs to a certain class. Usually, the sigmoid function is 
used in building the regression model. It is assumed that the data 
points follow a linear function. LR is described as follows: 

log
(

p(X)
1 − p(X)

)

= β0 + β1.X (4)  

where, p is the probability that X belongs to class C and βi are model 
parameters.  

• Artificial Neural Network (ANN) are classification algorithms 
inspired by the structure and workings of the brain. A typical ANN 
consists of a set of connected units, where connections are associated 

with weight. Information is propagated across the network layers, 
where the output On at layer n is calculated as follows: 

On =Act(Weightsn− 1.On) (5)  

where, Act is the activation function used. During the learning process, 
connection weights are adjusted in order to improve the prediction ac-
curacy of the network. Weights are adjusted using error calculated 
during back propagation as follows: 

En =WeightsT
n− 1.En− 1 (6)    

• Extremely randomized trees (ET) The extremely randomized trees 
[30] algorithm is a tree induction ensemble algorithm. It is different 
from other tree-based ensemble methods with respect to two main 
aspects: it splits nodes by selecting cutoff points fully at random, and 
it uses the entire learning sample (rather than a bootstrap replica) to 
grow the trees. Machine learning algorithms and their main features 
are summarized in Table 2. 

3. Methodology 

In this review, we performed search queries on online databases 
including PubMed, Scopus, IEEE Xplore, and Google Scholar. We also 
screened the reference lists of the included articles to find other relevant 
studies to include in this review. The search terms included COVID-19, 
SARS-CoV-2, machine learning, artificial intelligence, diagnosis, prog-
nosis, mortality, severity, and laboratory. We focused on ML-based ap-
proaches used for predicting COVID-19 diagnosis and the prognosis of 
mortality and severity, using only simple clinical and laboratory data 
that were readily available from a public health agency. However, we 
excluded studies that used computed tomography (CT) scans and X-rays 

Table 2 
Machine learning algorithms and their main features.  

ML 
Algorithm 

Basic Idea Features 

NB Probabilistic classifier Cannot handle missing data, stable 
performance [25]. 

SVM Hyperplane optimization Highly accurate models, less likely 
to suffer from overfitting, used for 
prediction and classification tasks. 

DT tree-structured model Robust, for categorical data, easy 
to interpret. 

RF DT ensemble method Effective for highly complex 
problems, best for high- 
dimensional data sets, can handle 
missing data and imbalanced data 
sets. 

AdaBoost Ensemble algorithm Improves the performance of 
individual weak classifiers, 
sensitive to noise. 

KNN Based on a distance metric to 
measure the distance between 
data points. 

Choice of a distance metric affects 
performance; known as lazy 
learner, as it does not perform any 
analysis until it is presented with a 
testing data point. 

GBDT Ensemble tree induction, seeks 
to produce a model that 
minimizes the loss function 

Highly flexible [31]. 

LR Predicts the probability that a 
given data point belongs to a 
certain class 

Easy calculation, can handle 
continuous numerical values, 
cannot handle non-linear data. 

ANN Inspired by networks of 
biological neurons 

Highly accurate models, difficult 
to interpret the model (black-box 
models), requires a large number 
of parameters. 

ET Ensemble tree induction Good performance, easy to 
implement, less computational 
time, fewer optimization 
parameters [32].  
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in their prediction models. We considered studies published in English 
between January 2020 and January 2021, and retrieved 645 results by 
searching the databases. We then removed duplicates and screened the 
remaining studies. We identified 52 studies (with 76 models) that met 
the eligibility criteria and thus were included in this review. Fig. 1 de-
scribes the study selection process. 

4. ML applications for COVID-19 

ML has been applied successfully in numerous fields, including 
finance [33], manufacturing [34], transportation [35], and education 
[36]. Of particular interest are the applications of ML in health care [8]. 
AI and ML can be used to improve diagnosis, prognosis, monitoring, and 
administration of treatments to enhance patients’ health outcomes [37]. 
Since the beginning of the COVID-19 outbreak, there has been a growing 
interest in using ML to tackle the pandemic. In this section, we review 
some of the work done using ML for the diagnosis of COVID-19 and for 
mortality risk prediction. A schematic showing the relationship between 
ML approaches and the applications reviewed in this article is presented 
in Fig. 2. 

4.1. Diagnosing COVID-19 

With the continuing increase in numbers of COVID-19 infections, it 
has become extremely important to identify patients as early as possible 
in order to control the spread of the disease. The current technique for 
detecting COVID-19 is RT-PCR [38]. In this test, specimens are first 
collected from the upper or lower respiratory system of a patient. Then, 
the RNA is extracted by following a pre-defined protocol. Once the RNA 
strand has been extracted, PCR amplification is performed. 

Although RT-PCR is considered the gold standard for COVID-19 

detection, it has numerous limitations. The execution of the RT-PCR 
test requires laboratory settings with specialist equipment and trained 
staff [19]. A single RT-PCR run is expensive and takes approximately 
4–5 h. Generally, the PCR machine is run with batches of samples in 
order to reduce costs. False negative tests have been well documented, 
with estimated rates between 2% and 33% in repeat sample testing [39]. 
A false negative result has undesired consequences, as it leads to further 
spread owing to the patient not being isolated. 

CT scans have been widely explored as a complement or an alter-
native to RT-PCR tests. Some CT findings are suggestive of COVID-19, 
such as [40–42]; however, they cannot rule out or confirm the diag-
nosis. There are also the drawbacks of exposing patients to unnecessary 
irradiation [43] and overwhelming the health system’s limited re-
sources. For these reasons, the American College of Radiology and the 
Centers for Disease Control recommend not using chest radiographs 
(CXR) or CT scans for screening or first-line diagnosis of COVID-19 [44]. 

Although many patients may develop mild or no symptoms, there is a 
risk of transmission of the virus from these asymptomatic or mildly 
symptomatic individuals. Thus, it is critical for health care providers to 
have tools for prediction and early diagnosis of COVID-19. In ML terms, 
the task is usually formulated as a classification problem. ML models are 
trained to be able to classify a patient as COVID-19 positive or negative. 
In order to mitigate the limitations of RT-PCR tests and CT scans, 
numerous attempts have been made to utilize ML algorithms for the 
detection of COVID-19. 

On the other hand, clinical data and routine blood tests can represent 
a faster and cheaper diagnostic alternative with comparable, although 
inferior, performance [19]. Although viral testing is still the only spe-
cific method of diagnosis [44], accurate and fast models can be 
incredibly valuable during a pandemic peak to mitigate shortages of 
reference tests and to slow down the outbreak by early isolation of po-
tential COVID-19 patients [19,45,46]. These models can also be used to 
cross-check RT-PCR tests where false negative results are well docu-
mented [47,48]. 

The models reported in this review employed various ML approaches 
to predict COVID-19 diagnosis and prognosis. Some studies used a single 
model, whereas others used several models, selected the best one, or 
employed a combination of approaches to build their prediction model. 
The following is a summary of the diagnostic models classified by the 
selected ML approach. 

4.1.1. XGBoost model 
Li et al. [46] developed a classification model based on XGBoost to 

discriminate between influenza and COVID-19 patients. The model 
predicts the presence of COVID-19 based on patient symptoms and 
routine test results. They re-analyzed COVID-19 data from 151 pub-
lished studies, encompassing clinical data from 413 patients. They found 
that age, CT scan results, temperature, lymphocyte levels, fever, and 
cough were the most important features of their prediction model. The 
prediction results achieved a sensitivity of 92.5% and a specificity of 
97.9%. 

In Slovenia, Kukar et al. [49] utilized RF, deep neural networks (DNN), 
and XGBoost. The algorithms were used to develop models to predict 
COVID-19 diagnosis using routine blood test results, age, and sex. The 
authors used a data set from 5333 patients, of whom 160 were positive, 
admitted to the Department of Infectious Diseases, University Medical 
Centre Ljubljana. XGBoost performed the best, achieving an Area under 
the ROC Curve (AUC) of 97%, sensitivity of 81.9%, and specificity of 
97.9%. The highest-ranking features found by the model to predict 
COVID-19 diagnosis were mean corpuscular hemoglobin concentration 
(MCHC), eosinophil count, albumin, international normalized ratio 
(INR), and prothrombin activity percentage. According to the study, the 
features that contributed the most to differentiation between COVID-19 
and bacterial infections were: urea, hemoglobin, erythrocyte count, 
hematocrit, and leukocyte count. The top-ranking features for differ-
entiating between COVID-19 disease and other viral infections were Fig. 1. Flowchart of the study selection process.  
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MCHC, eosinophil ratio, prothrombin, INR, prothrombin activity per-
centage, and creatinine. 

Bayat et al. [48] developed a model to predict COVID-19 based on 
standard laboratory tests. A large data set consisting of 75,991 patients 
(7335 positive) was obtained from the US Department of Veterans Af-
fairs. The study employed XGBoost to build the model, which achieved a 
specificity of 86.8%, a sensitivity of 82.4%, and an overall accuracy of 
86.4%. The study concluded that the top 10 features in descending order 
of importance were: serum ferritin, white blood cell (WBC) count, 
eosinophil count, patient temperature, C-reactive protein (CRP), serum 
lactate dehydrogenase (LDH), D-dimer, basophil count, monocyte per-
centage, and serum aspartate aminotransferase (AST). 

4.1.2. RF model 
Wu et al. [50] built an assistant discrimination tool using RF to 

quickly and accurately identify COVID-19 patients based on key blood 
indices from clinical blood test data. The data set, containing a total of 
253 samples from 169 suspected COVID-19 patients, was collected from 
multiple sources in China. In addition, 105 consecutive positive samples 
were collected from 27 patients with confirmed COVID-19 cases. 
Initially, 49 features were employed to build the model in order to 
evaluate the importance of each feature. Based on the top-ranking fea-
tures, 11 were selected as final input indicators. Changes in several of 
these laboratory parameters have been widely reported as important 
clinical references, including total bilirubin, glucose, creatinine, LDH, 
creatine kinase isoenzyme (CK-MB), and potassium. However, there 
were also features that had not received extensive attention, including 
total protein, calcium, magnesium, platelet distribution width (PDW), 
and basophils. The study found that these features played an irreplace-
able part in the RF algorithm, indicating that they have great potential as 
diagnostic markers in future clinical practice. The method’s perfor-
mance on an independent test set was consistent with that achieved on 
the training set, with an AUC of 99.26%, a sensitivity of 100%, and a 
specificity of 94.44%. 

Brinati et al. [51] developed a model to predict COVID-19 diagnosis. 
A data set from 279 patients (177 positive) from IRCCS Ospedale San 
Raffaele, Italy, was used. The study employed several ML approaches: 
DT, ET, KNN, RF, LR, NB, SVM, and trees weighting RF (TWRF). The RF 
classifier was found to achieve the best performance, with an AUC of 
84%, accuracy of 82%, sensitivity of 92%, and specificity of 65%. The 
most important features in predicting COVID-19 diagnosis were: AST, 
lymphocytes, LDH, WBC, eosinophils, alanine transaminase (ALT), and 

age. 
Tschoellitsch et al. [52] developed a model using an RF ML algorithm 

to predict the diagnosis of COVID-19 based on routine blood tests. A data 
set of 1528 patients (65 positives) was employed to build the model, 
which achieved an accuracy of 81%, an area under the receiver oper-
ating characteristic curve (AUC) of 0.74, a sensitivity of 60%, and a 
specificity of 82%. The study found that the most important features in 
predicting diagnosis were: leukocyte count, red blood cell distribution 
width (RDW), hemoglobin, and serum calcium. 

4.1.3. LR model 
Joshi et al. [53] developed a LR model to predict COVID-19 PCR 

positivity based on complete blood count components and patient sex. 
The model was trained using 33 records of positive cases and 357 of 
negative cases from Stanford Health Care. The study selected three 
complete blood count (CBC) components (absolute neutrophil count, 
absolute lymphocyte count, hematocrit), and male sex as features in the 
model. Validation was conducted on a data set of 236 positive cases and 
2052 negative cases. The model achieved a C-statistic of 78%, sensitivity 
ranging between 86% and 93%, and specificity ranging between 35% 
and 55%. The authors explained that the model could be restricted to 
predicting positive patients, thereby enabling a 33% increase in 
appropriately allocated resources. 

Shoer et al. [54] developed a prediction model based on nine simple 
survey questions. The study used a data set derived from a national 
symptom survey answered over two million times in Israel. A total of 43, 
752 adults were included, of whom 498 self-reported being COVID-19 
positive. The survey questions were related to age, gender, prior medi-
cal conditions, smoking habits; and self-reported symptoms including 
fever, sore throat, cough, shortness of breath, and loss of taste or smell. 
The model was trained using an LR algorithm and achieved an AUC 
value of 0.737. 

Tordjman et al. [55] used a data set of 400 patients (258 positive) 
from three different hospitals in France: Cochin Hospital, Paris; 
Ambroise Paré Hospital, Boulogne; and Raymond Poincaré Hospital, 
Garches. The study employed a binary LR algorithm to build a scoring 
model to predict the probability of a positive COVID-19 diagnosis. The 
model achieved an AUC of 88.9%, a sensitivity of 80.3%, and positive 
predictive value (PPV) of 92.3%. The study suggested that four biolog-
ical variables were highly associated with COVID-19 diagnosis: lym-
phocytes, eosinophils, basophils, and neutrophils. 

Fig. 2. Relationships between ML approaches and COVID-19 applications reviewed in this article.  
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4.1.4. Other ML models 
Yang et al. [45] used patient demographic features (age, sex, race) 

and 27 routine laboratory tests for COVID-19 detection. The study used a 
data set of 5893 patients (with only 1402 RT-PCR positive cases) from 
the New York Presbyterian Hospital/Weill Cornell Medicine, USA. The 
study employed LR, DT, and RF, as well as GBDT, which was selected as 
it achieved the best performance. The model was validated using an 
independent data set, where it achieved an AUC value of 0.838, a 
sensitivity value of 0.758, and a specificity value that reached 0.740. 
The results indicated that higher inflammatory markers—such as LDH, 
ferritin, and CRP—led to positive prediction. Moreover, lower levels of 
lymphocyte count were found to drive negative predictions. 

Soltan et al. [56] developed two models to detect COVID-19 patients 
at an early stage using routinely collected data that can be available 
within 1 h (laboratory tests, blood gas, and vital signs). The study used a 
data set of 114,957 patients, of whom 437 were positive, from emer-
gency and acute medical services at Oxford University Hospitals. The ML 
algorithms used were LR, RF, and extreme gradient boosted tree (XGBDT), 
the latter of which yielded the best performance. The emergency 
department model achieved an AUC of 93.9%, a sensitivity of 77.4%, 
and a specificity of 95.7% for all patients attending hospital; the ad-
missions model achieved an AUC of 94%, a sensitivity of 77.4%, and a 
specificity of 94.8% for patients admitted to hospital. According to the 
model, the highest-ranking features were: laboratory blood markers 
(CRP, eosinophils, and basophils), vital signs (oxygen requirement and 
respiratory rate), and blood gas measurements (calcium and methemo-
globin). The admission model, however, demonstrated markedly higher 
weights for CRP and WBC counts and lower weights for blood gas 
measurements. 

In Brazil, de Moraes et al. [57] developed a model using a data set of 
235 COVID patients, of which 102 were positive cases. The study 
employed neural networks (NN), RF, SVM, GBDT, and LR. The SVM 
algorithm was selected as it achieved the best performance: an AUC of 
85%, a sensitivity of 68%, and a specificity of 85%. The model suggested 
that the three most important variables for predicting diagnosis were the 
numbers of lymphocytes, leukocytes, and eosinophils. 

Alakus and Turkoglu [58] developed a model for the detection of 
COVID-19. The authors used a data set of 600 patients with 18 features 
obtained from Hospital Israelita Albert Einstein at Sao Paulo, Brazil. The 
features represent laboratory test results including hematocrit, hemo-
globin, platelets, and red blood cell count. In addition, the performance 
of six deep learning architectures was evaluated: ANN, CNN, Long 
short-term memory (LSTM), recurrent neural network (RNN), 
CNNLSTM, and CNNRNN. The study concluded that the LSTM had the 
best performance when 10-fold cross-validation was performed, 
achieving an accuracy of 86.66%, recall of 99.42%, and AUC of 62.50%. 

4.1.5. Combinations of several ML approaches 
Cabitza et al. [19] trained ML algorithms for the detection of 

COVID-19 positive patients. The following five algorithms were used: 
RF, NB, LR, SVM, and KNN. This study used three different training data 
sets for 1624 patients admitted to San Rapheal Hospital, Italy. The 
complete data set consisted of 72 features describing numerous aspects 
of patient records, including CBC; biochemical, coagulation, hemoga-
sanalysis, and CO-oxymetry values; age; sex; and specific symptoms at 
triage. The other two sub-data-sets consisted of 32 and 21 features, 
respectively. The performance, evaluated in terms of the AUC of the 
models, ranged from 0.83 to 0.90. The internal–external validation ob-
tained good results, with AUCs ranging from 0.75 to 0.78 and specificity 
values from 0.92 to 0.96. The study reported LDH, AST, CRP, and cal-
cium as the most important features. Age was also found to be a sig-
nificant predictor. In addition, fibrinogen, cross-linked fibrin 
degradation products (XDPs), and WBC were among the essential 
features. 

An ensemble of seven traditional ML algorithms was developed by 
Goodman-Meza et al. [59] for the diagnosis of COVID-19. The authors 

used RF, LR, SVM, multilayer perceptron, stochastic gradient descent, 
XGBoost, and Adaboost. The study was conducted on a data set extracted 
from electronic medical records of the UCLA Health System (Los 
Angeles, CA, USA). The data set consisted of 1455 records, with 1273 
negative and 182 positive cases. Each case was described using de-
mographic and laboratory features. Experimental analysis revealed that 
inclusion of inflammatory markers could improve the prediction of the 
model. In particular, the most important features for the diagnosis of 
COVID-19 were CRP and LDH. Although the proposed model achieved a 
high sensitivity value, it had a high number of false positives (low PPV 
value). The model’s ability to detect negative cases was 64%. 

AlJame et al. [60] also used routine blood tests to predict COVID-19. 
A publicly available data set of 5644 patients in Brazil, with only 559 
COVID-19 positives, was used. Only 18 features were included, on the 
basis of other clinical studies that had demonstrated the importance of 
these features. The features, ordered from the highest-to the 
lowest-weighted, according to the model results, were: monocytes, 
platelets, leukocytes, urea, potassium, eosinophils, hemoglobin, lym-
phocytes, CRP, creatinine, AST, sodium, neutrophils, INR, age, baso-
phils, ALT, and, finally, albumin. The model initially used extra trees, 
RF, and LR as a first level, and then used the predictions of this level as 
input features for a second level that employed XGBoost in order to 
boost the performance. The resultant performance was higher than that 
of other models on the same data set. The model achieved an overall 
accuracy of 99.88%, AUC of 99.38%, sensitivity of 98.72%, and speci-
ficity of 99.99%. 

Feng et al. [61] developed a model for early diagnosis of COVID-19 
patients. A data set of 132 patients (26 positive) was obtained from the 
Chinese People’s Liberation Army General Hospital in Beijing. The study 
compared the performance of several ML approaches and found that LR 
with the least absolute shrinkage and selection operator (LASSO) ach-
ieved the best performance in the external validation set and testing set, 
with AUCs of 0.938 and 0.841, recall of 1.000 and 1.000, and specificity 
of 0.778 and 0.727, respectively. The model suggested that the most 
important features in predicting diagnosis were: age, interleukin-6 
(IL-6), systolic blood pressure, monocyte ratio, and fever classification. 

Soares et al. [62] developed a model to predict diagnosis of 
COVID-19. The study used a data set of 599 patients (81 positives) from 
Brazil. The model was trained using a combination of three techniques: 
SVM, SMOTEBoost, and ensembling. The model achieved a specificity of 
92.16%, NPV of 95.29%, and sensitivity of 63.98%. 

4.2. Predicting mortality risk and severity 

Early identification of high-risk COVID-19 patients is essential, as it 
can facilitate the establishment of more responsive health care systems 
and ensure instant intervention and intensive care, thereby improving 
patient outcomes. Moreover, early recognition of critical patients can 
help to mitigate the burden on health systems, enabling them to prior-
itize the allocation of limited resources during peaks and optimize 
decision-making [20]. 

Several prognostic scores that aim to improve clinical decision 
making have been broadly used for respiratory infections pre-COVID-19 
and have been validated by national and international guidelines [63, 
64]. For example, the CURB-65 score (confusion, urea, respiratory rate, 
blood pressure, and age below 65 years) and the pneumonia severity index 
are widely used in predicting 30-day mortality. In addition, A-DROP, 
which is a modified version of CURB-65. 

The National Early Warning Score 2 predicts death or ICU admission 
within 24 h. The quick Sequential [sepsis-related] Organ Failure Assessment 
score predicts mortality and ICU admission among patients with sus-
pected infection in emergency departments and in ward settings. 

However, there is insufficient information available regarding the 
validity of these scores in the COVID-19 setting, and some of them have 
been found to underestimate mortality compared with their original 
validation in non-COVID-19 patients [63]. 
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Fast and accurate prognostic tools are needed to stratify COVID-19 
patients early, predict mortality and critical outcomes, and wisely 
direct limited resources to patients most in need; this is particularly 
crucial during pandemic peaks. According to Pollack [65], “severity of 
illness is defined as the extent of physiological decompensation or organ 
system loss of function; in contrast, risk of mortality refers to the like-
lihood of dying.” In ML, the task of predicting mortality risk and severity 
is usually formulated as a classification problem. ML algorithms are built 
to predict whether or not confirmed COVID-19 patients will develop 
critical complications. The following is a summary of the reported 
prognostic models classified by the selected ML approach. 

4.2.1. XGBoost model 
Valid et al. [66] developed a model to predict mortality and critical 

events of hospitalized COVID-19 patients. The study used a data set of 
4098 patients from five hospitals in New York City, USA. The ML al-
gorithm XGBoost and baseline comparator models were used to build 
the prediction model. The model achieved AUCROC values for mortality 
of 0.89 at 3 days, 0.85 at 5 and 7 days, and 0.84 at 10 days; moreover, 
AUCROC values of 0.80 at 3 days, 0.79 at 5 days, 0.80 at 7 days, and 
0.81 at 10 days were obtained for critical event prediction. The study 
found that the critical features for predicting mortality were older age, 
anion gap, and CRP, while the strongest effectors for predicting a critical 
event were acute kidney injury on admission, elevated LDH, tachypnea, 
and hyperglycemia, at 7 days. 

Yan et al. [67] developed a model to predict criticality and mortality 
in COVID-19 patients. The study used a data set from 375 patients (201 
survivors) from Tongji Hospital in Wuhan. The ML algorithm XGBoost 
was employed and achieved an accuracy of 93%. With this model, the 
key features for predicting mortality risk were: LDH, lymphocyte, and 
high-sensitivity CRP (hs-CRP). 

Yan et al. [68] developed a model to predict the survival of 
COVID-19 patients. A data set of 404 infected patients was used (213 
survivors and 191 non-survivors) from Tongji Hospital in Wuhan, China. 
The study employed the XGBoost classifier, which recognized that the 
most discriminative features of patient survival were LDH, lymphocytes, 
and hs-CRP. The model achieved an accuracy exceeding 90%. 

Wang et al. [69] developed two models to predict mortality in 
COVID-19 patients. The study used a data set from 296 patients (of 
whom 19 died) from the First People’s Hospital of Jiangxia District in 
Wuhan, China. The ML algorithm XGBoost was employed to build the 
models. The clinical model was built using age, history of hypertension, 
and coronary heart disease and achieved an AUC of 83%. The laboratory 
model was established using age, hsCRP, oxygen saturation (SpO2), 
neutrophil and lymphocyte count, D-dimer, AST, and glomerular 
filtration rate. This model achieved a better performance, with an AUC 
of 88% in the validation cohort. 

Rechtman et al. [70] developed a model to predict COVID-19 mor-
tality in the New York hospital system. The study used a data set of 8770 
patients (1114 non-survivors) and selected the XGBoost algorithm to 
build the prediction model, which achieved an AUC of 0.86. The study 
found that the risk factors for COVID-19 mortality were older age, male 
sex, higher body mass index (BMI), higher respiratory rate, higher heart 
rate, and chronic kidney disease (CKD). 

Bertsimas et al. [71] developed the COVID-19 Mortality Risk tool 
using the XGBoost algorithm to predict mortality. The tool was built 
using a data set of 3927 COVID-19 positive patients from 33 different 
hospitals across Europe and the US. The model was validated using three 
validation cohorts and achieved AUC values ranging between 0.92 and 
0.81. The study found that the primary risk factors for mortality were 
increased age, decreased oxygen saturation, elevated CRP levels, blood 
urea nitrogen (BUN), and blood creatinine. 

Guan et al. [72] developed a model to predict COVID-19 mortality in 
a retrospective cohort study. A data set of 1270 patients was employed 
to build the model using the XGBoost ML algorithm. The model could 
accurately predict death risk, exceeding a precision of 90%, a sensitivity 

of 85%, and F1 scores of 0.90. The study found that disease severity, age, 
and serum levels of hs-CRP, LDH, ferritin, and IL-10 were the most 
significant predictors of death risk in patients with COVID-19. 

4.2.2. SVM 
Booth et al. [73] developed a ML model to predict mortality in 

COVID-19-positive patients using only a multiplex of serum biomarkers 
that could be quickly obtained from most clinical chemistry labora-
tories. The data set from the University of Texas Medical Branch was 
collected from 398 patients (355 survivors and 43 non-survivors from 
COVID-19) to predict death up to 48 h in advance. The study employed 
the ML techniques LR and SVM to build the prediction model. From the 
26 parameters that were initially collected, the top five 
highest-weighted laboratory values were then selected—CRP, BUN, 
serum calcium, serum albumin, and lactic acid. The SVM model ach-
ieved 91% sensitivity and 91% specificity (AUC 0.93) for predicting 
patient death. The study suggested that CRP, lactic acid, and serum 
calcium had the most substantial impact and made the greatest contri-
bution to model results when considered over the entire data set. 

Sun et al. [74] developed a model to predict severe symptoms in 
COVID-19 patients. A data set of 336 patients from Shanghai Public 
Health Clinical Center was used. The ML algorithm SVM was employed 
to build the prediction model. Out of 220 clinical and laboratory fea-
tures, the model selected four features that made the greatest con-
tribution—age, GSH, CD3 ratio, and total protein. The model achieved 
an AUC of 97.57%. 

Yao et al. [75] developed a model to predict the severity of COVID-19 
using blood or urine test data. The data set consisted of 137 patients (75 
severely ill) from the Tongji Hospital Affiliated to Huazhong University 
of Science and Technology. The ML algorithm SVM was used to build the 
severeness detection model, which achieved an accuracy of 81.48%. The 
highest-ranking features detected by the model were age, blood test 
values (neutrophil percentage, calcium, and monocyte percentage), and 
urine test values (urine protein, red blood cells (occult), and pH (urine)). 

Zhao et al. [76] developed a model for prediction of severity in pa-
tients with moderate COVID-19. Six key features were eventually 
selected out of 22 features using univariate and multivariate LR models. 
The study employed the SVM algorithm to build the prediction model, 
which achieved an accuracy of 91.38%, a sensitivity of 0.90, and a 
specificity of 0.94. The top six features for predicting severity were: IL-6, 
high-sensitivity cardiac troponin I (cTnI), procalcitonin, hsCRP, chest 
distress, and calcium. 

4.2.3. LR 
Hu et al. [77] developed a ML model for early prediction of the 

mortality risk of COVID-19 patients. A data set of 183 patients (115 
survivors and 68 non-survivors from COVID-19) from the Sino-French 
New City Branch of Tongji Hospital, Wuhan, was used to build the 
prediction model. In addition, a total of 64 patients (33 survivors and 31 
non-survivors from COVID-19) from the Optical Valley Branch of Tongji 
Hospital, Wuhan, were used to externally validate the final predictive 
model. Demographic, clinical, and first laboratory data after admission 
were extracted from patients’ medical records. The study initially 
attempted 10 methods and then selected five of them (LR, partial least 
squares (PLS) regression, elastic net (EN) model, RF, and bagged flexible 
discriminant analysis (FDA)) according to the model’s performance and 
property to be reported. The LR model, RF, and bagged FDA yielded 
similar performance, as measured by the AUC. LR was selected as the 
final model because of its simplicity and high interpretability. The most 
essential four variables selected by the models were: age, hsCRP level, 
lymphocyte count, and D-dimer level. The performance of the model 
was evaluated using both 10-fold cross-validation on the training data 
set and independent testing using the external validation set. The AUC, 
sensitivity, and specificity reached 89.5%, 89.2%, and 68.7% during 
cross-validation and 88.1%, 83.9%, and 79.4% with independent 
testing, respectively. The study found that non-survivors were more 
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likely to be male and older than survivors. Moreover, levels of all the 
inflammatory factors were higher in the non-survivors than in the sur-
vivors. In particular, levels of hsCRP and D-dimer were more than six 
times and almost three times higher in non-survivors than in survivors, 
respectively. Conversely, the lymphocyte count was almost twice as high 
in the survivors as in the non-survivors. The study offers a web tool to 
calculate a risk score based on the four selected variables (age, hsCRP, 
lymphocyte count, and D-dimer), which could enable the adoption of 
more interventions at an early stage. 

Zhao et al. [78] developed a risk-score model to predict mortality 
and ICU admission. The study used a data set from 641 
laboratory-confirmed COVID-19 patients (195 admitted to the ICU, 82 
expired) from Stony Brook University Hospital, USA. Symptoms, 
comorbidities, demographics, laboratory findings, vital signs, and im-
aging findings were all compared with those of non-critical COVID-19 
patients to identify the most significant variables predicting the two 
outcomes. The study employed the ML approach and LR and achieved 
good accuracy with an AUC of 0.83 for mortality prediction and 0.74 for 
ICU admission prediction on the testing data set. The study found that 
the common top predictors of mortality and ICU admission were 
elevated LDH, procalcitonin, and reduced SpO2. Moreover, a reduced 
lymphocyte count and smoking history were among the top predictors of 
ICU admission but were not associated with increased mortality in this 
study. On the other hand, cardiopulmonary parameters (i.e., history of 
heart failure, chronic obstructive pulmonary disease (COPD), elevated 
heart rate) were among the top predictors of mortality in COVID-19 
patients, but ICU admission was not. 

Huang et al. [79] developed a model to predict progression to severe 
symptoms among COVID-19 patients. The study used a data set of 125 
COVID-19 patients (93 mild disease, 32 severe) from Guangzhou Eighth 
People’s Hospital, China. The ML algorithm LR was employed to build 
the model, which achieved an AUC of 94.4%, a sensitivity of 94.1%, and 
a specificity of 90.2%. The authors explained that while as many as 17 
features notably differed between the mild and severe groups at the time 
of admission, according to the model, only four factors were indepen-
dently associated with progression to a severe condition: comorbidities, 
respiratory rate, CRP, and LDH. 

Xie et al. [80] developed a model to predict mortality among 
COVID-19 patients. The study used a data set of 444 patients from two 
different hospitals (Tongji Hospital and Jinyintan Hospital, Wuhan, 
China). The LR algorithm was employed to build the prediction model, 
which achieved c = 0⋅89 and c = 0⋅98 for internal and external vali-
dation, respectively. The model identified four independent factors for 
predicting mortality: age, lymphocyte count, LDH, and SpO2. However, 
the authors explained that a few factors were not available in the study’s 
cohorts and were thus not included in the model; these factors included 
D-dimer and organ-specific injury markers (including cTnI, ALT, and 
BUN). This might have affected the choice of the proposed prognostic 
factors. 

Zhou et al. [81] developed a model to predict the severity of infection 
in COVID-19 patients. The study used a data set of 377 patients (172 
severe, 106 non-severe) from the Central Hospital of Wuhan, China. The 
LR model was employed to build the prediction model, which achieved 
an AUC of 87.9%, a specificity of 73.7%, and a sensitivity of 88.6%. The 
results suggested that three independent factors were associated with 
severity in patients with COVID-19: age, CRP, and D-dimer. Moreover, 
the product N/L*CRP*D-dimer was found to be a significant predictor of 
the severity of the disease. 

Zhu et al. [82] developed a model to assess the severity of infection 
among COVID-19 patients. The study used a data set of 127 patients (16 
severe) from Hwa Mei Hospital, University of Chinese Academy of Sci-
ences, Ningbo, China. LR was employed to build the risk prediction 
model, which achieved an AUC of 90.0%. The study observed significant 
increases in neutrophils percentage, neutrophil-to-lymphocyte ratio, 
fibrinogen, SA, CRP, IL-6, IL-10, IFN-g, pO2, and pCO2, and decreases in 
lymphocytes percentage, lymphocyte count, and platelet count in the 

severe group. The independent risk factors for assessing the severity 
were: high levels of peripheral blood cytokine IL-6, CRP, and hyper-
tension. The study emphasized the essential role of IL-6 in the severity of 
COVID-19. 

Gong et al. [83] developed a model to predict the risk of progression 
to severe COVID-19. The study used a data set of 372 hospitalized pa-
tients from China. Five ML approaches were employed: LASSO regres-
sion, LR, DT, RF, and SVM. The LR model was selected for further 
analysis to build the model, which achieved an AUC of 0.853, sensitivity 
of 77.5%, and specificity of 78.4%. The study identified seven features 
associated with higher odds of severe COVID-19: older age, elevated 
serum LDH, CRP, coefficient of variation of RDW, BUN, direct bilirubin, 
and lower albumin on admission. 

Aloisio et al. [84] developed a model to predict mortality and ICU 
admission among COVID-19 patients. A data set of 427 patients (89 
deaths) was obtained from the ‘Luigi Sacco’ academic hospital in Milan, 
Italy. The study employed univariate and multivariate LR analysis. The 
univariate analysis revealed that the parameters cTnT, LDH, CRP, al-
bumin, D-dimer, and ferritin were all associated with higher probabili-
ties of death and intensive care. On the other hand, the multivariate 
analysis revealed that age, high serum concentration of LDH, and low 
serum concentration of albumin were significantly associated with 
death. 

Liu et al. [85] developed a model to predict mortality in COVID-19 
patients using a data set of 336 severely ill patients (34 of whom died) 
from China. The study employed multivariable LR to build the predic-
tion model, which achieved an AUC of 99.4%, a sensitivity of 100.0%, 
and a specificity of 97.2%. The study found that decreased lymphocyte 
ratio, elevated BUN, and D-dimer were highly associated with death. 

Miao et al. [86] developed a model for early prediction of in-hospital 
mortality of COVID-19 patients, using a data set of 1018 patients who 
were confirmed to have COVID-19. The study employed univariate and 
multivariate LR analyses to build prediction models and found that the 
model combining increased IL-6 and decreased CD8+ T cell count ach-
ieved the best performance, with an AUC of 0.907. 

Han [87] developed a model to identify the risk factors that led to 
progression to severe COVID-19. A data set of 47 patients (24 severe) 
with confirmed COVID-19 from Renmin Hospital of Wuhan University 
was used. The study employed LR analysis and found that APACHE II, 
SOFA, lymphocytes, CRP, LDH, AST, cTnI, and BNP were significant 
independent risk factors for COVID-19 severity. Moreover, it concluded 
that LDH had tremendous potential as a prognostic factor for early 
recognition of lung injury and severe COVID-19 events, with an AUC of 
0.9727, maximum sensitivity of 100.0%, and specificity of 86.67%. In 
addition, lymphocyte counts—particularly CD3, CD4, and CD8 T 
cells—were also closely associated with the severity of COVID-19, with 
an AUC of 0.9845, maximum specificity of 91.30%, and sensitivity of 
95.24%. Further, the study recognized that LDH was positively corre-
lated with CRP, AST, BNP, and cTnI but negatively correlated with 
lymphocyte cells and their subsets. 

4.2.4. Other models or combinations of several models 
Li et al. [88] developed a model to predict the mortality risk of 

COVID-19 patients, given the patient’s underlying health conditions, 
age, sex, and other factors. Two publicly available data sets were used: 
the GitHub data set, consisting of 28,958 cases (530 deaths) after pro-
cessing; and the Wolfram data set, consisting of 1448 records (123 
deaths). Better results were achieved with the Wolfram data set than 
with the Github data set, which lacked precise information and con-
tained mostly generalized information on each case, thereby limiting the 
prediction capability of models. Several ML and data learning ap-
proaches were employed: LR, RF, SVM, one-class SVM, isolation forest, 
local outlier factor, and autoencoder. The autoencoder model achieved 
the best results—approximately 73% AUC, 97% accuracy, 97% speci-
ficity, and 40% sensitivity. The results indicated that having a chronic 
disease or gastrointestinal, kidney, cardiac, or respiratory symptoms was 

N. Alballa and I. Al-Turaiki                                                                                                                                                                                                                  



Informatics in Medicine Unlocked 24 (2021) 100564

9

markedly associated with patient death. 
Terwangne et al. [89] developed a model named COVID-19 EPI-S-

CORE to predict the severity classification of patients hospitalized with 
COVID-19. The study also aimed to assess the WHO COVID-19 severity 
classification. The data set used was obtained from 295 RT-PCR-positive 
COVID-19 patients hospitalized in Epicura Hospital Center, Belgium. An 
ML approach, Bayesian network analysis, was employed to build the 
EPI-SCORE model and predict the accuracy of WHO severity classifica-
tion. The six features that contributed most and that were automatically 
selected by the model were WHO severity classification, acute kidney 
injury, age, LDH, lymphocytes, and activated prothrombin time (aPTT). 
The model obtained ROC curve indices of 83.8% and 91% for the models 
based on WHO classification only and for EPI-SCORE, respectively. The 
study demonstrated that the WHO severity classification is a reliable tool 
for predicting severe outcomes among COVID-19 patients. Moreover, 
adding a few clinical and laboratory features could remarkably enhance 
its performance, as per the COVID-19 EPI-SCORE model. 

Izquierdo et al. [90] developed a model to predict ICU admission 
using an ML data-driven algorithm. The study used a data set of 10,504 
COVID-19 patients (1353 hospitalized, 83 admitted to ICU) from the 
general population of the region of Castilla-La Mancha (Spain), which 
included clinical information regarding the diagnosis, progression, and 
outcome of the infection. A DT algorithm was employed. The model 
achieved accuracy, recall, and AUC values of 0.68, 0.71, and 0.76, 
respectively. The three variables that contributed most to predicting ICU 
admission were age, fever, and tachypnea with or without respiratory 
crackles. 

Liang et al. [91] developed a risk score model to predict which pa-
tients are likely to develop a critical illness. A data set of 2300 patients 
from 575 hospitals was included (1590 patients for training the model 
and 710 other patients for validation). The study used LASSO regression 
to help with variable selection; 19 variables out of 72 were identified as 
important predictors and then used in LR models to build the risk score 
prediction model. Only the 10 most significant predictors were included 
in the risk score: CXR abnormality, age, hemoptysis, unconsciousness, 
number of comorbidities, cancer history, neutrophil-to-lymphocyte 
ratio, LDH, and direct bilirubin. The model achieved an AUC of 0.88 
in both the training and validation cohorts. The risk score model is 
available at http://118.126.104. 170/. 

Levy et al. [92] developed the NOCOS calculator, which predicts 
7-day survival in COVID-19 patients. A data set of 11,095 patients (2596 
non-survivors) from the Northwell Health system facilities, USA, was 
used. The study employed LASSO regression to build the prediction 
model, which achieved AUCs of 0.86, 0.82, and 0.82, respectively, for 
internal, external, and validation. The model found that the optimal 
predictors for survival were: serum BUN, age, absolute neutrophil count, 
RDW, SpO2, and serum sodium. 

Nemati et al. [93] built a prediction model to estimate the duration 
of hospital stay of patients with COVID-19 using patients’ clinical in-
formation. A data set of 1182 hospitalized patients was obtained from an 
open-access data set collected by a group of researchers from different 
universities and research laboratories. Several statistical analysis 
methods and ML approaches were used to implement different survival 
analysis models. According to the results, the stagewise 
gradient-boosting survival model delivered the most accurate 
discharge-time forecast, with a C-index of 71.47. The findings indicated 
that discharge probabilities were lower for males and older age groups. 

Li et al. [94] developed a model to predict the mortality of 
COVID-19. The ML algorithms GBDT, LR model, and simplified LR were 
trained and validated using a data set of 2924 patients including 257 
non-survivors. The GBDT achieved the highest fivefold AUC of 0.941. 
The study found that leukomonocyte (%), urea, age, and SpO2 were the 
best predictors of mortality. 

Gao et al. [20] developed a mortality risk prediction model for 
COVID-19 that uses patients’ clinical data in EHRs on admission to 
enable accurate and expeditious mortality risk stratification of patients 

up to 20 days in advance. The data set included 2520 consecutive 
COVID-19 patients with known outcomes (discharge or death) from two 
affiliated hospitals of Tongji Medical College, Huazhong University of 
Science and Technology, including Sino-French New City Campus of 
Tongji Hospital and Optical Valley Campus of Tongji Hospital, and The 
Central Hospital of Wuhan. The model was built using four ML meth-
ods—LR, SVM, GBDT, and NN. From 34 features, the study selected 14 
for modeling, eight of which had a positive association with mortality 
(high risk: consciousness, male sex, sputum, BUN, respiratory rate, 
D-dimer, number of comorbidities, and age), whereas six features were 
negatively correlated with mortality (low risk: platelet count, fever, al-
bumin, SpO2, lymphocyte, and CKD). The model was validated in an 
internal validation cohort and two external validation cohorts, where it 
achieved AUCs of 96.21%, 97.60%, and 92.46%, respectively. 

Tables 3 and 4 summarize reviewed studies on the diagnosis and 
severity and mortality risk prediction of COVID-19, respectively. 

5. Discussion 

Research efforts for the prediction of COVID-19 can be classified into 
statistical and data analytics methods [98]. Experimental results for 
various statistical and mathematical models reveal that they provide 
poor predictions as they are incapable of handling large amounts of data 
[98]. Regarding data analytics methods, the applications are mostly 
based on historical data only and do not consider external factors that 
affect the spread of the infection, such as population and median age 
index [98]. To construct prediction approaches for COVID-19, ML and 
AI techniques have been widely used. 

The current paper demonstrates the great potential of ML in tackling 
the novel COVID-19 crisis by facilitating complex decision-making and 
fact interrogation. We note that the existing applications of ML methods 
for COVID-19 diagnosis and for severity and mortality risk prediction 
are based on supervised learning techniques. This is mainly because the 
tasks at hand are usually formulated as classification problems. Super-
vised learning is easy to understand and readily available on numerous 
data analytics platforms. 

We observe that the most widely used algorithm for COVID-19 
diagnostic and prognostic models is LR, followed by XGBoost, then 
SVM. As for prognostic models, LR was by far the most selected model. 
On the other hand, LR, RF, SVM, and XBOOST were all popular in the 
reported diagnostic models. Fig. 3 shows a summary of the ML algo-
rithms used in the reported studies. 

Most of the work in the literature has been experimental, and the 
produced models have not been deployed in real-world applications. 
The reported ML models have exhibited promising predictive ability; 
however, they are impeded by several limitations. The available data 
sets may suffer from selection bias. The prognosis studies mostly 
encompass inpatients, who are usually sicker, whereas the diagnosis 
studies typically involve patients who already exhibit symptoms fitting 
with COVID-19. More data are needed on asymptomatic individuals and 
those with mild symptoms, who might not visit the hospital nor report 
their suspicion. Such individuals are still contagious and may pose a risk 
to the community by spreading the disease. They might also deteriorate 
to a severe condition before receiving the care that might have improved 
their outcome otherwise. Moreover, the majority the studies reviewed in 
this paper employed imbalanced data sets, that is, those where the 
majority of records in the training data set represent the negative class, 
and the positive class is under-represented. Thus, the reported perfor-
mance of various ML algorithms applied in the context of COVID-19 may 
have been affected by bias. A high accuracy value in such cases could be 
attributed to the ability of the model to accurately identify negative 
samples and erroneously exclude all the positive COVID-19 cases. More 
effort is required to handle imbalanced data sets prior to the application 
of ML to COVID-19. The predictive performance of the models might 
also differ when using representative data that incorporates the targeted 
population; this merits further investigation. 
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In this review, we focused on ML models that used only readily 
available clinical and laboratory data, which could be made available 
quickly, i.e., within an hour. This represents a faster and cheaper diag-
nostic alternative to the RT-PCR test, with comparable, although infe-
rior, performance [19]. 

Early identification of COVID-19 patients has huge implications for 
controlling the spread of the disease by isolating potential patients at an 
early stage. Moreover, such identification can be used to detect 
asymptomatic COVID-19 patients [48], where clinical abnormalities 
might be mild [99,100]. 

Although these predictions alone cannot rule out COVID-19, they 
might provide some insights to health care providers in areas with 
limited resources (e.g., limited supplies of personal protective 

equipment) [101]. They can also be incredibly valuable during a 
pandemic peak to mitigate the shortage of reference tests. Moreover, 
they can be used to cross-check RT-PCR tests where false-negative re-
sults are well documented [39,47,48]. 

In addition, early prediction of severity and mortality helps to pri-
oritize high-risk individuals, provide them with the best possible care, 
and hopefully improve their outcomes. It can also reduce pressure on 
health care systems, support decision-making, and enable limited re-
sources to be wisely utilized. 

In order to enhance the interpretability of prediction models, reduce 
their complexity, and improve their accuracy, numerous studies have 
employed feature selection, where only a set of relevant features that 
contribute most to the prediction output are selected and used to build 

Table 3 
Diagnosing COVID-19.  

Study; outcome Highest-weighted features ML approaches Sample size (no. of 
positive cases) 

Performance 

Li et al. [46]; diagnosis of 
COVID-19 and 
discrimination between 
influenza and COVID-19 

Age, CT scan result, temperature, 
lymphocyte, fever, coughing 

XGBoost 413 patients (− ) Sensitivity of 92.5% and 
specificity of 97.9% 

Kukar et al. [49]; diagnosis of 
COVID-19 

MCHC, eosinophils count, albumin, INR, 
prothrombin activity % 

RF, DNN, and XGBoost 
(selected) 

5333 patients (160 
positive) 

AUC of 97%, sensitivity of 81.9%, 
specificity of 97.9% 

Bayat et al. [48]; diagnosis of 
COVID-19 

Ferritin, WBC, eosinophil, temperature, CRP, 
LDH, D-dimer, basophil count, monocyte %, 
AST (in descending order of importance) 

XGBoost 75,991 patients (7335 
positive) 

Accuracy of 86.4%, specificity of 
86.8%, sensitivity of 82.4% 

Schwab et al. [95]; diagnosis 
of COVID-19 

MISSING arterial tactic acid, age, leukocyte 
count, platelets, creatinine 

LR, NN, RF, SVM, and 
(XGBoost selected) 

5644 (556 positive) XGBoost model achieved AUC of 
0.66, sensitivity of 75%, and 
specificity of 49% 

Wu et al. [50]; diagnosis of 
COVID-19 

Total bilirubin, glucose, creatinine, LDH, CK- 
MB, potassium, total protein, calcium, 
magnesium, PDW, basophils 

RF 253 samples from 169 
suspected patients (105 
samples from 27 patients 
confirmed positive) 

AUC of 99.26%, a sensitivity of 
100%, and a specificity of 94.44% 
with an independent test set 

Brinati et al. [51]; diagnosis 
of COVID-19 

AST, lymphocytes, LDH, WBC, eosinophils, 
ALT, age 

DT, ET, KNN, LR, NB, SVM, 
TWRF, and (RF selected) 

279 patients (177 
positive) 

AUC of 84%, accuracy of 82%, 
sensitivity of 92%, PPV of 83%, 
and specificity of 65% 

Tschoellitsch et al. [52] Leukocyte count, RDW, hemoglobin, serum 
calcium 

RF 1528 patients (65 
positive) 

Accuracy of 81%, area under the 
ROC curve of 0.74, sensitivity of 
60%, and specificity of 82% 

Trodjman et al. [55]; 
diagnosis of COVID-19 

Lymphocyte, eosinophil, basophil, and 
neutrophil cell count 

Binary LR 400 total patients (258 
positive) 

AUC of 88.9%, sensitivity of 
80.3%, and PPV of 92.3% 

Shoer et al. [54]; diagnosis of 
COVID-19 

Age, gender, prior medical conditions, 
smoking habits, fever, sore throat, cough, 
shortness of breath, loss of taste or smell 

LR 43,752 surveys (498 self- 
reported COVID-19 
positive) 

AUC of 0.737 

Joshi et al. [53]; diagnosis of 
COVID-19 

Neutrophil count, absolute lymphocyte 
count, hematocrit, male sex 

LR 2777 patients (368 PCR 
positive) 

C-statistic of 78%, sensitivity of 
86–93%, and specificity of 
35–55% 

Yang et al. [45]; diagnosis of 
COVID-19 

LDH, ferritin, CRP, calcuim, lymphocytes LR, DT, RF, and (GBDT, 
selected) 

5893 patients (1402 
positive) 

AUC 83.8%, sensitivity 75.8%, 
and specificity reached 74% with 
an independent data set 

Soltan et al. [56]; diagnosis 
of COVID-19 

Eosinophils, basophils, and CRP, calcium, 
presentation oxygen requirement, respiratory 
rate 

LR, RF and (XGBDT, 
selected) 

114,957 patients (437 
positive) 

Emergency department and 
admissions models: AUCs of 
88.1% and 87.1%, and accuracies 
of 92.3% and 92.5% respectively 

Alakus and Turkoglu [58]; 
diagnosis of COVID-19 

[not mentioned] ANN, CNN, RNN, CNNLSTM, 
and CNNRNN, and (LSTM, 
selected) 

600 patients (80 positive) AUC of 62.50%, accuracy of 
86.66%, recall of 99.42% 

Cabitza et al. [19]; diagnosis 
of COVID-19 

Age, LDH, AST, CRP, calcium, fibrinogen, 
XDPs, WBC 

RF, NB, LR, SVM, and k- KNN 1624 patients (52% 
COVID-19 positive) 

AUC ranged from 83% to 90% 

Goodman-Meza et al. [59]; 
diagnosis of COVID-19 

Inflammatory markers, especially LDH, CRP, 
and the combination of CRP, LDH, and 
ferritin 

RF, LR, SVM, multilayer 
perceptron, stochastic 
gradient descent, XGBoost, 
and ADABoost 

1455 records (182 
positive) 

AUC of 91%, sensitivity of 93%, 
specificity of 64% 

Aljame et al. [60]; diagnosis 
of COVID-19 

Monocytes, platelets, leukocytes, urea, 
potassium, eosinophils, hemoglobin, 
lymphocytes, CRP (from highest to lowest) 

RF, extra trees and LR as a 
first level, then XGBoost for 
the second level 

5644 patients (559 
positive) 

AUC of 99.38%, sensitivity of 
98.72% and specificity of 99.99% 

Feng et al. [61]; diagnosis 
COVID-19 

Age, IL-6, systolic blood pressure, monocyte 
%, fever classification 

LR, Ridge regularization, DT, 
ADABoost, and Lasso 
regression (selected) 

132 patients (26 positive) AUC of 84.1% F-1 score of 0.571, 
recall of 1.000, specificity of 
0.727, and precision of 0.400 

Soares et al. [62]; diagnosis 
COVID-19 

[not mentioned]. All 16 features used: mean 
platelet volume, leukocytes, MCV, creatinine, 
red blood cells, basophils, monocytes, 
potassium, lymphocytes, MCHC, RDW, 
sodium, MCHC, eosinophils, CRP, urea 

SVM, SMOTEBoost, and 
ensembling 

599 patients (81 positive) Specificity of 92.16%, NPV of 
95.29%, and sensitivity of 
63.98%  
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Table 4 
Mortality risk and severity of COVID-19 prediction.  

Study Outcome Highest-weighted features ML approaches Sample size (no. of 
survivors and non- 
survivors) 

Performance 

Valid et al. 
[66] 

Prediction of 
mortality and 
critical events 

Acute Kidney Injury, LDH, tachypnea, 
glucose, diastolic blood pressure, CRP 

XGBoost 4098 patients (− ) AUC of 80% at 3 days 79% at 
5 days, 80% at 7 days, and 
81% at 10 days 

Yan et al. 
[67] 

Prediction of 
mortality and 
critical COVID-19 

LDH, lymphocytes, hsCRP XGBoost 375 patients (201 
survivors, 174 non- 
survivors) 

Accuracy of 93% 

Yan et al. 
[68] 

Prediction of 
mortality and 
critical COVID-19 

LDH, lymphocytes, hsCRP XGBoost 404 patients (213 
survivors and 191 non- 
survivors) 

Accuracy of 90% 

Wang et al. 
[69] 

Prediction of 
mortality 

Age, hsCRP, SpO2, neutrophil and 
lymphocyte count, D-dimer, AST, GFR 

XGBoost 296 patients (19 non- 
survivor) 

AUC of 88% 

Rechtman 
et al. [70] 

Prediction of 
mortality 

Age, male sex, higher BMI, higher 
respiratory rate, higher heart rate, CKD 

LR, XGBoost (selected) 8770 patients (1114 non- 
survivors) 

AUC of 86% 

Bertsimas 
et al. [71] 

Prediction of 
mortality 

Age, SpO2, CRP, BUN, blood creatinine XGBoost 3927 patients (− ) AUC ranged between 92% 
and 81% using three 
validation cohorts. 

Guan et al. 
[72] 

Prediction of 
mortality 

severity, age, serum levels of hs-CRP, LDH, 
ferritin, IL-10 

XGBoost 1270 patients (− ) Precision ¿90%, sensitivity 
¿85%, and F1 scores ¿0.90 

Booth et al. 
[73] 

Prediction of 
mortality risk 

CRP, lactic acid, calcium, BUN, serum 
albumin 

LR and SVM (selected) 398 patients (355 
survivors and 43 non- 
survivors from COVID-19) 

AUC 93%, 91% sensitivity, 
and 91% specificity 

Sun et al. 
[74] 

Prediction of 
critical COVID-19 

Age, GSH, CD3 ratio, total protein SVM 336 patients (26 severe/ 
critical) 

AUC of 97.57% 

Yao et al. 
[75] 

Prediction of 
critical COVID-19 

Age, neutrophil %, calcium, monocyte %, 
urine test values (urine protein, red blood 
cells (occult), and pH (urine)) 

SVM 137 patients (75 severe) Accuracy of 81.48% 

Zhao et al. 
[76] 

Prediction of 
critical COVID-19 

IL-6, high-sensitivity cTnI, procalcitonin, 
hsCRP, chest distress, calcium 

SVM 172 patients (60 severe) SVM achieved accuracy of 
91.38%, sensitivity of 90% 
and specificity of 94% 

Schwab et al. 
[95] 

Prediction of ICU 
admission 

pCO2, creatinine, pH SVM 556 patients (35 admitted, 
16 ICU) 

AUC of 98%, a sensitivity of 
80%, and a specificity of 96% 

Hu et al. [77] Prediction of 
mortality risk 

Age, hsCRP, lymphocyte count, D-dimer PLS regression, EN model, RF, 
FDA, and LR (selected) 

183 patients (115 
survivors and 68 non- 
survivors from COVID-19) 

AUC of 88.1%, sensitivity of 
83.9%, and specificity of 
79.4% 

Zhao et al. 
[78] 

Prediction of 
mortality 

Heart failure, procalcitonin, LDH, COPD, 
SpO2, heart rate, age 

LR 641 patients (195 
admitted to the ICU, 82 
non-survivors) 

AUC of 82% 

Zhao et al. 
[78] 

Prediction of ICU 
admission 

LDH, procalcitonin, smoking history, 
SpO2, lymphocyte count 

LR 641 patients (195 
admitted to the ICU, 82 
non-survivors) 

AUC of 74% 

Huang et al. 
[79] 

Prediction of 
critical COVID-19 

Comorbidities, respiratory rate, CRP, LDH LR 125 patients (32 severe) AUC of 94.4%, sensitivity of 
94.1%, and specificity of 
90.2%. 

Xie et al. [80] Prediction of 
mortality risk 

Age, lymphocyte count, LDH, SpO2 LR 444 patients [299 training, 
145 validation, 155/299 
and 69/145 non- 
survivors] 

(c = 0⋅89) and (c = 0⋅98) for 
internal and external 
validation. 

Zhou et al. 
[81] 

Prediction of 
critical COVID-19 

Age, CRP, D-dimer, product of N/ 
L*CRP*D-dimer 

LR 377 patients (172 severe, 
106 non-severe) 

AUC of 87.9%, specificity of 
73.7% and sensitivity of 
88.6% 

Zhu et al. 
[82] 

Prediction of 
critical COVID-19 

IL-6, CRP, hypertension LR 127 patients (16 severe) AUC of 90.0% 

Gong et al. 
[83] 

Prediction of 
critical COVID-19 

Older age; higher LDH, CRP, RDW, BUN, 
and direct bilirubin; lower albumin 

LASSO regression, DT, RF, 
and SVM, and LR (selected) 

372 patients (72 severe) AUC of 85.3%, a sensitivity of 
77.5%, and specificity of 
78.4% 

Aloisio et al. 
[84] 

Prediction of 
mortality and 
critical COVID-19 

cTnT Univariate LR 427 patients (89 non- 
survivors) 

AUC of 94% 

Aloisio et al. 
[84] 

Prediction of 
mortality and 
critical COVID-19 

LDH Univariate LR 427 patients (89 non- 
survivors) 

AUC of 89% 

Aloisio et al. 
[84] 

Prediction of 
mortality and 
critical COVID-19 

CRP Univariate LR 427 patients (89 non- 
survivors) 

AUC of 87% 

Aloisio et al. 
[84] 

Prediction of 
mortality and 
critical COVID-19 

Albumin Univariate LR 427 patients (89 non- 
survivors) 

AUC of 87% 

Aloisio et al. 
[84] 

Prediction of 
mortality and 
critical COVID-19 

D-dimer Univariate LR 427 patients (89 non- 
survivors) 

AUC of 84% 

Aloisio et al. 
[84] 

Ferritin Univariate LR 427 patients (89 non- 
survivors) 

AUC of 77% 

(continued on next page) 
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Table 4 (continued ) 

Study Outcome Highest-weighted features ML approaches Sample size (no. of 
survivors and non- 
survivors) 

Performance 

Prediction of 
mortality and 
critical COVID-19 

Aloisio et al. 
[84] 

Prediction of 
mortality and 
critical COVID-19 

Age, high LDH, low albumin Multivariate LR 427 patients (89 non- 
survivors) 

AUC of 88%–89%. 

Liu et al [85] Prediction of 
mortality 

Decreased lymphocyte ratio, elevated 
BUN, raised D-dimer 

Multivariate LR 336 severe patients (34 
non-survivors) 

AUC of 99.4%, sensitivity of 
100.0% and specificity of 
97.2% 

Miao et al. 
[86] 

Prediction of 
mortality 

IL-6 and lymphocyte subsets (CD8+ T cell) LR 1018 patients (− ) AUC of 90.7% 

Bai et al. [96] Prediction of 
mortality and the 
outcome 

Creatine kinase LR 127 patients (36 non- 
survivors) 

AUC of 86.4% 

Bai et al. [96] Prediction of 
mortality and 
outcome 

CRP LR 127 patients (36 non- 
survivors) 

AUC of 87% 

Bai et al. [96] Prediction of 
mortality and 
outcome 

Ferritin LR 127 patients (36 non- 
survivors) 

AUC of 83.3% 

Bai et al. [96] Prediction of 
mortality and 
outcome 

IL-6 LR 127 patients (36 non- 
survivors) 

AUC of 78.1% 

Bai et al. [96] Prediction of 
mortality and 
outcome 

Lymphocyte CD3+ LR 127 patients (36 non- 
survivors) 

AUC of 91.5% 

Bai et al. [96] Prediction of 
mortality and 
outcome 

LDH LR 127 patients (36 non- 
survivors) ≥

AUC of 92.8% 

Bai et al. [96] Prediction of 
mortality and 
outcome 

Troponin I LR 127 patients (36 non- 
survivors) 

AUC of 93.9%       

Bai et al. [96] Prediction of 
mortality and 
outcome 

Prothrombin time LR 127 patients (36 non- 
survivors) 

AUC of 92% 

Bai et al. [96] Prediction of 
mortality and 
outcome 

Procalcitonin LR 127 patients (36 non- 
survivors) 

AUC of 90% 

Han [87] Prediction of 
critical COVID-19 

Gender, APACHE II, SOFA, lymphocytes 
(including subsets), CRP, LDH, AST, cTnT, 
BNP, WBC, neutrophil count, urea 

LR 47 patients (24 severe) (not specified) 

Han [87] Prediction of 
critical COVID-19 

LDH LR 47 patients (24 severe) AUC of 97.27%, sensitivity 
100.00% and specificity 
86.67% 

Han [87] Prediction of 
critical COVID-19 

AST LR 47 patients (24 severe) AUC of 92.31% 

Han [87] Predict critical 
COVID-19 

CPR LR 47 patients (24 severe) AUC of 92.92% 

Han [87] Prediction of 
critical COVID-19 

Lymphocyte counts (less than 1.045 ×
109/L) 

LR 47 patients (24 severe) AUC of 98.45%, specificity 
91.30% and sensitivity 
95.24% 

Han [87] Prediction of 
critical COVID-19 

SOFA score LR 47 patients (24 severe) AUC of 94.93% 

Han [87] Prediction of 
critical COVID-19 

CT score LR 47 patients (24 severe) AUC of 95.28% 

Das et al. 
[97] 

Prediction of 
mortality risk 

Sex, age SVM, KNN, RF, GB, and (LR, 
selected) 

3524 patients (74 non- 
survivors) 

AUC of 83% 

Li et al. [88] Prediction of 
mortality risk 

Having a chronic disease; gastrointestinal, 
kidney, cardiac, respiratory symptoms 

Autoencoder, LR, RF, SVM, 
one-class SVM, isolation 
forest, local outlier factor 

Two data sets: A) 28,958 
patients (530 non- 
survivors) B) 1448 patients 
(123 non-survivors) 

Autoencoder model achieved 
around 73% AUC, and 97% 
accuracy. 

Terwangne 
et al. [89] 

Prediction of 
severity 

WHO severity classification, acute kidney 
injury, age, LDH, lymphocytes, aPTT 

Bayesian network analysis 295 patients (− ) ROC of 83.8% and 91% for 
the models based on WHO 
classification only, and EPI- 
SCORE, respectively. 

Izquierdo 
et al. [90] 

Prediction of ICU 
admission 

Age, fever, tachypnea with or without 
respiratory crackles 

DT 10,504 (1353 hospitalized, 
83 ICU admission) 

AUC of 76%, accuracy 68%, 
and recall 71% 

Liang et al. 
[91] 

Prediction of 
critical COVID-19 

Age, hemoptysis, unconsciousness, 
comorbidities, cancer history, neutrophil- 
to- lymphocyte ratio, LDH, direct bilirubin 

LASSO then LR 2300 patients (− ) AUCs of 88% in both the 
training and validation 
cohorts 

Levy et al. 
[92] 

Prediction of 
critical COVID-19 

BUN, age, absolute neutrophil count, 
RDW, SpO2, serum sodium 

LASSO 11,095 patients (8499 
survivors, 2596 non- 
survivors) 

AUCs of 86%, 82%, and 82%, 
respectively for internal and 
external validation 

(continued on next page) 
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the final classification model [102]. Feature selection methods are 
usually divided into filter-based, wrapper-based, and hybrid methods. In 
filter-based feature selection methods, a feature-dependent score is 
calculated or a feature-searching algorithm is applied [103]. The most 
popular filter methods are entropy, information gain, gain ratio, Gini 
index, and chi-squared statistics. Although simple and fast, these 
methods are known to have lower accuracy compared with wrapper 
methods. For example, only 70% accuracy was achieved with a DT 
model for prediction of the clinical severity of COVID-19 using the Gini 
index and gain ratio [104]. In wrapper-based feature selection methods, 
a subset of features is selected, such that the classification error is 
optimized. An example of wrapper-based methods is forward selection. 
Forward selection begins with an empty features subset that is itera-
tively built until no further improvement is observed in the classification 
accuracy. Research suggests that wrapper-based methods have better 
performance than filter-based methods, while being more complex and 
less time efficient. Hybrid feature selection combines filter- and 
wrapper-based methods and is integrated with feature selection in the 
learning algorithm. LASSO is an example of a hybrid method for feature 
selection that has been used in the context of COVID-19 [61,83,91]. 

With the intention of highlighting commonly applied features, we 
explored the top-ranking features from the reviewed prediction models. 
Figs. 4 and 5 summarize the most frequently reported predictors of 
COVID-19 diagnosis and those of mortality and severity, respectively. 

Predictors of mortality and severe COVID-19 that were reported 
repeatedly were older age, male sex, comorbidities, decreased calcium, 
albumin, red blood cells, oxygen saturation, lymphocytopenia, 
increased BUN, creatinine, LDH, CRP, D-dimer, respiratory rate, 

neutrophil count, IL-6, procalcitonin, bilirubin, ferritin, AST, CKD, cTnI, 
and cTnT. 

Predictors of COVID-19 diagnosis that were reported repeatedly 
were older age, male sex, fever, decreased calcium, hypokalemia, 
eosinophil, basophil, hemoglobin, WBC, platelets, lymphocytopenia, 
increased creatinine, LDH, CRP, CRP + LDH + ferritin, CD3, AST, leu-
kocytes, neutrophil count, INR, and monocytes percentage. 

These predictors were proven to be intimately correlated with 
screening for COVID-19 and predicting severe conditions and mortality 
[105–112]. 

However, it is worth mentioning that a large number of these pa-
rameters often arise in other viral and bacterial infections, which oc-
casionally makes it challenging to distinguish COVID-19 patients from 
those with other infectious diseases. This warrants further investigation. 

Collecting a diverse representative data set is a principal challenge in 
building an ML model [21]. The lack of large-scale clinical data might 
negatively affect ongoing efforts to contain the novel virus. Overcoming 
data limitations necessitates a careful balance between data privacy and 
public health, as well as rigorous human–AI interaction [12]. Re-
searchers worldwide are encouraged to release de-identified patient 
data to aid in data mining and ML efforts against COVID-19 [46]. 

Researchers have published a vast number of studies on COVID-19 in 
an attempt to understand and contain the disease. In order to rapidly 
survey the novel disease literature, Doanvo et al. [113] employed ML 
approaches in order to identify research differences between COVID-19 
and non-COVID-19 coronaviruses. They aimed to recognize which areas 
the studies have focused on and which areas warrant further explora-
tion. The results indicate an under-representation of laboratory-driven 

Table 4 (continued ) 

Study Outcome Highest-weighted features ML approaches Sample size (no. of 
survivors and non- 
survivors) 

Performance 

Nemati et al. 
[93] 

Survival analysis 
and discharge 
time 

Age, sex stagewise GB, IPCRidge, 
CoxPH, Coxnet, 
Componentwise GB, fast 
SVM, and fast Kernel SVM 

1182 patients (− ) C-index of stagewise GB: 
71.47 

Li et al. [94] Prediction of 
mortality 

Leukomonocyte %, urea, age, SpO2 LR, simplified LR, and (GBDT, 
selected) 

2924 patients (257 non- 
survivors) 

AUC of 94.1% 

Gao et al. 
[20] 

Prediction of 
mortality risk, up 
to 20 days in 
advance 

Increased consciousness, male sex, 
sputum, BUN, respiratory rate, D-dimer, 
comorbidities, age. Also decreased platelet 
count, albumin, SpO2, lymphocytes, CKD 

LR, SVM, GBDT, and NN 2520 COVID-19 patients 
with known outcomes 
(survivors or non- 
survivors) 

AUC ranging from 91.86% to 
97.62% in an internal 
validation cohort and two 
external validation cohorts  

Fig. 3. Summary of the ML algorithms selected by the reported studies.  
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COVID-19 research. In particular, only a limited number of studies have 
focused on the basic microbiology of COVID-19, including its patho-
genesis and transmission, compared with the distribution of previous 
research on other coronaviruses. COVID-19 publications have primarily 
focused on clinical care, public health, reporting, and testing. This 
suggests the need to support laboratory-driven research, including that 
on genetic and biomolecular topics. 

6. Conclusion 

In this article, we surveyed existing ML methods in the context of 
COVID-19. We focused on two applications that have gained much 
attention: the diagnosis of COVID-19 and the prediction of severity and 
mortality risks using readily available clinical and laboratory data. A 
few primary points have been highlighted by this study. First, the ma-
jority of ML algorithms used for these two applications fall under the 
category of supervised learning algorithms, as they are simple and easy 

Fig. 4. Frequently reported features for predicting COVID-19 diagnosis.  

Fig. 5. Frequently reported features for predicting mortality and severe COVID-19.  
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to understand. Much of the relevant work has been experimental, and 
the models developed have not been implemented in real-world appli-
cations. It is worth mentioning that it is challenging at this stage to 
determine the best models for COVID screening. Further research is 
required to address this point. More importantly, there is a need to 
create a benchmark dataset for this purpose. Second, the diagnostic and 
prognostic features highlighted by the ML models were consistent with 
findings reported in the existing medical literature; this demonstrates 
the meaningfulness of using ML algorithms to comprehensively analyze 
patient data, recognize subtle patterns, and support fact interrogation 
and the decision-making process. Third, a clear limitation of existing 
studies is the use of data sets that are imbalanced and suffer from se-
lection bias. Although ML algorithms have been applied to a wide range 
of data sets in different countries, imbalanced data sets were common in 
almost all of the studies. This indicates a need to investigate techniques 
for handling this issue and to re-evaluate the performance of state-of-art 
ML algorithms. In addition, the literature demonstrated the potential of 
integrating different types of data, such as demographic, symptom, and 
clinical information. However, integrating various data sets of different 
types (structured and unstructured) for the prediction of COVID-19 
would be worth investigating further. 
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[52] Tschoellitsch T, Dünser M, Böck C, Schwarzbauer K, Meier J. Machine learning 
prediction of sars-cov-2 polymerase chain reaction results with routine blood 
tests. Lab Med 2020;52(2):146–9. 

[53] Joshi RP, Pejaver V, Hammarlund NE, Sung H, Lee SK, Furmanchuk A, Lee H-Y, 
Scott G, Gombar S, Shah N, Shen S, Nassiri A, Schneider D, Ahmad FS, 
Liebovitz D, Kho A, Mooney S, Pinsky BA, Banaei N. A predictive tool for 
identification of sars-cov-2 pcr-negative emergency department patients using 
routine test results. J Clin Virol 2020;129:104502. https://doi.org/10.1016/j. 
jcv.2020.104502. 

[54] Shoer S, Karady T, Keshet A, Shilo S, Rossman H, Gavrieli A, et al. A prediction 
model to prioritize individuals for sars-cov-2 test built from national symptom 
surveys. Med 2020;2(2):196–208. https://doi.org/10.1016/j.medj.2020.10.002. 

[55] Tordjman M, Mekki A, Mali RD, Saab I, Chassagnon G, Guillo E, Burns R, 
Eshagh D, Beaune S, Madelin G, et al. Pre-test probability for sars-cov-2-related 
infection score: the paris score. medRxiv; 2020. 

[56] Soltan AA, Kouchaki S, Zhu T, Kiyasseh D, Taylor T, Hussain ZB, Peto T, Brent AJ, 
Eyre DW, Clifton D. Artificial intelligence driven assessment of routinely collected 
healthcare data is an effective screening test for covid-19 in patients presenting to 
hospital. medRxiv; 2020. 

[57] de Moraes Batista AF, Miraglia JL, Donato THR, Chiavegatto Filho ADP. Covid-19 
diagnosis prediction in emergency care patients: a machine learning approach. 
medRxiv; 2020. 

[58] Alakus TB, Turkoglu I. Comparison of deep learning approaches to predict covid- 
19 infection. Chaos, Solit Fractals 2020;140:110120. 

[59] Goodman-Meza D, Rudas A, Chiang JN, Adamson PC, Ebinger J, Sun N, Botting P, 
Fulcher JA, Saab FG, Brook R, Eskin E, An U, Kordi M, Jew B, Balliu B, Chen Z, 
Hill BL, Rahmani E, Halperin E, Manuel V. A machine learning algorithm to 
increase COVID-19 inpatient diagnostic capacity. PloS One 2020;15:e0239474. 

[60] AlJame M, Ahmad I, Imtiaz A, Mohammed A. Ensemble learning model for 
diagnosing COVID-19 from routine blood tests. Inform Med Unlocked 2020;21: 
100449. 

[61] Feng C, Huang Z, Wang L, Chen X, Zhai Y, Zhu F, Chen H, Wang Y, Su X, Huang S, 
et al. A novel triage tool of artificial intelligence assisted diagnosis aid system for 
suspected covid-19 pneumonia in fever clinics. 2020. 

[62] Soares F, Villavicencio A, Anzanello MJ, Fogliatto FS, Idiart M, Stevenson M. 
A novel high specificity covid-19 screening method based on simple blood exams 
and artificial intelligence. medRxiv 2020. https://doi.org/10.1101/ 
2020.04.10.20061036. 

[63] Frost F, Bradley P, Tharmaratnam K, Wootton DG, et al. The utility of established 
prognostic scores in covid-19 hospital admissions: a multicentre prospective 
evaluation of curb-65, news2, and qsofa. medRxiv; 2020. 

[64] Satici C, Demirkol MA, Sargin Altunok E, Gursoy B, Alkan M, Kamat S, Demirok B, 
Surmeli CD, Calik M, Cavus Z, Esatoglu SN. Performance of pneumonia severity 
index and curb-65 in predicting 30-day mortality in patients with covid-19. Int J 
Infect Dis 2020;98:84–9. 

[65] Pollack MM. Severity of illness confusion, pediatric critical care medicine. a 
journal of the Society of Critical Care Medicine and the World Federation of 
Pediatric Intensive and Critical Care Societies 2016;17:583. 

[66] Vaid A, Somani S, Russak AJ, De Freitas JK, Chaudhry FF, Paranjpe I, et al. 
Machine learning to predict mortality and critical events in covid-19 positive New 
York city patients: a cohort study. J Med Internet Res 2020;49(6):1918–29. 

[67] Yan L, Zhang H-T, Xiao Y, Wang M, Sun C, Liang J, Li S, Zhang M, Guo Y, Xiao Y, 
et al. Prediction of criticality in patients with severe covid-19 infection using 
three clinical features: a machine learning-based prognostic model with clinical 
data in wuhan. MedRxiv; 2020. 

[68] Yan L, Zhang H-T, Goncalves J, Xiao Y, Wang M, Guo Y, Sun C, Tang X, Jin L, 
Zhang M, et al. A machine learning-based model for survival prediction in 
patients with severe covid-19 infection. MedRxiv; 2020. 

[69] Wang K, Zuo P, Liu Y, Zhang M, Zhao X, Xie S, Zhang H, Chen X, Liu C. Clinical 
and laboratory predictors of in-hospital mortality in patients with coronavirus 
disease-2019: a cohort study in wuhan, China. Clinical Infectious Diseases; 2020. 

[70] Rechtman E, Curtin P, Navarro E, Nirenberg S, Horton MK. Vital signs assessed in 
initial clinical encounters predict covid-19 mortality in an nyc hospital system. 
Sci Rep 2020;10:1–6. 

[71] Bertsimas D, Lukin G, Mingardi L, Nohadani O, Orfanoudaki A, Stellato B, 
Wiberg H, Gonzalez-Garcia S, Parra-Calderon CL, Robinson K, et al. Covid-19 
mortality risk assessment: an international multi-center study. PloS One 2020;15: 
e0243262. 

[72] Guan X, Zhang B, Fu M, Li M, Yuan X, Zhu Y, Peng J, Guo H, Lu Y. Clinical and 
inflammatory features based machine learning model for fatal risk prediction of 
hospitalized covid-19 patients: results from a retrospective cohort study. Ann Med 
2021;53:257–66. https://doi.org/10.1080/07853890.2020.1868564. 

[73] Booth AL, Abels E, McCaffrey P. Development of a prognostic model for mortality 
in covid-19 infection using machine learning. Mod Pathol 2020:1–10. 

[74] Sun L, Song F, Shi N, Liu F, Li S, Li P, Zhang W, Jiang X, Zhang Y, Sun L, Chen X, 
Shi Y. Combination of four clinical indicators predicts the severe/critical 
symptom of patients infected covid-19. J Clin Virol 2020;128:104431. 

[75] Yao H, Zhang N, Zhang R, Duan M, Xie T, Pan J, Peng E, Huang J, Zhang Y, Xu X, 
et al. Severity detection for the coronavirus disease 2019 (covid-19) patients 
using a machine learning model based on the blood and urine tests. Frontiers in 
cell and developmental biology 2020;8:683. 

[76] Zhao C, Bai Y, Wang C, Zhong Y, Lu N, Tian L, Cai F, Jin R. Risk factors related to 
the severity of covid-19 in wuhan. Int J Med Sci 2021;18:120–7. URL: 
https://www.medsci.org/v18p0120.htm. doi:10.7150/ijms.47193. 

[77] Hu C, Liu Z, Jiang Y, Shi O, Zhang X, Xu K, et al. Early prediction of mortality risk 
among patients with severe COVID-19, using machine learning. Int J Epidemiol 
2020;49(6):1918–29. 

[78] Zhao Z, Chen A, Hou W, Graham JM, Li H, Richman PS, Thode HC, Singer AJ, 
Duong TQ. Prediction model and risk scores of icu admission and mortality in 
covid-19. PloS One 2020;15:e0236618. 

[79] Huang H, Cai S, Li Y, Li Y, Fan Y, Li L, Lei C, Tang X, Hu F, Li F, Deng X. 
Prognostic factors for covid-19 pneumonia progression to severe symptoms based 
on earlier clinical features: a retrospective analysis. Front Med 2020;7:643. 

[80] Xie J, Hungerford D, Chen H, Abrams ST, Li S, Wang G, Wang Y, Kang H, 
Bonnett L, Zheng R, et al. Development and external validation of a prognostic 
multivariable model on admission for hospitalized patients with covid-19. 2020. 

[81] Zhou Y, Yang Z, Guo Y, Geng S, Gao S, Ye S, Hu Y, Wang Y. A new predictor of 
disease severity in patients with covid-19 in wuhan, China. medRxiv; 2020. 
https://doi.org/10.1101/2020.03.24.20042119. 

[82] Zhu Z, Cai T, Fan L, Lou K, Hua X, Huang Z, Gao G. Clinical value of immune- 
inflammatory parameters to assess the severity of coronavirus disease 2019. Int J 
Infect Dis 2020;95:332–9. 

[83] Gong J, Ou J, Qiu X, Jie Y, Chen Y, Yuan L, Cao J, Tan M, Xu W, Zheng F, et al. 
A tool to early predict severe corona virus disease 2019 (covid-19): a multicenter 
study using the risk nomogram in wuhan and guangdong, China. Clinical 
infectious diseases; 2020. 

[84] Aloisio E, Chibireva M, Serafini L, Pasqualetti S, Falvella FS, Dolci A, 
Panteghini M. A comprehensive appraisal of laboratory biochemistry tests as 
major predictors of COVID-19 severity. Archives of Pathology and Laboratory 
Medicine; 2020. 

[85] Liu Q, Song NC, Zheng ZK, Li JS, Li SK. Laboratory findings and a combined 
multifactorial approach to predict death in critically ill patients with covid-19: a 
retrospective study. Epidemiol Infect 2020;148:e129. https://doi.org/10.1017/ 
S0950268820001442. 

[86] Luo M, Liu J, Jiang W, Yue S, Liu H, Wei S. Il-6 and cd8+ t cell counts combined 
are an early predictor of in-hospital mortality of patients with covid-19. JCI 
Insight 2020;5. 

[87] Han Y, Zhang H, Mu S, Wei W, Jin C, Xue Y, Tong C, Zha Y, Song Z, Gu G. Lactate 
dehydrogenase, a risk factor of severe covid-19 patients. medRxiv 2020. https:// 
doi.org/10.1101/2020.03.24.20040162. 

[88] Li Y, Horowitz MA, Liu J, Chew A, Lan H, Liu Q, Sha D, Yang C. Individual-level 
fatality prediction of covid-19 patients using ai methods. Frontiers in Public 
Health 2020;8:566. https://doi.org/10.3389/fpubh.2020.587937. 

[89] de Terwangne C, Laouni J, Jouffe L, Lechien JR, Bouillon V, Place S, Capulzini L, 
Machayekhi S, Ceccarelli A, Saussez S, et al. Predictive accuracy of covid-19 
world health organization (who) severity classification and comparison with a 
bayesian-method-based severity score (epi-score). Pathogens 2020;9:880. 

[90] Izquierdo JL, Ancochea J, Soriano JB. Clinical characteristics and prognostic 
factors for intensive care unit admission of patients with covid-19: retrospective 
study using machine learning and natural language processing. J Med Internet 
Res 2020;22:e21801. https://doi.org/10.2196/21801. 

[91] Liang W, Liang H, Ou L, Chen B, Chen A, Li C, et al. Development and validation 
of a clinical risk score to predict the occurrence of critical illness in hospitalized 
patients with covid-19. JAMA Internal Medicine 2020;180(8):1081–9. 

[92] Levy TJ, Richardson S, Coppa K, Barnaby DP, McGinn T, Becker LB, 
Davidson KW, Cohen SL, Hirsch JS, Zanos T. Development and validation of a 
survival calculator for hospitalized patients with covid-19. medRxiv; 2020. 
https://doi.org/10.1101/2020.04.22.20075416. 

[93] Nemati M, Ansary J, Nemati N. Machine-learning approaches in covid-19 survival 
analysis and discharge-time likelihood prediction using clinical data. Patterns 
2020;1:100074. 

[94] Li S, Lin Y, Zhu T, Fan M, Xu S, Qiu W, Chen C, Li L, Wang Y, Yan J, et al. 
Development and external evaluation of predictions models for mortality of 
covid-19 patients using machine learning method. Neural Comput Appl 2020: 
1–10. 

[95] Schwab P, Schütte AD, Dietz B, Bauer S. predcovid-19: a systematic study of 
clinical predictive models for coronavirus disease 2019. 2020. arXiv preprint 
arXiv:2005.08302. 

[96] Bai T, Tu S, Wei Y, Xiao L, Jin Y, Zhang L, Song J, Liu W, Zhu Q, Yang L, et al. 
Clinical and laboratory factors predicting the prognosis of patients with covid-19: 
an analysis of 127 patients in wuhan, China. 2020. China (2/26/2020). 

[97] Das AK, Mishra S, Gopalan SS. Predicting covid-19 community mortality risk 
using machine learning and development of an online prognostic tool. PeerJ 
2020;8:e10083. 

[98] Eltoukhy AEE, Shaban IA, Chan FTS, Abdel-Aal MAM. Data analytics for 
predicting covid-19 cases in top affected countries: observations and 
recommendations. Int J Environ Res Publ Health 2020;17:7080. 

[99] Hu Z, Song C, Xu C, Jin G, Chen Y, Xu X, Ma H, Chen W, Lin Y, Zheng Y, et al. 
Clinical characteristics of 24 asymptomatic infections with covid-19 screened 
among close contacts in nanjing, China. Sci China Life Sci 2020;63:706–11. 

N. Alballa and I. Al-Turaiki                                                                                                                                                                                                                  

http://refhub.elsevier.com/S2352-9148(21)00054-X/sref49
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref49
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref49
https://doi.org/10.1101/2020.04.02.20051136
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref51
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref51
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref51
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref52
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref52
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref52
https://doi.org/10.1016/j.jcv.2020.104502
https://doi.org/10.1016/j.jcv.2020.104502
https://doi.org/10.1016/j.medj.2020.10.002
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref55
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref55
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref55
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref56
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref56
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref56
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref56
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref57
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref57
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref57
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref58
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref58
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref59
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref59
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref59
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref59
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref60
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref60
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref60
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref61
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref61
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref61
https://doi.org/10.1101/2020.04.10.20061036
https://doi.org/10.1101/2020.04.10.20061036
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref63
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref63
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref63
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref64
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref64
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref64
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref64
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref65
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref65
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref65
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref66
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref66
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref66
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref67
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref67
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref67
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref67
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref68
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref68
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref68
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref69
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref69
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref69
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref70
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref70
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref70
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref71
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref71
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref71
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref71
https://doi.org/10.1080/07853890.2020.1868564
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref73
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref73
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref74
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref74
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref74
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref75
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref75
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref75
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref75
https://www.medsci.org/v18p0120.htm.%20doi:10.7150/ijms.47193
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref77
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref77
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref77
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref78
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref78
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref78
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref79
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref79
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref79
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref80
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref80
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref80
https://doi.org/10.1101/2020.03.24.20042119
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref82
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref82
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref82
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref83
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref83
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref83
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref83
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref84
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref84
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref84
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref84
https://doi.org/10.1017/S0950268820001442
https://doi.org/10.1017/S0950268820001442
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref86
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref86
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref86
https://doi.org/10.1101/2020.03.24.20040162
https://doi.org/10.1101/2020.03.24.20040162
https://doi.org/10.3389/fpubh.2020.587937
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref89
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref89
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref89
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref89
https://doi.org/10.2196/21801
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref91
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref91
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref91
https://doi.org/10.1101/2020.04.22.20075416
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref93
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref93
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref93
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref94
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref94
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref94
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref94
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref95
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref95
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref95
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref96
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref96
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref96
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref97
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref97
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref97
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref98
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref98
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref98
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref99
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref99
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref99


Informatics in Medicine Unlocked 24 (2021) 100564

17

[100] Wang Y, Liu Y, Liu L, Wang X, Luo N, Li L. Clinical outcomes in 55 patients with 
severe acute respiratory syndrome coronavirus 2 who were asymptomatic at 
hospital admission in shenzhen, China. J Infect Dis 2020;221:1770–4. 

[101] Cohen P, Blau J. Coronavirus disease 2019 (covid-19): outpatient evaluation and 
management in adults. UpToDate [Internet; 2020. 

[102] Cai J, Luo J, Wang S, Yang S. Feature selection in machine learning: a new 
perspective. Neurocomputing 2018;300:70–9. 

[103] Cai J, Luo J, Wang S, Yang S. Feature selection in machine learning: a new 
perspective. Neurocomputing 2018;300:70–9. 

[104] Jiang X, Coffee M, Bari A, Wang J, Jiang X, Huang J, Shi J, Dai J, Cai J, Zhang T, 
Wu Z, He G, Huang Y. Towards an artificial intelligence framework for data- 
driven prediction of coronavirus clinical severity. Comput Mater Continua (CMC) 
2020;63:537–51. 

[105] Guan W-j, Ni Z-y, Hu Y, Liang W-h, Ou C-q, He J-x, Liu L, Shan H, Lei C-l, Hui DS, 
et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 
2020;382:1708–20. 

[106] Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for 
mortality of adult inpatients with covid-19 in wuhan, China: a retrospective 
cohort study. The lancet 2020. https://doi.org/10.1016/S0140-6736(20)30566- 
3. 

[107] Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, Wang B, Xiang H, Cheng Z, Xiong Y, 
et al. Clinical characteristics of 138 hospitalized patients with 2019 novel 
coronavirus–infected pneumonia in wuhan, China. Jama 2020;323:1061–9. 

[108] Merad M, Martin JC. Pathological inflammation in patients with covid-19: a key 
role for monocytes and macrophages. Nat Rev Immunol 2020:1–8. 

[109] Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, et al. 
Clinical features of patients infected with 2019 novel coronavirus in wuhan, 
China. The lancet 2020;395:497–506. 

[110] Wu Z, McGoogan JM. Characteristics of and important lessons from the 
coronavirus disease 2019 (covid-19) outbreak in China: summary of a report of 72 
314 cases from the Chinese center for disease control and prevention. Jama 2020; 
323:1239–42. 

[111] Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to 
covid-19 based on an analysis of data of 150 patients from wuhan, China. 
Intensive Care Med 2020;46:846–8. 

[112] Ji D, Zhang D, Xu J, Chen Z, Yang T, Zhao P, Chen G, Cheng G, Wang Y, Bi J, et al. 
Prediction for progression risk in patients with covid-19 pneumonia: the call 
score. Clinical Infectious Diseases; 2020. 

[113] Doanvo A, Qian X, Ramjee D, Piontkivska H, Desai A, Majumder M. Machine 
learning maps research needs in covid-19 literature. Patterns; 2020. p. 100123. 
https://doi.org/10.1016/j.patter.2020.100123. 

N. Alballa and I. Al-Turaiki                                                                                                                                                                                                                  

http://refhub.elsevier.com/S2352-9148(21)00054-X/sref100
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref100
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref100
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref101
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref101
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref102
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref102
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref103
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref103
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref104
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref104
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref104
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref104
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref105
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref105
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref105
https://doi.org/10.1016/S0140-6736(20)30566-3
https://doi.org/10.1016/S0140-6736(20)30566-3
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref107
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref107
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref107
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref108
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref108
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref109
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref109
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref109
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref110
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref110
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref110
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref110
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref111
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref111
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref111
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref112
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref112
http://refhub.elsevier.com/S2352-9148(21)00054-X/sref112
https://doi.org/10.1016/j.patter.2020.100123

