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INTRODUCTION

Independent Component Analysis (ICA) is a widely used, unsupervised, exploratory machine
learning method (Comon, 1994) and is often applied to resting-state fMRI (rsfMRI) data
(Nickerson et al., 2017). Though its usefulness is apparent, the most common applications of
ICA involve substantial subjectivity. For example, the spatial components extracted through
individual or group-level ICA are never identical between studies and are often labeled by visual
inspection and expert opinion. The goal of this study was to establish a spatial component approach
based on well-documented atlases derived from large-scale investigations. These components can
subsequently be used in place of components tailored to fit each individual study’s dataset.

The utility of ICA to extract meaningful functional connectivity patterns without the need
for prior knowledge has been established by its application to large-scale studies like Human
Connectome Project (HCP) and United Kingdom (UK) BioBank cohort (Miller et al., 2016; Smitha
et al., 2017). Although ICA has been successfully applied to a wide range of applications in
rsfMRI, there have long been some concerns about reproducibility and the subjectivity of ICA
results (Friston, 1998). Also, ICA is a computationally-demanding approach, which may provide
a barrier to researchers with limited resources or exceptionally large datasets. We present an
approach that has the potential to substantially decrease both the subjectivity of ICA and its
computational burden.

THE CRITIQUE ON ICA

Performing ICA-based rsfMRI studies involves: data preprocessing and clean-up (sometimes
through subject-level ICA or SICA), group-level ICA (GICA) on the entire dataset (usually
with temporal concatenation), separating signal from noise independent components (ICs),
network labeling, and time-series and spatial map extraction based on selected ICs for all
subjects (Nickerson et al., 2017). Because ICA is a time-consuming and computationally resource-
demanding procedure, a significant reduction in runtime may be worthwhile, especially in large-
scale studies. Runtime issues aside, our main objective for improving this analysis pipeline focuses
on producing objective, reproducible science. Furthermore, a main concern of the ICA pipeline
lies in network labeling, where ICs representing potential resting-state networks (RSNs) of interest
must be inspected by contextually-experienced brain anatomist(s) to be safeguarded against any
misidentification. This limitation may challenge reproducibility of the results since this process
could be quite arbitrary (Storti et al., 2013; Salimi-Khorshidi et al., 2014; Pruim et al., 2015).
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Also, running GICA on different datasets will not yield exactly
the same components, and will output results that may not be
closely matched with the results from other analyses (e.g., a single
network may be split into 2 or 3 components, depending on the
idiosyncrasies of the datasets used) (Wang and Li, 2015).

CURRENT REMEDIES

One approach to this problem is to utilize machine learning
and deep learning solutions to compare the GICA results with
established reference RSNs (Kozák et al., 2017; Zhao et al.,
2018). Although this classification method categorizes the ICs
objectively based on the provided template, replicability, and
stability of this approach have yet to be benchmarked by large-
scale studies and relies on large amounts of training data.
Deep learning approaches involve additional concerns such as
slow convergence and over-fitting, especially in MRI modalities
(Srivastava et al., 2017).

Another method is “semi-blind ICA”, which uses prior
knowledge in the form of a “template” that is entered at
the beginning of each run of GICA to guide and improve
estimation of network-related components (Lin et al., 2010).
This method also requires well-established knowledge on the
expected activation patterns in fMRI data, especially in task-
based fMRI studies.

The alternative approach presented here may allow ICA
pipelines to be more stable, faster and reproducible, in terms of
extracting time-series of network(s) of interest from the subjects’
data in a shorter time and with less computational resources.
This is the case especially in time-constrained, resource-limited
studies where access to experts for interpreting the GICA results
may be a challenge.

FIGURE 1 | Conventional ICA pipeline vs. the proposed solution.

A SOLUTION

We propose to use the ICs resulting from prior studies, such as
the UK Biobank and HCP, in an “atlas-like” manner. Because
such ICs are already published (Miller et al., 2016), they could
be well-studied and agreed upon by the experts across the field.
Following agreement, it would be possible to use the ICs as a
reference to extract the time-series of subjects in matched groups,
similar to an atlas, and interpret the ICs from other studies more
objectively through automated, semi-automated, or conventional
manual approaches.

Results of GICA would have the potential be re-used in
other studies (Bijsterbosch et al., 2017). The idea of using
a reference in analyses is not novel. The use of references
such as Montreal Neurological Institute (MNI) standard spaces
or Harvard-Oxford cortical and subcortical structural atlases
in preprocessing and analysis of imaging data is also based
on the same concept of grouping data together to have
a common frame of reference. This approach would be
beneficial to ICA pipelines as well. This solution is depicted
in Figure 1. In order to elaborate on this proposal, it is
demonstrated by following the solution recommended by the
widely-used FMRIB Software Library (FSL) package from
Functional Magnetic Resonance Imaging Modeling (FMRIB) lab
(Smith et al., 2004; Woolrich et al., 2009; Jenkinson et al., 2012).

After preprocessing the data, it is common to use cleaned
data to perform GICA to detect ICs and then inspect the results
to label and select RSNs (ICs) of interest. By means of dual
regression, candidate ICs are mapped to each subject’s functional
data to extract subject-specific time-series and spatial maps of
desired RSNs for use in subsequent analyses (Beckmann et al.,
2009; Nickerson et al., 2017).
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To alleviate the issues mentioned above, a more efficient
approach would be to use previously labeled ICs from a large-
scale study as an atlas of ICs to be applied in dual regression
rather than performing GICA. This strategy reduces study-
specific GICA to a regression method. As a candidate application
for this improved approach, it would be possible to use the set
of ICs from GICA obtained in one study to get the time-series
of matched subjects in another demographically comparable
study in a cross-site investigational manner. Also, investigating
a subset group from the original dataset would be more efficient
this way by eliminating the need to run GICA again on the
subset. Although running GICA in this scenario may lead to
a better model fit to the data this may not outweigh the
benefit of having a more objective way of extracting the spatial
maps and time-series. Also, using GICA can provide additional
improvements of noise components, that would not be possible
using a standard atlas. This may not be much of a concern, since
sufficient preprocessing and noise removal can be performed at
the individual subject level.

Atlas-based ICA would also benefit smaller-sized studies
since the analysis pipeline would improve stability and allow
results to be more readily comparable to other studies. In a
conventional pipeline, the whole dataset must be preprocessed
and ready before running GICA, therefore performing analysis
on a subset before data collection is complete is not feasible
and will not produce the same components as when the
entire dataset is available. In addition, if a participant’s data
was excluded, re-running the GICA again would be necessary,
instead of simply removing those records from the group
analysis. The proposed approach would address these issues
as well.

We tested our approach on an rsfMRI dataset from a recent
within-subjects study (Le et al., 2018) with 20 individuals that
completed three sessions of functional scans (60 scans in total).
Following preprocessing we investigated the difference between
the conventional ICA pipeline and our proposed pipeline and
applied the GICA atlas from a subset of the Tulsa 1,000 study
cohort (Victor et al., 2018) using a MacBook Pro machine with
a 2.9 Ghz Intel Core i7 processor and 16 GB of memory.
In the proposed pipeline, the time-series of the ICs for each
subject (Stage 1 output from dual regression) were ready to
use in 57mins. Alternatively, performing GICA followed by
dual regression in order to extract the time-series for each
subject took 9 h and 33min. The additional runtime required for
running GICA is reasonable in this case, but would be of greater
concern with a larger dataset. Additionally, GICA on the 60
scans produced a substantially different set of components, which
makes it difficult or impossible to compute the same components
as from the atlas.

Currently, there are published reference atlases on well-
studied resting-state networks (Yeo et al., 2011). These atlases
are useful for labeling the networks, yet they are binary
network masks and lack components’ voxel-wise weights, which
are necessary for subject-wise time-course extraction. To the
best of our knowledge, no atlas has been published with
this information.

There are some limitations of this new proposed approach.
Similar to other studies that use a common atlas, the subject
population should be a reasonable representation of the subject
group recruited in the reference studies. Since most large public
datasets are from normal populations, one might question
the practice of applying components derived from them to
patient populations. This is a valid concern, which could be
addressed by comparing GICA results from the target population
with the standard atlas components. Similarly, there may be
systematic differences introduced bymachine types and scanning
parameters, which warrants a thorough investigation. Regardless,
it would be surprising if factors such as scanning parameters
impacted large-scale functional organization of the brain. Also,
across the field there is no standard procedure for preprocessing
the data, so careful consideration must be taken when applying
an IC atlas and preprocessing procedures must be compatible
(Wetherill et al., 2018), as different preprocessing methods may
result in a different set of outcomes. In addition, performing
preprocessing on the data before comparing the results to IC atlas
is necessary. For example, if an atlas uses 2mm resolution maps,
applying it to studies with different set of rules would require
auxiliary processing steps.

To the best of our knowledge, there are several ICA results
published and available in the literature (Beckmann et al., 2005;
Smith et al., 2009; Laird et al., 2011) including from the UK
Biobank cohort (Miller et al., 2016). Such references have the
potential to be applied as “Atlases of ICs” on other studies, but
only with extensive documentation. Publishing group-level ICA
results and documenting them in an atlas-like manner would
also allow researchers to keep their (testing) data separate from
the training data used to build the models, which is another
consideration that has garnered increased attention recently
(Scheinost et al., 2019), along with the need for more open,
externally validated science.
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