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Abstract
Background: A deep learning model (DLM) that enables non-invasive hypokalemia screening from an electrocardiogram (ECG)
may improve the detection of this life-threatening condition. This study aimed to develop and evaluate the performance of a DLM
for the detection of hypokalemia from the ECGs of emergency patients.
Methods: We used a total of 9908 ECG data from emergency patients who were admitted at the Second Affiliated Hospital of
Nanchang University, Jiangxi, China, from September 2017 to October 2020. The DLMwas trained using 12 ECG leads (lead I, II,
III, aVR, aVL, aVF, and V1–6) to detect patients with serum potassium concentrations <3.5 mmol/L and was validated using
retrospective data from the Jiangling branch of the Second Affiliated Hospital of Nanchang University. The blood draw was
completed within 10 min before and after the ECG examination, and there was no new or ongoing infusion during this period.
Results:We used 6904 ECGs and 1726 ECGs as development and internal validation data sets, respectively. In addition, 1278 ECGs
from the Jiangling branch of the Second Affiliated Hospital of Nanchang University were used as external validation data sets. Using
12 ECG leads (leads I, II, III, aVR, aVL, aVF, and V1–6), the area under the receiver operating characteristic curve (AUC) of the DLM
was 0.80 (95% confidence interval [CI]: 0.77–0.82) for the internal validation data set. Using an optimal operating point yielded a
sensitivity of 71.4% and a specificity of 77.1%. Using the same 12 ECG leads, the external validation data set resulted in an AUC for
the DLM of 0.77 (95% CI: 0.75–0.79). Using an optimal operating point yielded a sensitivity of 70.0% and a specificity of 69.1%.
Conclusions: In this study, using 12 ECG leads, a DLM detected hypokalemia in emergency patients with an AUC of 0.77 to 0.80.
Artificial intelligence could be used to analyze an ECG to quickly screen for hypokalemia.
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Introduction

Hypokalemia is one of the most common electrolyte
disturbances encountered in clinical practice.[1] Detection
of the serum potassium concentration is the main
diagnostic method for hypokalemia, but a long detection
time and poor repeatability may delay clinical intervention
and allow a patient’s condition to deteriorate.[2,3] This
situation is undesirable for emergency patients who require
a rapid diagnosis.

Hypokalemia can increase the excitability and self-
regulation of cardiomyocytes and slow conductivity,
which manifests as a series of well-defined ECG abnor-
malities, such as T-wave changes, ST-segment decline, QT-
interval prolongation, and U wave values ≥0.1 mV.[2,4]

However, physicians in clinical practice are not particu-
larly attentive to changes in ECGs when diagnosing
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electrolyte disturbances.[5] Traditional artificial intelli-
gence applications have gradually evolved into those for
specialized medicine.[6,7] We hypothesize that a deep
learning model (DLM) based on convolutional neural
networks (CNNs) can be used to effectively screen
emergency patients for hypokalemia. Therefore, we
trained and validated a DLM to screen for hypokalemia
based on the ECGs of emergency patients.

The objective of this study was to improve the detection
efficiency of hypokalemia in emergency patients by using
an electrocardiogram (ECG) to develop and verify non-
invasive screening tests.
Methods

This studywasapprovedby theEthicsReviewCommitteeof
the SecondAffiliatedHospital ofNanchangUniversity (No.
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2019-086).The studywas conducted in accordancewith the
Declaration of Helsinki (as revised in 2013). Clinical data,
including ECGs stored as electronic data, serum potassium
and magnesium ion concentrations, B-type natriuretic
peptide (BNP) levels, free thyroxine levels, sex, and age,
were obtained from the Second Affiliated Hospital of
Nanchang University. As the acquired data were anony-
mously processed by the hospital scientific research
platform and the studywas retrospective, the Ethics Review
Committee exempted the patients’ informed consent.
Deep learning model

Deep learning is a new research direction inmachine learning
that is moving the field toward its original goal, namely,
artificial intelligence (AI). Deep learning learns the internal
laws and representation levels of sample data and uses many
hidden neuron layers to generate increasingly abstracted,
non-linear representations of the underlying data. The goal of
deep learning is to endow machines with the analytical and
learning abilities of humans and to recognize data such as
images and sounds. Image recognition was the first
application of deep learning to the clinical field.[7]

In this study, a DLM was built on an Anaconda platform
using Python (version 3.5.2; Python Software Foundation,
Beaverton, OR, USA) and the TensorFlow neural network
framework (Google LLC, Mountain View, CA, USA). The
framework had 11 CNN layers, of which the first 10 were
convolutional layers, and the last layer was a fully
connected SoftMax layer. The network output result
was between 0 and 1, indicating the probability of
detecting hypokalemia from an ECG [Figure 1]. We
trained the DLM on 12 ECG leads (leads I, II, III, aVR,
aVL, aVF, and V1–6). We also trained the DLM using a
single lead (lead II) that can be easily detected by wearable
devices.[8,9] The electrocardiograph used to record the
ECG data comes from Nippon Optoelectronics Tomioka
Co., Ltd.(model ECG-1150).
Development and validation data sets

A total of 310,256 ECGs were obtained from September
2017 to October 2020 from the emergency department of
the Second Affiliated Hospital of Nanchang University,
including 4615 ECGs of patients with hypokalemia. By
Figure 1: DLM for predicting hypokalemia. The DLM consisted of a convolutional CNN with 11 la
A RELU activation function was used. Skip connections, dropout, BN, and max pooling were all
binary classifier that output a number from 0 to 1, representing the probability that hypokalem
Convolutional neural networks; DLM: Deep learning model; ECG: Electrocardiography; RELU:
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excluding patients who have taken>10 min between draw
blood from vein and ECG examination, or who have had
potassium supplementation treatment or any other medi-
cal orders during this period, we ensured that the ECG data
could reflect the truest serum potassium level during the
ECG examination as much as possible. In addition, the
deletion of ECGs without associated demographic data
and indication of death yielded a total of 4315 hypokale-
mia ECGs, as confirmed by serum potassium test results.
Considering the limited computing power of existing
machines, non-hypokalemic ECGs were randomly selected
and aggregated with the same number of selected
hypokalemic ECGs for the same period to serve as a
DLM development data set in this study. The final
development data set included 8630 ECGs.

All patients underwent at least one standard 10-s 12-lead
ECG in the resting supine position at the time of emergency
treatment. Each digitally stored ECG lead was recorded at
500 data points per second (500 Hz) for 10 s. We compiled
a data set consisting of the data from all 12 ECG leads. As
shown in Figure 2, the ECGs were randomly divided into a
training data set (80%) and an internal validation data set
(20%). A total of 1278 ECG data from 1278 patients from
the Jiangling branch of the Second Affiliated Hospital
of Nanchang University were used only for external
verification, showing the powerful capability of the DLM
for various data sets. The Jiangling branch (Hospital B) is
located in the suburbs and has a distinctly different
environment from the hospital headquarters (Hospital A).
After review, Hospital A and Hospital B do not have
duplicate emergency visit records.
Hypokalemia and non-hypokalemia

A normal serum potassium concentration is 3.5 to 5.5
mmol/L, with an average of 4.2 mmol/L. Hypokalemia
usually occurs at<3.5 mmol/L serum potassium.[10] In this
study, hypokalemia and non-hypokalemia were defined as
corresponding to serum potassium concentrations <3.5
and ≥3.5 mmol/L, respectively.
Statistical analysis

We used the size of the area under the receiver operating
characteristic curve (AUC) to evaluate the DLM perfor-
yers, with the first ten layers being convolutional and the last fully connected SoftMax layer.
utilized to improve generalization and convergence properties. The DNN was designed as a
ia was detected from the ECG. BN: Batch normalization; Conv: Convolutional layer; CNN:
Rectified linear units.
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Figure 2: Study flowchart. Hospital A: The Second Affiliated Hospital of Nanchang University. Hospital B: Jiangling branch of the Second Affiliated Hospital of Nanchang University. DLM:
Deep learning model; ECG: Electrocardiogram.
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mance. As the DLM was developed to rapidly screen
patients with potential hypokalemia, we evaluated the
specificity, positive predictive value, and negative predic-
tive value at a cutoff point selected for high sensitivity in
the development data.[11] Except for the AUC, all the
diagnostic performance indicators were based on an
accurate 95% confidence interval (CI). The reliability
interval of the AUC was determined by using the pROC
software package in R (R Foundation) to perform the Sun
and Su optimization of the Delong method. A bilateral
P< 0.05 indicates statistical significance.[12] R software,
version 4.0 (R Foundation) was used to perform the
analyses.
Results

The incidence of hypokalemia in the emergency depart-
ment patients was approximately 1.49% in this study. A
total of 9908 ECGs from patients who admitted at the
Jiangling branch of the Second Affiliated Hospital of
Nanchang University were included in this study, of
which the training data set consisted of 6904 ECGs from
5897 patients, the internal validation data set consisted
of 1726 ECGs from 986 patients, and the external
validation data set consisted of 1278 ECGs from 1278
patients. Table 1 shows the baseline characteristics of
2335
the study population. A total of 8251 patients with an
average age of 64.3 years were included in the study. The
average blood potassium concentration of patients with
hypokalemia was 2.89 mmol/L, and the average blood
potassium drawing time after performing the ECG was
51.3 min. Hypokalemia ECGs were more likely to be
recorded in patients with hypomagnesemia or NT pro-
BNP >300 pg/mL.

The DLM performed well in identifying hypokalemia for
the internal and external validation data sets [Figure 3].
Using 12 ECG leads to detect hypokalemia resulted in
AUCs of the DLM of 0.80 (95% CI: 0.77–0.82) and 0.77
(95% CI: 0.75–0.79) for the internal and external
validations, respectively. However, the AUC was 0.12 to
0.13 lower using a single ECG lead II. Using an optimal
operating point with the 12 ECG leads resulted in a
sensitivity of 71.43% (95% CI: 69.35–73.13) and a
specificity of 77.15% (95% CI: 75.36–80.16) for the
internal validation data set and a sensitivity of 70.01%
(95% CI: 67.63–73.34) and a specificity of 69.14% (95%
CI: 67.25–72.86) for the external validation data set
[Table 2]. When the blood potassium concentration is
lower than 2.6 mmol/L, the recognition accuracy rate of
DLM is 0.72. When the blood potassium concentration is
between 2.6 and 3.5 mmol/L, the recognition accuracy rate
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Figure 3: Performances of DLM for screening hypokalemia. AUC: Area under the receiver operating characteristic curve; DLM: Deep learning model; ROC: Receiver operating characteristic
curve.

Table 1: Baseline characteristics of development and validation data sets.

ECGs

Characteristics All (n= 6973)
Hypokalemia
(n= 3082)

Non-hypokalemia
(n= 3891) Statistics P value

Development data set
Men 3905 (56.0) 1898 (61.6) 2254 (57.9) 4.849

∗
0.03

Age (years) 63.8± 14.3 66.2± 14.2 62.1± 13.3 �13.323† <0.01
Serum potassium level (mmol/L) 3.92 (2.51, 4.82) 2.75 (2.02, 3.11) 4.16 (3.73, 5.10) 27.132

∗
<0.01

NT pro-BNP >300 pg/mL 1220 (17.5) 804 (26.1) 416 (10.7) 15.672
∗

<0.01
FT4>1.80 or FT3>4.20 pg/mL 413 (5.9) 175 (5.7) 238 (6.1) 9.976

∗
<0.01

Serum magnesium level <0.75 mmol/L 125 (1.8) 78 (2.5) 47 (1.2) 7.852
∗

<0.01
Serum potassium level <2.60 mmol/L 960 (24.6) 960 (50.6) 0 – –

Serum potassium test report time after ECG (h) 0.89 (0.52, 1.21) 0.84 (0.51, 1.12) 0.90 (0.53, 1.19) 1.282‡ 0.20

ECGs

Characteristics All (n= 1278)
Hypokalemia
(n= 639)

Non-hypokalemia
(n= 639) Statistics P value

External validation data set
Men 703 (55.0) 387 (60.6) 357 (55.9) 4.782

∗
0.03

Age (years) 64.8± 14.6 67.2± 14.8 63.1± 12.4 �10.367† <0.01
Serum potassium level (mmol/L) 3.94 (2.61, 4.84) 2.78 (2.12, 3.17) 4.24 (3.71, 5.08) 30.932‡ <0.01
NT pro-BNP >300 pg/mL 192 (15.0) 108 (16.9) 84 (13.1) 10.365

∗
<0.01

FT4 >1.80 or FT3>4.20 pg/mL 48 (3.8) 19 (3.0) 29 (4.5) 8.752
∗

<0.01
Serum magnesium level <0.75 mmol/L 15 (1.2) 9 (1.4) 6 (0.9) 3.845

∗
0.05

Serum potassium level <2.60 mmol/L 315 (24.6) 315 (49.3) 0 – –

Serum potassium test report time after ECG (h) 0.82 (0.48, 1.31) 0.79 (0.47, 1.24) 0.83 (0.52, 1.17) 1.484‡ 0.14
Data are expressed as n (%), median (inter-percentile ranges), or mean± standard deviation. ∗Chi-square test; †t-test; ‡Mann-Whitney U test. ECG:
Electrocardiogram; FT: Free thyroxine; NT pro-BNP: N-terminal pro-B-type natriuretic peptide.

Chinese Medical Journal 2021;134(19) www.cmj.org
of DLM is 0.76. Therefore, DLM still has a good accuracy
rate for ECGs under different blood potassium concen-
trations [Supplementary Figure 1, http://links.lww.com/
CM9/A779].
2336
To further evaluate the DLM performance under hypo-
thetical confounding factors, we constructed a verification
data set comprising 176 randomly selected samples with
atrial fibrillation (AF), complete left bundle branch block
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Table 3: Results of DLM in identifying hypokalemia in ECG with confounding factors from 12 ECG leads.

Results of identifying

Independent variables Number of ECG Hypokalemia, n (%) Non-hypokalemia, n (%) Accuracy, %

AF Hypokalemia (n= 36) 26 (72.2) 10 (27.8) 72.1
Non-hypokalemia (n= 75) 21 (28.0) 54 (72.0)

CRBBB Hypokalemia (n= 20) 11 (55.0) 9 (45.0) 55.4
Non-hypokalemia (n= 36) 16 (44.0) 20 (56.0)

CLBBB Hypokalemia (n= 2) 0 (0) 2 (100) 16.7
Non-hypokalemia (n= 4) 3 (75.0) 1 (25.0)

Pacing Hypokalemia (n= 2) 2 (100) 0 (0) 100.0
Non-hypokalemia (n= 1) 0 (0) 1 (100)

AF: Atrial fibrillation; CRBBB: Complete right bundle branch block; CLBBB: Complete left bundle branch block; DLM: Deep learning model; ECG:
Electrocardiogram.

Table 2: Validation data set performance for hypokalemia from single-lead (II).

Validation data set AUC (95% CI) Sensitivity (95% CI) Specificity (95% CI) PPV (95% CI) NPV (95% CI)

Internal validation, using 12
leads ECG

0.80 (0.77–0.82) 71.43 (69.35–73.13) 77.15 (75.36–80.16) 75.12 (73.54–76.94) 73.56 (71.87–76.12)

Internal validation, using
single-lead ECG (lead II)

0.68 (0.66–0.71) 70.03 (67.82–72.31) 51.95 (48.37–53.23) 68.22 (66.13–71.74) 58.73 (56.21–60.33)

External validation, using 12
leads ECG

0.77 (0.75–0.79) 70.01 (67.63–73.34) 69.14 (67.25–72.86) 79.63 (77.55–82.12) 57.33 (55.23–59.91)

External validation, using
single-lead ECG (lead II)

0.64 (0.62–0.67) 70.91 (68.23–74.15) 51.02 (49.13–53.02) 66.23 (64.13–68.45) 56.33 (54.34–59.24)

AUC: Area under the receiver operating characteristic curve; CI: Confidence interval; ECG: Electrocardiogram; NPV: Negative predictive value; PPV:
Positive predictive value
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(CLBBB), complete right bundle branch block, and pacing
ECG. In this data set, the overall recognition accuracy rate
of DLM is 61.1%. The verification results are shown in
Table 3. The sensitivity and specificity of this model in
identifying hypokalemia from AF ECGs were 74.2% and
72.0%, respectively, with an accuracy of 72.1%. The
model performed best for pacing ECGs and worst for
CLBBB ECGs.
Discussion

Over the past 10 years, various DLMs have been
increasingly applied in research on cardiovascular disease,
such as for the prediction of left ventricular systolic
function, AF, and cardiac arrest,[11,13,14] especially during
the Coronavirus disease 2019 (COVID-19) epidemic.
Clinicians have found AI extremely useful for identifying
patients with COVID-19 and predicting the severity and
progress of the disease.[15,16] The aforementioned studies
have shown that a CNN-based DLM can confer strong
recognition or prediction ability to a machine.

A DLM for screening hypokalemia in emergency patients
using 12 ECG leads was developed and validated in this
study. Using the 12 ECG leads resulted in an AUC of the
DLM of 0.80 for the internal validation data set and 0.77
for the external validation data set (not used for DLM
development), which indicates good and stable model
performance for hypokalemia screening. The model
2337
outperformed other common screening tests, such as fecal
occult blood testing for detecting colorectal neoplasia
(AUC 0.71; overall sensitivity, 29%).[17] However, lower
model performance was obtained using a single-lead ECG
(lead II). This result may have been obtained because of the
relatively few data used. Extending the ECG monitoring
time could gradually increase the quantity of acquired data
and improve the detection performance. Unlike previous
studies in which CNNs have been used to construct DLMs
to screen serum ion concentrations,[7] complete 12-lead
ECG data were used in this study to develop the DLM.
Thus, the DLM detection performance is lower than that
reported in previous studies but may be more reliable.

Although the serum potassium concentration can be
obtained relatively rapidly by venous blood measurement
in a hospital, hypokalemia diagnosis outside the hospital
(such as in community clinics) remains challenging because
patients with hypokalemia usually do not exhibit
characteristic symptoms. Using ECGs to non-invasively
screen patients for hypokalemia can be a powerful
facilitator for early detection of this disease and potentially
improve care and outcomes. Moreover, many wearable
devices for monitoring ECGs have been developed over
the past few years.[18] Therefore, the serum potassium
concentration can be dynamically detected at home, which
is highly beneficial for patients prone to hypokalemia.
However, whether a similar DLM performance would be
obtained using wearable ECG inputs remains to be
determined.

http://www.cmj.org
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The most important ability of a CNN is the extraction of
features from various types of data, such as images, two-
dimensional data, and waveforms, as well as algorithm
generation. Traditional methods use a standard regression
model to estimate the potassium content, where the T-
wave width, T-wave amplitude,T-wave slope, andU-wave
value are considered to be important indexes of changes in
blood potassium levels.[19,20] However, CNN is peculiar in
precluding the inference of which feature information is
extracted by the DLM.[21] We only know that the DLM
can screen for hypokalemia based on characteristic
changes in ECGs that humans have not yet discerned.
Although some researchers have used visualization
technology to determine the image area where DLM is
used for decision-making, this area still cannot be
quantified to enable humans to make the same judg-
ment.[11] Therefore, a visual analysis of the DLM was not
performed in this study.

Overfitting models often only have a good recognition rate
for specific data sets, but our DLM has a high recognition
rate regardless of whether it is in the internal data
validation set or the external validation data set; even in a
data set that is full of potential confounding factors, there
is still no recognition rate <60%. Therefore, the DLM
model has stable performance and no overfitting. Among
the hypothesized confounding factors, CLBBB and pacing
rhythm may have the largest impact on the detection of
hypokalemia by DLM. This suggests that we need to be
more cautious about the judgment results of DLM when
we encounter these two kinds of ECG in clinic. It is worth
mentioning that our model still achieved good results in the
ECG with features of AF. In addition to the considered
confounding factors, the concentrations of serum calcium,
troponin, creatinine, and free thyroxine may also obscure
the characteristics of hypokalemia ECGs and interfere
with the DLM extraction of hypokalemia characteristics,
thereby affecting the model used to screen hypokalemia,
which needs further research and analysis.

Of course, using AI as a preliminary screening tool for
hypokalemia constitutes a qualitative early-warning
diagnostic method, regardless of whether the evaluation
result is a true positive, whereas biochemical testing
remains the gold standard for an unambiguous diagnosis
of hypokalemia. In our study, the highest-performing
DLM had a false positive rate of 22.9% and a specificity of
only 77.1%. This result may be caused by false positive
patients under the gold standard test.[22] In addition, the
potassium level detected by the DLM in patients may better
reflect the risk of arrhythmia than blood tests. An ECG
reflects the response of heart tissue to the blood potassium
level and is thus a direct response based on the serum
potassium concentration near the actual myocardium.[23]

The DLM might be more physiological tool than a blood
test from this perspective.

Our study has some limitations at this stage. First, a
retrospective study was performed using conventional
12-lead ECG. Prospective studies must be conducted to
correlate the DLM with enhanced hypokalemia detection
and improved outcomes. Note that the DLM was
developed and verified using 12-lead ECG data obtained
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in the environment of a hospital ranked among the top
three of all hospitals in China. Therefore, prospective
testing is required to analyze the DLM performance based
on ECG data obtained in a home environment. Similarly,
further testing of the detection performance using ECG
data from wearable devices is also required. Third, the
DLM performance must be further enhanced before
application as a reliable detection tool for the serum
potassium concentration. Fortunately, the popularity of AI
and continuous optimization of deep learning algorithms
make it likely that we will develop a better DLM to screen
hypokalemia in the near future. Fourth, we only used 8630
ECG data to develop the DLM because of the limited
computing power of existing machines. The relatively few
ECGs notwithstanding, we used all of the 12-lead ECG
data. Thus, the overall quantity of data used in the analysis
was not less than that used in studies based on only 4- or 6-
lead ECG data.[24] The difficulty of limited computing
power will be resolved with the upgrading of equipment
and the use of more advanced computers. Fifth, the
influence of arterial blood gas and blood pH on the ECG
cannot be ignored, but unfortunately the above data is not
stored electronically in our hospital; hence the influence on
the DLMmodel cannot be further evaluated. In the follow-
up research, we will pay attention to this part of the data
and collect it manually. Finally, the decision-making
process of DLM needs to be further explored. Explainable
AI has recently attracted considerable interest in medicine
and has been studied and reported on. This consideration
motivates our next research direction. We expect to finally
uncover the mystery of CNNs and understand their
detailed decision-making methods in the near future.

In conclusion, a CNN-based DLM exhibits good perfor-
mance in screening hypokalemia using 12-lead ECGs
and can provide more rapid serum potassium detection
capabilities and dynamic detection capabilities for emer-
gency patients than current methods. However, a
prospective study needs to be conducted to determine
whether the DLM can improve the clinical outcomes of
emergency patients.
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