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We describe the most common internal and external sources and types of
contamination encountered in viral metagenomic studies and discuss their negative
impact on sequencing results, particularly for low-biomass samples and clinical
applications. We also propose some basic recommendations for reducing the
background noise in viral shotgun metagenomic (SM) studies, which would limit the
bias introduced by various classes of contaminants. Regardless of the specific viral SM
protocol, contamination cannot be totally avoided; in particular, the issue of reagent
contamination should always be addressed with high priority. There is an urgent need
for the development and validation of standards for viral metagenomic studies especially
if viral SM protocols will be more widely applied in diagnostics.
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INTRODUCTION

Next-generation sequencing (NGS) techniques combined with the development of computational
tools led to an explosion of metagenomic studies in the past decade (Chiu and Miller, 2019;
Lewandowski et al., 2019). Metagenomics is defined as direct analysis of the whole microbial
communities based on DNA/RNA extracted from clinical or environmental samples (Huson and
Mitra, 2012). Such analysis allows for the detection of known and unknown microorganisms and
provides insights into the pathogen–host interactions, epidemiology, ecology, and evolution of
organisms found across various ecosystems (Forbes et al., 2017; Chiu and Miller, 2019). Although
microbial research remains dominated by bacterial 16S rRNA gene sequencing studies, new
techniques were also used for viral analysis (Ladner et al., 2014; Moustafa et al., 2017; Kufner
et al., 2019). Shotgun metagenomics (SM) is currently the most widely used technique to analyze
viral DNA and RNA in a given environment (Conceicao-Neto et al., 2015; Forbes et al., 2017) and
was successfully introduced into clinical practice to support diagnosis of systemic infections and
occasionally identified a number of novel viral species (Palacios et al., 2008; Foulongne et al., 2011;
Lipowski et al., 2017).

While SM is being used to characterize the virome using various workflows, it still faces
numerous challenges, including the decision regarding best extraction and sequencing methods,
the need for host genomic background depletion, the necessity of access to computational resources
and highly specialized bioinformaticists, and providing relevant clinical data fast enough to be
of clinical value (Schlaberg et al., 2017; Boers et al., 2019). Overall, SM approach has allowed
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for comprehensive surveys of never-before-seen viral
communities (Moreno-Gallego et al., 2019; Waldvogel-
Abramowski et al., 2019; Perlejewski et al., 2020b). However,
SM also detects external contaminant nucleic acids and
cross-contaminations, which can affect the interpretation of
microbiome data (Xu et al., 2013; Laurence et al., 2014). So
far, the issue of contamination in microbial sequencing studies
was mostly discussed in regard to amplicon target sequencing
(ATM); (16S rRNA gene sequencing) and was largely focused
on bacterial bias (Karstens et al., 2019). Such contamination
effects are common, as several studies have found contaminant
microbial DNA in laboratory reagents and laboratory surfaces
(Salter et al., 2014; Eisenhofer et al., 2019; Stinson et al., 2019).
While several groups have also reported on the presence of
genomic contaminants in viral SM data, there are no established
criteria for examination and/or reporting of contamination
in virome-focused studies (Moustafa et al., 2017; Zolfo et al.,
2019; Perlejewski et al., 2020a). The current review emphasizes
the impact of contaminants on viral studies, especially when
using low-biomass samples, and proposes recommendations to
minimize its effect.

SOURCES OF CONTAMINATION IN
MICROBIOME STUDIES

Different types of samples and SM protocols affect the
composition of genetic background found in viral metagenomics.
Therefore, contaminants may be represented by external
host/human or bacterial DNA, as well as sequencing reads aligned
to genomes of a non-sample viral, fungal, protozoal, or even plant
species (Perlejewski et al., 2015; Moustafa et al., 2017; Asplund
et al., 2019). Specific contaminants are often not even reported in
viral metagenomic studies as most viral SM research is focused
only on viral hits, rarely aligning NGS reads to genomes other
than host and viral. There are two major types of contaminants
in viral SM studies: external or internal contamination (Figure 1;
Davis et al., 2018; Eisenhofer et al., 2019).

External Contamination
External contamination originates from the outside of samples
during specimen collection and preparation and can include
skin of patients or investigators (Kitchin et al., 1990; Meadow
et al., 2015), clinical and laboratory equipment (Mukherjee
et al., 2015; Llamas et al., 2017), collection tubes (Motley et al.,
2014), contaminated laboratory surfaces or air (Bittinger et al.,
2014), extraction kits, polymerase chain reaction (PCR) reagents
(Grahn et al., 2003; Tilburg et al., 2010; Salter et al., 2014),
or even molecular biology-grade water (Nogami et al., 1998;
Kulakov et al., 2002; Keki et al., 2013). Manufacturers usually
do not guarantee the absence of contaminating DNA in their
products, and those reagents/kits that are sold as sterile may
contain low-abundance external DNA (van der Horst et al., 2013).
Generally, most external contaminations in microbiome studies
have their own unique profile specific to particular reagents
and kits; therefore, they are often referred to as kitome and
are largely undistinguishable from microbiome signals derived

FIGURE 1 | Types and sources of contamination in viral metagenomic studies.

from analyzed samples (van der Zee et al., 2002; Salter et al.,
2014; Sabatier et al., 2020). Although a specific kitome can
be detected and characterized, the types and quantities of
reagent contaminants vary between different extraction/PCR
kits and batches of the same reagent (Salter et al., 2014).
True DNA/RNA signals are reproducible and associated with
individual samples; however, reagent contamination signals are
linked predominantly to specific batches or even reagents lots
(Salter et al., 2014; de Goffau et al., 2018). For example, Glassing
et al. (2016) analyzed MoBio DNA Extraction kit (QIAGEN;
Hilden; Germany) and showed that 69% of dominating bacterial
genera were the same in different lots of the kit, whereas the
composition of minor genera was lot-dependent. Therefore, it
has been recommended to process all samples in a particular
project using the same batches/lots of reagents and to consider
kit batches as a factor in the statistical analysis whenever multiple
batches are used (Kim et al., 2017).

It seems that neither laboratories nor sequencing facilities
are free from contamination, and this external DNA noise can
change over time (Salter et al., 2014). For example, Weyrich
et al. (2019) analyzed ultraclean ancient DNA laboratories for
over 5 years and three modern molecular biology laboratories
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for 1 year and found that each one had its own unique
microbial profile that changed over time according to the
month and season. In another study, three different laboratories
performed 16S rRNA sequencing of the same Salmonella bongori
control using different batches of the same extraction kits
(FastDNA Spin Kit For Soil; MP Biomedicals, Santa Ana,
CA, United States) and obtained three different microbial
profiles. This variation in the contaminant content could be
the result of differences between kit batches and other reagents
or may represent contaminants specific for each laboratory
environment and investigators (Salter et al., 2014; Kim et al.,
2017).

Extraction kits seem to be the major source of nucleic acids
external noise in microbiome studies (Evans et al., 2003; Salter
et al., 2014; Smuts et al., 2014; Zhi et al., 2014; Sabatier et al.,
2020). Glassing et al. (2016) identified 88 bacterial genera in
commonly used DNA extraction kits, and it was estimated
that 10–50% of the bacterial profiles in lower-airway human
samples are contaminants, and their main source are extraction
kits (Drengenes et al., 2019). Commercial extraction kits were
found to contain a higher microbial diversity and several more
human-associated bacterial taxa when compared to in-house
extraction protocols (Weyrich et al., 2019). A different genetic
background with significant higher prevalence of contaminants
was reported for manual compared to automated extraction
systems (Sabatier et al., 2020). The latter is not unexpected as
manual extractions require a higher number of manual transfer
steps than single-tube spin-column approach, and thus, the risk
of external contamination is increased.

RNA sequencing is more susceptible to contamination than
DNA sequencing due to the presence of the extra reverse
transcription (RT) step (Strong et al., 2014). In addition, it was
found that commercially available RT enzymes can contain viral
contaminants such as equine infectious anemia virus or murine
leukemia virus (MuLV); (Zheng et al., 2011; Wally et al., 2019).

DNA and RNA sequencing SM protocols may include an
amplification step to generate sufficient amount of DNA/cDNA
for sequencing libraries (Malboeuf et al., 2013). A number of
studies documented the presence of external DNA in various
commercial polymerases (Bottger, 1990; Schmidt et al., 1991;
Hughes et al., 1994); for example, microbial contaminants
were reported in six commercially available Taq polymerases
(Iulia et al., 2013). It was estimated that the amounts of
contaminants in recombinant Taq polymerase range between
10 and 1,000 genome equivalents of microbial DNA per unit
of enzyme (Spangler et al., 2009). Other potential sources of
contaminants could also include PCR buffers or MgCl2 stocks,
as well as primers prepared with water-containing contaminant
DNA (Stinson et al., 2019). Considering the nature of SM and
the necessity to analyze low-biomass samples, whole-genome
amplification (WGA) is often used for the generation of templates
suitable for sequencing (Thoendel et al., 2017). When three
commercial WGA-DNA kits (Illustra V2 Genomiphi, Illustra
single cell Genomiphi, and Qiagen REPLI-g single cell kits)
were tested, it has been found that each contained a wide
variety of microbial contaminant DNA (Thoendel et al., 2017).
The origin of DNA background noise in WGA methods could

come from amplification of contaminant DNA or from non-
specific extension of random primers (Blainey and Quake, 2011).
However, the consistent and highly specific contamination profile
found in most individual WGA-DNA kits suggests the dominant
role of the former (Thoendel et al., 2017). DNA background
was reported in studies using WGA-RNA kits for the analysis of
cerebrospinal fluid (CSF) and synovial fluid samples (Malboeuf
et al., 2013; Perlejewski et al., 2015, 2016; Masters et al., 2018).
WGA-RNA sequencing performed on clinical samples (CSF,
swabs, and serum) and surrogate CSF samples (spiked with three
1:100 dilutions of influenza A H3N2 virus) using WTA2 kit
(Sigma-Aldrich, St. Louis, MO, United States) resulted in the
detection of a wide range of bacterial and viral contaminants.
However, it should be noted that this background noise could
have also originated from extraction kits and reagents used for
the depletion of host genetic material (Oechslin et al., 2018).

The final step of wet-laboratory SM protocols is sequencing
(Garmaeva et al., 2019). Currently, the most widely used
method due to low costs, high yield, and wide availability is
sequencing by synthesis marketed by Illumina (San Diego, CA,
United States) (Kim et al., 2020). Despite numerous advantages,
Illumina sequencing platforms share common challenge related
to phage PhiX174 (approximately 5.3 kb) control used for
quality and calibration assessment (Manley et al., 2016). While
PhiX174 sequences should be removed from the final data,
Mukherjee et al. (2015) reported that approximately 5.5% of
publicly available microbial genomes in the Integrated Microbial
Genomes database are contaminated by PhiX174, and 10% of
them has been published in peer-reviewed scientific papers.

Internal Contamination
Cross-contamination is the most challenging internal
contamination source when compared among the other
numerous sources of internal contamination encountered
in microbial sequencing (Olomu et al., 2020). This form
of contamination results from transfer of genetic material,
amplicons, or barcodes between reaction tubes or wells (Carlsen
et al., 2012; Poore et al., 2020). Sample cross-contamination
can occur at different steps throughout the whole SM protocol
because of incorrect pipetting, accidental splashes of liquids,
generation of aerosols, incorrect tube opening, or plate cover
removal (Tamariz et al., 2006; Joung et al., 2017). The risk
of sample cross-contamination increases when a large batch
of samples undergoes extraction and/or library preparation,
especially when using tube strips without individual caps, or
when using reaction plates (Lejal et al., 2020; Olomu et al., 2020).
Specimen-to-specimen cross-contamination was found to be
significantly more common in high-throughput whole-genome
sequencing (HT-WGS) in comparison to Sanger sequencing
when influenza A/H3N2 virus from nasal/nasopharyngeal/throat
swabs was analyzed (Lee et al., 2016). Well-to-well contamination
affects primarily neighboring samples, but occasionally even
those 10 wells apart (Minich et al., 2019). In a study conducted by
Minich et al. (2019) on no-template controls (NTCs), 47.5% of
blanks for tubes and 95.7% of blanks for plate DNA extractions
had evidence of well-to-well contamination. This contaminating
effect was more common in samples with low biomass, thus

Frontiers in Microbiology | www.frontiersin.org 3 October 2021 | Volume 12 | Article 745076

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-745076 October 13, 2021 Time: 15:8 # 4

Jurasz et al. Contamination in Viral Metagenomics

negatively affecting microbial alpha and beta diversity metrics
(Minich et al., 2019). To limit well-to-well contamination, it was
proposed to keep a minimum of four-well gap between high- and
low-biomass samples (Olomu et al., 2020).

Another type of cross-contamination is run-to-run
contamination observed for MiSeq (Illumina, San Diego,
CA, United States) sequencers, which may manifest itself for
as many as seven sequential runs following the original run
(Brumme and Poon, 2017; Eisenhofer et al., 2019). However,
modifications to the post run wash procedure, mainly via
the addition of a bleach wash, largely solved this problem
(Brumme and Poon, 2017).

Another type of internal contamination occurs as a
phenomenon called “index hopping” or “index switching”
and is the main cause of incorrect sample assignment of
sequencing reads in multiplexed pooled libraries (Griffiths et al.,
2018). Index hopping refers to incorrect read assignment from a
given NGS library based on assignment to a barcode belonging
to a different one sequenced in the same pool (Costello et al.,
2018). This effect is largely due to an excess of free index primers,
which, together with the cluster generation reagents, randomly
ligate to other samples pooled together in the sequencing run
(Carlsen et al., 2012; Sinha et al., 2017; Costello et al., 2018).
According to Sinha et al. (2017) in a multiplexed pool of samples
sequenced on Illumina platform HiSeq 4000, up to 5–10% of all
sequencing reads are misassigned from one sample to another.
Index hopping is also a well-known phenomenon reported for
the MinION (Oxford Nanopore Technologies, Oxford, Great
Britain) sequencer where 0.056% of reads were found to have
incorrectly assigned barcodes (Xu et al., 2018). Index switching
reduces the value of negative controls in sequencing runs as
NTCs and analyzed samples may contain the same sequences;
thus, true signals cannot be distinguished from background
noise (Hornung et al., 2019). To reduce index switching, unique
dual-indexing and dual-matched indexed adapters with unique
molecular indices are recommended (MacConaill et al., 2018;
van der Valk et al., 2020).

Internal contamination in microbiome sequencing could also
be caused by DNA damage and polymerase errors (Brandariz-
Fontes et al., 2015; Hornung et al., 2019). In one study evaluating
13 commercial polymerases, it was found that enzyme choice
has a large impact on the proportion of correct reads recovered
from multiple gene sequencing run (from 17 to 71%) (Brandariz-
Fontes et al., 2015). Nucleotide misincorporation, generation of
chimeric sequences, or variation in efficiency of amplification of
high and low GC fragments can arise from amplification bias
(Brodin et al., 2013; Shugay et al., 2014). Sequencing of GC-poor
regions on Illumina platforms is typically less efficient, which
limits uniform read coverage across the genome, thus affecting
viral genome assembly in SM analysis (Kozarewa et al., 2009;
Chen Y. C. et al., 2013). A partial solution for amplification
errors is offered by the use of high-fidelity polymerases, which
are characterized by up to 100 times lower error rates and lower
chimera generation rates (Sze and Schloss, 2019). Importantly,
PCR conditions also play a significant role in generation of
internal contaminants, and it has been demonstrated that a
lower number of PCR cycles results in a lower signal-to-noise

ratio in microbial profiling studies (Quail et al., 2011; Sze and
Schloss, 2019). Errors can also arise during various parts of
sequencing procedure (cluster amplification, sequencing cycles,
image analysis), resulting in error base calling of approximately
0.1–1%, depending on sequencing platform (Fox et al., 2014).

Finally, internal contamination may be the result of erroneous
bioinformatics reads classification (Hornung et al., 2019; Ye et al.,
2019). In the current literature, there are dozens of virus-specific
classification workflows that are based on different strategies
using anything from simple one-step tools to analyses that
combine five or more steps and a variety of algorithms for
virome analysis (Wommack et al., 2012; Zhao et al., 2017; Nooij
et al., 2018; Kieft et al., 2020). Nooij et al. (2018) evaluated 49
different workflows suitable for viral classification and found
that the positive predictive value was generally high (>75%),
although some classifiers had lower and varied precision scores:
IMSA+A (9%), Kraken (34%), NBC (49%), and vFam (3–73%).
Taxonomic classifiers are also associated with different default
thresholds for false-positive signal detection (from 0.01 to 0.5%),
which results in tens (Bracken, MetaPhlAn2) or even thousands
(Centrifuge, CLARK, Kaiju, MMseqs2, PathSeq) of false-positive
hits, depending on the workflow (Ye et al., 2019).

False reads assignments in microbiome studies may also
arise from contamination of publicly available databases. For
instance, more than 330,000 bp in the reference genomes of
Plasmodium gaboni and Plasmodium falciparum were found
to be contaminated with human genome (Kryukov and
Imanishi, 2016). Merchant et al. (2014) discovered that Neisseria
gonorrhoeae TCDC-NG08107 genome submitted to GenBank
contained fragments of cattle and sheep genomes. Similarly, The
Cancer Genome Atlas database was found to be contaminated by
human papillomavirus type 38 originating from RNA sequencing
of human endometrial samples (Kazemian et al., 2015). The
previously mentioned contamination with PhiX174 illustrates
the scale and range of microbial database contamination
(Mukherjee et al., 2015).

CONTAMINATION IN LOW-BIOMASS
SAMPLES

The impact of contamination is especially significant for low
microbial biomass samples where the proportion of background
noise increases with the decrease of input template (Malboeuf
et al., 2013; Karstens et al., 2019). The quantity of biomass can be
evaluated by comparing the amount of extracted DNA/RNA from
the studied sample to the volume of genetic material isolated from
NTCs in the same SM protocol. Samples specified as low biomass
typically contain the amount of DNA/RNA similar to NTCs,
whereas rich samples contain significantly more genetic material
than blank controls (Lauder et al., 2016). Contaminants can
easily dominate in low-biomass samples generating background
noise that is much higher than true signal originating from the
target virus (Malboeuf et al., 2013; Salter et al., 2014). So far, a
wide variety of environmental and clinical samples containing
low viral biomasses have been studied with SM workflows
including air (Prussin et al., 2019), glacier ice (Zhong et al., 2020),
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human skin (Tirosh et al., 2018), nasal swabs (Altan et al.,
2019), and CSF (Perlejewski et al., 2020b; Perlejewski et al.,
2020c). Most widely used library preparation kits for sequencing
require inputs as low as 1 ng of DNA (e.g., llumina Nextra
XT), but this may still be unattainable for some low-biomass
samples. Based on our own experience and other published
studies, some biological samples such as CSF yield <1 ng of
DNA/RNA after typical 200 µL extraction, and viral load found
in this material is often in the range of 100 copies/mL (Poissy
et al., 2012; Bradshaw and Venkatesan, 2016; Perlejewski et al.,
2020b). According to estimations by Garmaeva et al. (2019) 1 g
of stool yields between 0.22 and 0.87 ng/µL of bacteriophage
DNA (when using 50–200 µL of elution volume) signaling the
need for application of more robust extraction and amplification
methods, generating up to picograms of DNA (Garmaeva et al.,
2019). To generate sufficient amount of material for library
preparation and sequencing, new products based on techniques,
such as multiple displacement amplification (Spits et al., 2006),
linker amplification shotgun libraries (Bittinger et al., 2014),
sequence-independent single-primer amplification (Chrzastek
et al., 2017), or single-primer isothermal linear amplification
(Ribo-SPIA), were introduced (Dafforn et al., 2004). Commercial
kits such as NuGEN’s Ovation RNA-Seq System V2, which is
based on Ribo-SPIA, can generate sufficient amount of cDNA
for library preparation from as little as 500 pg of RNA with
sufficient coverage and read count when sequencing as little
as 100 copies of HIV RNA (Malboeuf et al., 2013). Although
all these methods solve the problem of insufficient material
for sequencing in low-biomass samples, they neither reduce
nor distinguish contaminants from true signals. Moreover, as
previously mentioned, there is some evidence that these kits can
be the source of extra genetic background themselves (Thoendel
et al., 2017; Oechslin et al., 2018; Perlejewski et al., 2020a).

Another common problem specific for ultralow-biomass
samples (input < 50 pg) is the high level of read duplication
reaching 70%, whereas it was reported to be only 0.5–2%
with high DNA input samples (>50 ng) (Garmaeva et al.,
2019). This may generate a significant bias in quantitative
analysis when different communities are compared to each
other, and more irreproducible background noise is being
amplified with decreasing sample biomass (Salter et al., 2014;
Garmaeva et al., 2019; Erb-Downward et al., 2020). Finally,
low-biomass samples require extra steps during extraction and
library preparation, which increase the likelihood of external and
internal contamination (Salter et al., 2014; Rawlinson et al., 2019).

CONTAMINANTS DETECTED IN VIRAL
STUDIES

Viral Contaminants
Viral contaminants seem to be highly relevant among all types
of contaminants encountered in viral metagenomic research, and
they can, occasionally, significantly impact results interpretation,
as was the case in the study by Xu et al. (2013) who identified
National Institutes of Health–Chongqing virus (NIH-CQV) in
patients with seronegative hepatitis. Although this particular
pathogen was detected in 70% of hepatitis patients and in

0% of 45 healthy controls, it was later determined that this
novel hybrid parvovirus-like virus was a contaminant from
silica column–based RNA extraction kit (QIAamp MinElute
Virus Kit; Qiagen, Hilden, Germany) (Smuts et al., 2014). The
observed lack of NIH-CQV presence in healthy control subjects
was probably related to lot-to-lot differences in the degree of
spin column contamination (Naccache et al., 2014b). A year
later, Acanthocystis turfacea chlorella virus 1 (ATCV-1) was
proposed to be linked with the cognitive decline in humans after
it was found in oropharyngeal samples collected from adults
without current and past psychiatric disorders within a study
that included measures of cognitive functioning (Yolken et al.,
2014). ATCV-1 is of algal origin and was later found to be
a part of kitome of commercial DNase and RNA extraction
kits (Kjartansdottir et al., 2015). In general, most of reported
contaminants in viral metagenomic studies seem to come from
DNA and RNA extraction kits (Asplund et al., 2019).

In another study, a silica column–based kit (QIAamp viral
RNA mini kit; Germany) was found to generate background noise
of Iridoviridae, Circoviridae, Baculoviridae, and Genomoviridae
sequences (Ngoi et al., 2016). In a recent study comparison of
three extraction kits for metagenomic analysis of respiratory
viruses, 19, 28, and 55 viral families were identified in NTCs
using eMAG (bioMérieux, Marcy-l’Étoile, France), MagNA Pure
24 (Roche, Basel, Switzerland), and QIAamp Viral RNA Mini Kit
extraction (Qiagen), respectively. Once again, the highest genetic
background was found for the Qiagen kit, and it was composed
of hits classified as Siphoviridae, Myoviridae, Microviridae, and
Podoviridae (Sabatier et al., 2020). Various other reagents were
also found to be a potential source of contamination, for
example, BVDV−3 (bovine viral diarrhea virus 3) is a common
contaminant in fetal bovine serum (Bergner et al., 2019), whereas
MuLV is present in 17 human cell lines (Cao et al., 2015; Uphoff
et al., 2015), as well as in reverse transcriptase–PCR reagents
(Zheng et al., 2011; L’Huillier et al., 2019).

Separation of true signals from background noise is both
extremely important and yet challenging in clinical settings.
Bacteriophages are particularly common among a variety of
contaminants encountered in clinical metagenomics (Naccache
et al., 2014a; Ngoi et al., 2016; Asplund et al., 2019; Sangiovanni
et al., 2019) and may disrupt the quantitative picture of virome,
whereas sequences of eukaryotic viruses may be falsely associated
with diseases (Xu et al., 2013). That was the case in the study
linking febrile Kenyan adults with Kadiprio virus, which was
initially considered to be the causative agent but was eventually
found to be a part of QIAamp Viral RNA Mini Kit (Qiagen)
kitome (Ngoi et al., 2016). In a recent study, Mollerup et al. (2019)
used NGS to search for viruses in human cancers and found
Merkel cell polyomavirus (MCPyV) in Merkel cell carcinomas.
However, close similarity of all MCPyV sequences found across
samples allowed studies to conclude laboratory surfaces as the
source of contamination (Foulongne et al., 2011; Mollerup
et al., 2019). In our previous viral SM studies, we often found
pandoravirus sequences in CSF of patients with encephalitis and
in NTCs (Perlejewski et al., 2015; Bukowska-Osko et al., 2016;
Moustafa et al., 2017). After closer analysis of these sequences
(low-complexity reads with nucleotide tandem repeats), they
were determined not to represent true signals, but sequencing
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artifacts and/or contaminants originating in laboratory reagents
(Hjelmso et al., 2017; Waldvogel-Abramowski et al., 2019).

So far, there are very few studies addressing the issue
of viral contamination in viral sequencing (Naccache et al.,
2014b; Moustafa et al., 2017; Asplund et al., 2019). The
most comprehensive was the one by Asplund et al. (2019)
that evaluated 712 sequencing libraries prepared using several
different protocols and found almost 500 viral hits associated
with laboratory components. Similar to our observations, more
contaminants were present in RNA sequencing protocols than
those using DNA as a starting material. Most viruses reported by
Asplund et al. (2019) were bacteriophages (60%), which is also
consistent with our own studies in which phages constituted 96
and 77% of all viral sequences in CSF from encephalitis patients
using RNA-based and DNA-based SM workflows, respectively
(Perlejewski et al., 2020b). Viruses of non-human vertebrae
hosts constituted approximately 12% of all viral contaminants
(Asplund et al., 2019).

A frequent problem in viral SM studies is cross-contamination
occurring when high viral-titer samples are simultaneously
sequenced with low-biomass samples in the same sequencing lane
(Moustafa et al., 2017). This is especially relevant when viral SM
is performed using clinical samples, and overexpressed viral hits
from one sample affect the viromes of other specimens. High-
titer samples commonly contaminate low-biomass samples in
the same sequencing run, and the rate of cross-contamination
on Illumina platforms was reported to be approximately 0.05%
(Deng et al., 2020). In nanopore sequencing, cross-contamination
occurs when low- and high-titer samples are pooled; to remedy
these problems, it was proposed to batch samples together
according to viral loads (Lewandowski et al., 2019).

Bacterial Contaminants
Bacterial contaminants affect both viral SM and ATM studies in
a similar manner because of the same external origin of bacterial
sequences, which are usually present in the kitome (Salter et al.,
2014). In approximately 72% of virome samples, bacterial DNA is
considered to be the most abundant contaminant. Surprisingly, a
significantly higher bacterial background noise is present in virus
enriched than in non-enriched metagenomic samples (Zolfo
et al., 2019). These findings indicate that many virus-like particles
(VLP)–targeting SM workflows fail in efficient virus enrichment
and experience large contamination problems.

The predominant bacterial genera found in negative
controls in ATM and SM studies are Propionibacterium,
Flavobacterium, Streptococcus, Burkholderia, Methylobacterium,
Curvibacter, Ralstonia, Escherichia, Acinetobacter, and
Stenotrophomonas (Lauder et al., 2016; Weyrich et al., 2019).
Salter et al. (2014) reported the presence of Proteobacteria,
Actinobacteria, Firmicutes, Bacteroidetes, Deinococcus-Thermus,
and Acidobacteria in blank controls in PCR-based 16S rRNA
gene and SM studies. In a study using HT-WGS in six different
sequencing centers, Bradyrhizobium was reported to be the
most common bacterial contaminant genus (Laurence et al.,
2014). Moreno-Gallego et al. (2019) found that more than
1% of bacterial reads identified in a fecal virome represented
contamination and they belonged largely to Firmicutes phylum.

This is compatible with the findings of Zolfo et al., who analyzed
bacterial contaminants using measurements of bacterial small
subunit ribosomal RNA gene (SSU rRNA). In 37 virome studies
(analyzed environmental and human samples), SSU rRNA
median ranged from 0 to 14.3% (approximately 1.2% per data
set); (Zolfo et al., 2019).

Host/Human Contaminants
In HT-WGS studies of such clinical samples as stool or CSF,
host genomic reads are an integral part of whole metagenomes
(Nakamura et al., 2009; Perlejewski et al., 2020c). Some
investigators name all host reads as contaminants, as these
sequences mask true signals and reduce assay sensitivity for
pathogen detection (Malboeuf et al., 2013; Charre et al., 2020;
Heravi et al., 2020). Moreover, overrepresentation of host
sequences in large NGS data sets can extend the process of
data analysis and require high and costly computational powers
(Hasan et al., 2016).

The majority of human/host reads in WGS studies derived
from the actual sample constitute a part of true genetic
background; however, they reduce the sensitivity and sequencing
coverage in microbial sequencing studies, especially for low-
biomass samples (Chiu and Miller, 2019; Pereira-Marques
et al., 2019). Clinical SM studies revealed that in such human-
derived samples as nasopharyngeal aspirate, serum, and brain
tissue, up to ∼95–99% of raw NGS reads derive from human
DNA (Yang et al., 2011; Lipowski et al., 2017). Consequently,
without a significant host genomic depletion, viral genome
coverage is likely to be low even when high viral loads are
present (Luk et al., 2015). In clinical settings, the minimum
viral–host read ratio needed for viral identification is highly
variable and species/sample/workflow-dependent. For instance,
viral/human mRNA ratio of 0.0005% led to the discovery
of MCPyV (Feng et al., 2008), whereas viral/human RNA
ratio was 0.0135% when a new arenavirus causing febrile
illness was first identified in patients who received solid organ
transplants from a single donor (Palacios et al., 2008). In
low-biomass clinical samples, human DNA/RNA overwhelms
viral signals, but a variety of host depletion methods can
partially remedy the problem by decreasing the background
noise up to 3,100-fold with negligible loss of target virus
(Oechslin et al., 2018). Unfortunately, with the reduction
of host genomic contamination, an increase of non-host
contaminants is common, especially when kitome-related signals
are being amplified (Salter et al., 2014; Oechslin et al., 2018).
Finally, some VLP purification methods such as CsCl density
gradient ultracentrifugation efficiently remove host-derived
DNA, but at the same time discriminate against particular
viruses, thus affecting quantitative virome measurements
(Kleiner et al., 2015).

Other Contaminants
Bacterial and host-derived sequences are rarely reported in
SM viral studies because NGS reads are often not aligned to
comprehensive databases that include non-viral genomes. In SM
studies on human nasopharyngeal samples and CSF, reads were
mapping to plant, parasitic, fungal genomes, and even synthetic
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TABLE 1 | Recommendation for reducing contamination in viral metagenomic studies.

Recommendations

General practices • Use sterile laboratory equipment: tubes, tips with filter, decontaminated racks, and machines
• Wear disposable protective coats, gloves, and face masks
• Always decontaminate working area
• Perform wet-laboratory work under laminar flow hood
• Perform all steps in dedicated laboratory areas: create separate preamplification, amplification, and

postamplification sites
• Minimize the number of investigators in a project and record which samples were handled by a given technician

Sampling • Avoid cross-contamination during sample preparation
• Be aware that caging multiple laboratory animals in the same space may influence their microbial composition
• Collect samples in sterile tubes
• Avoid contamination derived from the skin or breath of the investigator
• Use rich-biomass samples

Maximize the sample volume for extraction when using low-biomass material

Reagents and wet-laboratory
procedures

• Use the same types of reagents during the whole project
Record all batches and lot numbers of all reagents used in a project

• Minimize the number of steps in wet-laboratory workflow
• Use dedicated extraction kits for low-biomass samples with low elution volumes
• Keep in mind that silica column–based nucleic acid extraction kits are associated with numerous contaminants
• Use highly purified enzymes and polymerases with high fidelity
• Minimize the number of PCR cycles during amplification
• Avoid using multichannel pipettes, sample plates, and strips without separate caps
• If necessary make gaps in plates between samples
• Use VLP enrichment workflows
• Analyze the same biological samples in repeats

Sequencing • Sequence all samples in a given project in the same sequencing center
• Use unique dual barcoding
• Sequence samples with similar viral titters in the same run
• Minimize the number of PCR cycles during indexing

Controls • Use blank and negative controls during sample preparation and extraction
• Use non-template controls if amplification step is included
• Use a variety of positive-control titrations to verify the accuracy of metagenomic workflow

Data analysis • Create a list of contaminants specific for your viral metagenomic workflow and laboratory
• Set your own threshold for contamination detection based on your results and experience
• Align NGS reads to host and bacterial genomes to examine potential contamination
• Set criteria for viral detection that include matching different regions of the viral genome with sufficient genome

coverage
• Align contigs rather than single NGS reads to viral genomes
• Check the complexity of identified viral sequences to distinguish true signals from artifacts
• Take into consideration sequencing error
• Use verified and filtered viral databases for viral classification
• Remove PhiX phage sequences before data upload
• Use open-source decontamination software
• Use dedicated software for viral detection and phage identification

Data interpretation and good
practices

• For clinical diagnostic application, verify all potentially causative viral agents found in SM studies using PCRs
• Pay close attention and be critical with regards to non-vertebrae viruses found in virome of vertebrae hosts
• Perform batch/study/investigator associations with contaminants found in your data

constructs (Nakamura et al., 2009; Perlejewski et al., 2015). These
hits could have derived from various sources including reagents,
sequencing errors, and erroneous classification, especially when
using unfiltered and biased genome databases for alignment.

CRITERIA FOR VIRUS IDENTIFICATION
AND SEQUENCE DECONTAMINATION

In virus-targeted SM studies, it is critical to make an
accurate distinction between true viral signals and contaminants

(Xu et al., 2018; Asplund et al., 2019). This is especially difficult
when low-biomass samples containing low viral loads are
being analyzed (Malboeuf et al., 2013; Perlejewski et al.,
2016). So far, a variety of SM workflows have been used for
various samples using numerous wet-laboratory procedures and
bioinformatics analysis, but a universally efficient approach is
still unclear (Nakamura et al., 2009; Conceicao-Neto et al., 2015;
Lewandowski et al., 2019).

SM viral protocols require validation and standardization
before they can be used for routine clinical application
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(van Boheemen et al., 2020). The protocols used are highly
dependent on the type of sample. For instance, stool and
tissue samples are treated differently (homogenization, filtration,
DNA/RNA extraction, or nuclease treatment) than low-biomass
samples such as CSF, human skin, or nasal swabs (e.g., required
preamplification steps) (Hall et al., 2014; Sabatier et al., 2020).
Thus, any future standardized SM clinical viral protocols must
take into consideration sample type and the expected viral
pathogen (either DNA or RNA-based approach) (Schlaberg et al.,
2017; Kufner et al., 2019). Moreover, the same factors may affect
the decision on sequencing parameters such as sequencing depth,
which specifies how many times each base in a genome should
be covered by NGS reads (Deng et al., 2020). This parameter is
associated with the abundance of target virus, which affects the
sensitivity of applied workflows (Malboeuf et al., 2013; Pereira-
Marques et al., 2019). Another factor to consider is sequencing
breadth, which specifies what portion of a genome should
be sequenced for a reliable identification (Wylie et al., 2018).
Ladner et al. (2014) proposed five categories to define different
genome standards in viral-targeted sequencing beginning with
a “standard draft,” representing a low coverage with at least
50% of a draft genome candidate recovered (frequent for low-
biomass samples with low viral loads). On the opposite site, a
“finished” category requires high coverage rates (400–1,000×)
and represents cases when a complete viral consensus genome
sequence is obtained, combined with complete population-level
characterization of genomic diversity (Ladner et al., 2014).

So far, there are no universal criteria for positive virus species
identification in HTS-WGS analyses. Currently, it seems that the
gold standard for microbial confirmation after identification by
metagenomics is PCR or Sanger sequencing (Yu et al., 2016;
Fang et al., 2018; Wylie et al., 2018; Holmes, 2019). Theoretically,
even a one virus-specific NGS read in SM could indicate a
true signal. In the already mentioned study, a novel arenavirus
was identified in organ transplant setting after only 14 virus-
specific sequences were detected by SM (Palacios et al., 2008).
Liu et al. (2020) proposed that a positively identified viral
taxon should be represented by at least two unique sequencing
reads detected by the same or a different technique, whereas
detection of reads mapping to at least three non-overlapping
genome regions was required to identify virus in CSF in the
studies conducted by Schlaberg et al. (2017) or Miller et al.
(2019). Reads dispersed across the whole genome and with
high coverage indicate the presence of true viral signals, but
isolated and/or repeated viral sequences found across samples
from the same run suggest sequencing artifacts (Asplund et al.,
2019). In a study evaluating viral SM workflow in a tertiary
diagnostic unit, positive viral identification required detection of
at least three viral reads distributed across the whole genome
with a high coverage score. Furthermore, the number of reads
for the target virus had to be at least 100 times higher than in
negative controls and other samples (Kufner et al., 2019). This
approach is balanced as it takes into account the high possibility
of cross-contamination between samples and NTCs, whereas
many microbiome studies disqualified all sequences found in
negative controls (Dunn et al., 2013; Karstens et al., 2019).
A blacklist method assembles a catalog of specific contaminants
found in NTCs in a given study and/or sequencing center and

uses them in an algorithm to exclude matching sequences from
WGS data sets (Ye et al., 2019). However, it is well-documented
that true signals can also occur in NTCs as part of the index
switching phenomenon (Callahan et al., 2017; Sinha et al., 2017;
Costello et al., 2018; Larsson et al., 2018). It was shown that
index switching ratios are higher in NTCs than in template-
containing samples, indicating that at least several NTCs should
be included in each sequencing run (Asplund et al., 2019). This
approach allows for the detection of even sporadic contaminants,
which is relevant if the decontamination is based on removal
of sequences below a specified read/species abundance threshold
(Lazarevic et al., 2016; Asplund et al., 2019).

Different thresholds were used in SM viral studies to
distinguish between true and false-positive hits; for example,
Guerin et al. (2020) proposed a threshold of >100 hits. In a
study by Wylie et al. (2018) using pools of clinical samples (CSF,
blood, plasma urine, swabs), the threshold of 0.1% of total reads
for each virus expected in the appropriate sequencing pool was
applied to limit the impact of index switching. In another study
using VLP enrichment protocols, a relative read count threshold
of 0.01% was set based on an empirical index contamination rate
(O’Flaherty et al., 2018).

Viral identification is currently supported by numerous
computational algorithms and open-source programs, such
as VirSorter (Roux et al., 2015), VirusFinder (Wang et al.,
2013), VirusSeeker (Zhao et al., 2017), VirusSeq (Chen Y.
et al., 2013), VirusDetect (Zheng et al., 2017), and ViromeScan
(Rampelli and Turroni, 2018). Some of the algorithms/pipelines
[ViralFusionSeq (Li et al., 2013), Virana (Schelhorn et al., 2013),
VERSE (Wang et al., 2015)] even allow for the detection of
viruses integrated into the host genomes. Another group of
useful programs such as MARVEL (Amgarten et al., 2018),
PhagePhisher (Hatzopoulos et al., 2016), or Phage_Finder (Fouts,
2006) are designed to detect phages in metagenomic data sets.
Special caution is required when interpreting the results of
viral mining software applied in mixed metagenomes as they
contain more computationally derived internal contamination
compared to virus-specific data sets. Zolfo et al. (2019) showed
that assembly carried out in poorly enriched metagenomes
increases the number of contigs falsely classified as viral.
More than 20% of assembled reads were assigned as viral in
approximately 12% of metagenomic poorly enriched samples.
This indicates a significant presence of viral false-positives found
in data sets containing high representation of bacterial genomes
(Zolfo et al., 2019).

Contamination in metagenomic studies can also be reduced
or even removed using open-source software, such as R
package decontam, which takes advantage of two observations:
(i) contaminants are found at higher frequencies in low-titer
samples, and (ii) their presence is more common in negative
controls than in true samples (Davis et al., 2018). A similar
application presents DecontaMiner, which uses a subtraction
approach to detect contaminations by bacteria, fungi, and viruses
from different sources (Sangiovanni et al., 2019). A much
more virome-focused software is ViromeQC, which is designed
for benchmarking and quantifying non-viral contamination in
VLP-enriched projects. It uses three microbial markers: SSU-
rRNA, large subunit rRNA gene, and 31 prokaryotic single-copy
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markers. In addition, ViromeQC calculates viral enrichment
score measuring the quality of VLP enrichment protocol (Zolfo
et al., 2019). Finally, R packages such as microDecon (McKnight
et al., 2019) or CroCo (Simion et al., 2018) are designed to
efficiently and correctly detect cases of cross-contamination in
studies using metabarcoding.

CONCLUDING REMARKS

Evolution of NGS and WGA methods has allowed for the
development of numerous metagenomic workflows, which were
successfully applied in viral-focused studies across various
environments (Conceicao-Neto et al., 2015; Kohl et al., 2015;
Perlejewski et al., 2020b). Regardless of the specific viral SM
protocol, contamination cannot be totally avoided, and in
particular, the issue of reagent contamination should always
be addressed with high priority (Asplund et al., 2019). So
far, the problem of contamination was mostly studied in 16S
rRNA profiling, and only a few viral SM studies used NTCs
or reported kitome sequences characteristic for their protocols
(Grahn et al., 2003; Karstens et al., 2019).

In the present article, we described the most common sources
and types of contamination found in viral metagenomic studies,
and we propose some basic recommendations for reducing the
background noise (Table 1). There is an urgent need for the
development and validation of standards in viral metagenomics,
which would limit contamination bias, increase the quality
of research, and allow viral SM protocols to be more widely
applied in diagnostics.
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