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Abstract: The shape and properties of closed loops depend on various topological factors. One of
them is loop-threading, which is present in complex lasso proteins. In this work, we analyze the
probability of loop-threading by the tail and its influence on the shape of the loop measured by the
radius of gyration, distention, asphericity, and prolateness. In particular, we show that the probability
of a trivial lasso for phantom polymer is non-zero even for an infinite structure, as well as that the
threading flattens the loop by restricting its motion in one dimension. These results are further used
to show that there are fewer non-trivial protein lassos than expected and select potentially functional
complex lasso proteins.
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1. Introduction

The physical background of polymer theory originates from classic works of Flory, de Gennes, Doi,
Edwards, and others [1–7]. The tools they created enable the description of the behavior of linear or star
polymers. However, they are unsuccessful in the description of circular chains. This stimulates intense
debate and lively interest among the polymer community [8–18] especially as circular polymers arise
naturally e.g., in bacterial or mitochondrial DNA [19–21]. Apart from the strictly topological effects
present in circular polymers, such as knotting or linking [22–28], circular polymers may experience
threading, which can largely influence the physical properties of such polymers [29–39]. To date,
threading has been analyzed mostly for the rotaxanes, consisting of a macrocycle ring threaded by
kinetically trapped linear molecules [40,41]. Only recently, lasso-like polymers composed of a loop
with a threading tail attached, have been synthesized [42,43]. However, lasso-like threading was also
discovered in proteins. Following [44] we call the threaded lasso topology the “non-trivial lasso” in
opposition to non-threaded (therefore trivial) lasso.

The complex lasso proteins (also called pierced lasso bundles or tadpoles) consist of a loop
formed by the main chain, closed by the covalent (e.g., disulfide) bridge, which is pierced by one
or both of the tails (Figure 1A) [44,45]. Although previously unspotted, the whole class of complex
lasso motifs is relatively common in proteins, with over 7000 chains identified so far, according to
the LassoProt database [45]. Different piercing patterns were identified, including piercing “there
and back” (the “L” class, up to 6 piercings), the chain winding around the loop (the “LS” class),
or with both tails simultaneously piercing the surface (the “LL” class). Some motifs are presented
schematically in Figure 1B. The lasso motif was proved to be functional in some cases, e.g., it regulates
the function of the obesity-related protein—leptin [46,47], or acts as a plug for NTP uptake channel in
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case of amide-based lasso proteins—microcin or astexin [48–53]. The lasso peptides were also used to
construct protein catenanes [54], or lasso peptide fusion proteins [55]. However, in general, the role of
the lasso motif in protein biology is an open question.
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LS3LS2 LL1,1

Figure 1. Complex lasso proteins.(A) An exemplary complex lasso protein (PDB code 2mxq) with one
piercing through the loop (L1 type). The orange beads denote the cysteine residues; (B) Schematic
depiction of six complex lasso motifs, with the orange bar denoting the bridge.

To establish the function of a lasso, one could begin by analyzing the probability of the thread and
its influence on the structure of the (bio)polymer. However, to date only the behavior of the ring with
the static threading obstacles [32] and mutual threading of rings in a polymer melt [29] were analyzed,
leaving the influence of the threading tail unexplored.

In this work, we bridge this knowledge gap. In particular, we analyze the probability of
loop-threading and the influence of the thread on the loop size and shape. The shape of the loop is
described by asphericity and prolateness of its corresponding ellipsoid of inertia. These results enable
us to address the question of the lasso motif by comparing proteins with their polymeric counterparts.
In particular, we show that there are fewer non-trivial lasso proteins than expected from polymer
with equilateral loop [56] and tail modeled by equilateral random walk. We also select the protein
lasso loops, whose structures are fairly different from those expected based on polymer simulation.
We argue they can have a functional meaning.

2. Materials and Methods

2.1. Random Lassos Generation

Phantom lassos (polymers deprived of any interactions and volume) were created by connecting
phantom loops and phantom tails. Phantom loops were created as equilateral polygons using
the dedicated algorithm [56]. For k-gon, the algorithm samples uniformly k − 3 dihedral
angles and k − 3 values from the set [−1, 1] which are equal to differences between lengths of
neighboring diagonals. From the valid data the polygon is recreated. Phantom tails were created
as equilateral random walks starting from the first vertex of phantom loop with coordinates
[0, 0, 0]. Three tests were done to validate the implementation of the loop sampling algorithm:
acceptance rate test, curvature test, and HOMFLY-PT polynomial occurrence test (see Section
S1 of Supplementary Materials). Both loop length N and tail length t belonged to the set
{10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200, 250, 300, 350, 400, 500}, generating in total 400
pairs of every combination of loop and tail lengths. For each pair 106 lassos were sampled. The whole
process was implemented in Python 3.6 using Numpy 1.5 library.

2.2. Simulation Model

Our model consisted of a threaded loop (Figure 2A). The thread was infinite due to periodic
boundary conditions to avoid loop slipping off of the thread. Polymers were modeled by adapting the
coarse-grained Cα protein model [57] with protein-like bond interaction strengths and all equilibrium
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distance set to average Cα-Cα distance of r0 = 0.38 nm. Neighboring beads interacted by a harmonic
potential (with force constant equal k = 20,000 ε

nm2 ). Other beads interacted by excluded volume effect

described by the repulsive Van der Waals potential 4ε
(

σ
r
)12 had default value 4εσ12 = 0.16777216×

10−4
[

kJ nm12

mol

]
. This value matches VdW radius of 0.2 nm, slightly more than 2r0 to avoid polymers

passing through each other. VdW potential was cut at a distance of 2 nm. No long-distance contacts or
angular potential were added. The effect of the number of piercing tails was mimicked by making
the radius of the thread beads w ∈ {0, 1, 2, 3, 4} times bigger than the loop beads. For the loop
with N ∈ {3, 4, 5, 6, 7, 8, 10, 12, 15, 20, 30, 40, 50, 70, 100, 150, 200, 300} NB = max

(⌊
N
2 + 5

⌋
, 12
)

beads
constituting the thread were used. As the presence of the thread forbids calculation of the loops that are
too small, the length Nsmall(w) of the smallest loops for the thread thickness w was equal Nsmall(0) = 3,
Nsmall(1) = 4, Nsmall(2) = 6, Nsmall(3) = 7, Nsmall(4) = 7. The system was encapsulated in periodic
box of size 0.38 · NB nm. To test different chain persistent lengths, simulations were carried out at
temperatures T ∈ {10, 50, 100} in Gromacs units. 109 steps were done for each condition (for a given
temperature, loop length, and thread radius). To avoid biasing the results with the initial frame
conformation, we removed the frames up to three times of time needed to reach 0.1 value of the chord
correlation function [58]. The simulations were performed in Gromacs 4.6.5 [59].
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Figure 2. Description of the model and shape parameters. (A) The schematic presentation of the model
used in the simulation–the shape of the freely moving green loop was analyzed; (B) The polymer with
its ellipsoid of inertia (top) and the semi-axis of the ellipsoid used to calculate the shape parameters
(bottom); (C) The exemplary ellipsoids with their location on the contour plot of the asphericity (orange
curves) and prolateness (blue curves) in the space of the fraction of ellipsoid semi-axes a > b > c. Note
that for spherical ellipsoid (b/a = c/a = 1), the prolateness is undetermined.

2.3. Data Analysis

The lasso topology was determined using the minimal surface method [44] implemented in Topoly
Python package [60]. The HOMFLY-PT calculation for validation of loop implementation was done
using Ewing-Millett algorithm [61] implemented in Topoly package [60]. The radius of gyration and
the lengths of axes of the ellipsoid of inertia were calculated using the g_gyrate program from Gromacs
package. The fits were done using Gnuplot, and the obtained parameters are given up to 3 significant
digits with the fitting errors in Table S3 in SI. In our analysis we calculate the statistical probability
(the fraction of structures with a given quantity among the set of whole structures), which we call
simply “probability”.

2.4. Proteins Analyzed

The set of proteins analyzed was built by taking non-redundant representatives of all the protein
structures present in February 2019 with a lasso (trivial or non-trivial), according to LassoProt (list in
Section S4.4 in Supplementary Materials). Clustering was done at 30% of sequence identity according
to PDB implementation of the blastclust method.
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2.5. Graphics

Lasso motif was visualized with a PyMOL plugin to identify lassos—PyLasso [62]. Molecular
graphics were performed with UCSF Chimera [63], plots were created using matplotlib Python package
or Gnuplot, and other figures were created using Pov Ray 3.6.

3. Results

3.1. Probability That a Lasso Is Complex

As stated in the introduction, the non-trivial lasso motif is relatively common in proteins. In fact,
it is present in around 18% of all structures with disulfide bridges [44]. Therefore, we wanted
to compare this number with the probability of non-trivial lassos in polymers. For this purpose,
we generated a large ensemble of phantom lassos with various loop and tail lengths and determined
their lasso motifs. Firstly, to get some intuition, we determined the probability of trivial lasso for the
chain with equal lengths of loop and tail (Figure 3A). As can be seen, probability tends towards a
value P∞(L0) = 0.19, which indicates that even an infinite lasso can be trivial (i.e., unthreaded) with
non-zero probability. This follows from the loop occupying different regions of space than the tail,
which is possible, as the space itself is infinite.

The probability of forming a trivial lasso should depend on both the tail and loop lengths.
However, the dependence we obtained cannot be fitted with a simple sum of two exponential decays.
To investigate this phenomenon further, we calculated the probability of trivial lasso for a fixed loop
(Figure 3B) and tail (Figure 3C) lengths. Comparison of both cases shows that the elongation of the
loop has a more sound effect on the probability of a trivial lasso. This may be attributed to the fact
that the area of the surface increases faster than the length of the loop surrounding it. The area of a
surface bound by ring polymers in melt without excluded volume was estimated to scale with the
number of monomers in the boundary as N1.03 [29]. Calculating the same dependence using protein
data in LassoProt gives the power law N1.19 (see Section S4.1 in Supplementary Materials). The decay
of trivial lasso probability for both fixed loop and tail length can be fitted with a sum of exponents
with a free parameter (values in Section S2.1 in Supplementary Materials):

P(N; L0) = P∞(L0) + cα exp(−αN) + cβ exp(−βN) (1)

As one characteristic length is always an order of magnitude smaller than the other one, here
we observe short- and long-chain regimes. This seemingly contradicts earlier results on piercing
obtained for the polymeric catenanes, where simple exponential decay was reported. However, these
were either asymptotic cases, when the influence of the small length scale is absent [64,65], polymer
melts [66,67] where many rings can thread each other, or the models with excluded volume [22,23].
The latter difference especially indicates the nature of our two-regime observation. With no excluded
volume and no restriction on angles, there is nothing to prevent the polymeric tail from making a
sharp turn back towards the surface, or pierce the surface very close to its boundary. This effect is,
however, expected to fade upon an introduction of non-zero polymer thickness, leaving only the
single exponential decay, consistent with the previous results. Therefore, the probability of the trivial
phantom lasso can be described as a surface parametrized by both tail and loop lengths as:

P(N, t; L0) = P∞(L0) + cα;t exp(−αtt) + cα;N exp(−αN N) + cβ;t exp(−βtt) + cβ;N exp(−βN N) (2)

The fitted surface is shown in Figure 3D. In particular, this form of the probability dependence
shows why we could not fit a sum of two exponents in case of an equal loop and tail length.
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Figure 3. The probability of trivial lassos. (A) A plot of the probability for an equal length of the tail
t and the loop N. In the inset, the schematic structure of trivial lasso; (B) Probability of trivial lasso
vs tail length t for fixed loop length N; (C) Probability of trivial lasso vs loop length N for fixed tail
length t; (D) The surface of trivial lasso probability in the space of loop and tail length. In the case of
(B) and (C) only selected traces were plotted to maintain transparency. For all the data see Section S2
of Supplementary Materials.

For a non-trivial lasso, it is interesting what type of threading pattern may be observed. We analyzed
the total number of piercings (independently of their direction i.e., merging L and LS classes) for the case
of an equal loop and tail length (Figure 4A). For all analyzed conditions, the most probable non-trivial
lasso is the singly pierced L1 motif. From the beginning, probability of the L1 motif decreases, reaching a
plateau for very large chains. We note that it is different behavior than in the case of e.g., knots, where
the probability of the simplest structures drops nearly to 0 when more complex knots occur [68–71].
The non-vanishing of the simplest lassos in the asymptotic case may be explained by considering the
parts of the tail delimited by the piercings separately. After performing the first piercing, there is
non-zero probability pdrift that the chain would go away from the loop. Because the tail is modelled as
a memoryless random walk, the same reasoning as in case of the trivial asymptotic lasso applies, and
therefore the probability pdrift should be similar to the probability of infinite trivial lasso P∞(L0) (but not
necessarily equal).
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Figure 4. Analysis of non-trivial lassos. (Left panel) The probability for a given number of piercings as
a function of the loop size for an equal loop size N and tail length t for non-trivial lassos only. “Other”
means lassos with ≥ 5 piercings.; (Right panel) The domination number d as a function of the loop
length N and tail length t = N for non-trivial lassos. The domination number d is a maximal number
of piercings p for which lassos with ≥ p piercings are the majority of non-trivial lassos with given N
and t (Equation (3)).

In fact, this reasoning may be iterated in the case of doubly, triply, quadruply etc. threaded loop.
As a result, the asymptotic probabilities P∞(Ln) of obtaining a non-trivial lasso with n piercings is
expected to form a decreasing series. Indeed, such a situation is visible in Figure 4A, where the traces
for different total piercing numbers stabilize for large structures in the decreasing order of the piercing
number. This distribution may be described in terms of the standard probability theory. In fact, when
analyzing the probability of several piercings, one could consider the tail drifting apart as a “success”,
and tail piercing as a “failure”. This leads to a geometric distribution, with the “success” parameter
equal to the probability of infinite trivial lasso P∞(L0). In fact, the values at which the probability traces
stabilize in Figure 4A are lower than in such framework indicating that the geometric distribution is
too idealized description of the asymptotic case.

Apart from studying the asymptotic case, one could analyze how the distribution of lasso
non-trivial motifs depends on the lasso size. In particular, as can be seen in Figure 4A, for lassos with
N = 250 beads in each of the loop and the tail, the spectrum is dominated by structures with at least
5 piercings (probability of “other” > 0.5). In fact, this cutoff number of piercings may be used to
characterize the spectrum of non-trivial lasso motifs for a given length N. In particular, we can define
the domination number d as the maximal number of piercings p, for which a non-trivial lasso with at
least p piercings dominates the spectrum (e.g., d(250, 250) = 5), that is:

d(N, t) = max(p) : PN;t(n ≥ p) > 1/2 (3)

with PN;t(n) being the probability that a lasso with the loop length N and tail length t has n > 0
piercings. From the plot of the domination number d as a function of the lasso length N (Figure 4B) one
can see that although L1 is the most common lasso motif, even for relatively short structures (N = 30
beads) it is more probable to generate more complicated lassos than L1. On the other hand, the value
d(N, t) is bounded from above, as for some number of piercings p0 the probability PN;t(n ≥ p0) cannot
be larger than 1/2, as it is the tail of the convergent series. Indeed, we see a stabilization indicating
that sampling lassos with more than 500 beads in the loop and tail would not improve much our
knowledge about the distribution of non-trivial lassos for those lasso sizes.
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3.2. Shape Parameters of a Lasso Loop

Apart from the threading probability, another question concerns the influence of the threading
on the shape of the loop. To analyze the dependence of the shape of the loop on the threading
type, we generated the ensemble of structures from the simulation of unconstrained movement of a
coarse-grained loop. To obtain the threading effect, the loop was pierced by a single thread with the
radius of the thread imitating the piercing pattern (see Figure 2A and Materials and Methods).

In each simulation, the size of a loop was described by the radius of gyration Rg and distention D
(Equation (6)), and its shape by asphericity A and prolateness P of the ellipsoid of inertia of the loop
(Figure 2). The description by an ellipsoid of inertia has a long tradition [72] and was used to analyze
topologically trivial [73–76] as well as knotted [68,77] polymers. Moreover, the analytical results in the
limit of an infinitely flexible chain are known [78–80]. All the analysis included the results obtained at
the highest temperature analyzed, at which the chain was the most flexible. However, the results at
the lower temperatures were qualitatively equivalent (see Figure S5 in Supplementary Materials).

The radius of gyration measures the average size of the polymer chain:

Rg =

√√√√ 1
N

N

∑
i=1

r2
i (4)

with ri denoting the position of the loop beads. The mean radius of gyration as a function of the loop
length is shown in Figure 5A. The largest differences in the Rg can be seen for large loops, where
the behavior of the free (non-threaded) loop stands out from the threaded cases. On the other hand,
the traces for threaded loops are parallel for long chains, indicating that for sufficiently long chains the
thread thickness does not play a role.

To quantify the effect of the thread, the data were fitted with the standard formula [36]:

< Rg >= cr + ar Nν (5)

To exclude the effect of small, rigid loops, we fitted the data for loops with at least 30 beads.
The result for the non-threaded loop (ν = 0.582) is close to the exponent estimated for the self-avoiding
walk (ν = 0.5874± 0.0002 [81]), and the difference may stem from the non-fixed length of the bonds.
In fact, all the obtained values of the scaling exponent were similar independently on the thread
thickness, with an average value ν = 0.580 (see Table S3). This can be explained, as the existence of
a thread does not change the solvent properties, nor the dimension of the space—the factors which
according to standard Flory theory determine the power law. Moreover, it does not force the loop to
squeeze (like the presence of knot does). In fact, the scaling of radius of gyration was shown to be
independent on some topological factors, such as cyclization of the chain [36]. Therefore, following [36],
to obtain a better fit of other parameters, we fitted the function with fixed the value of scaling exponent
ν = 0.59. The results of the fit are contained in Table 1.

Despite no effect on the scaling, the thread does influence the preexponential factor ar. For the
same scaling exponent, the ratios of parameters ar describe the ratio of the values of radius of gyration
in different cases (for sufficiently long polymer). The ratios of ar compared to the unthreaded case is
also given in Table 1. The analysis of the ratios shows that the threaded loops with the same length
have slightly larger Rg, which results from spreading the chain in two dimensions perpendicular to
the thread. On the other hand, as expected, the thread thickness does not influence the value of Rg

asymptotically (the discrepancies in ar parameter are smaller than our confidence interval).
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Figure 5. The dependence of shape parameters on the loop length and thread thickness. (A) Radius
of gyration; (B) Distension; (C) Asphericity; (D) Prolateness; (E) The trajectories of the loop shapes in
the space of the fraction of ellipsoid semi-axes a > b > c. The traces start from the loops with at least
8 beads. The contour lines of asphericity (orange) and prolateness (blue) were added. Note that the
thread thickness determines the smallest possible loop (for details see Materials and Methods).

The radius of gyration is a good measure for large loops, where the scaling behavior can be
analyzed. However, for small loops, the excluded volume effects constraint the movement of the chain,
flattening it, independently of the presence of the threading. Therefore, we defined a new quantity,
called distension D, which compares the Rg with the value for a flat, regular polygon with the same
number of beads:

D =
2Rg

r0
sin
( π

N

)
(6)

The maximally stretched loop, symmetrical, with relaxed bonds, has distention value of 1. Higher
values can be reached if loop bonds are stretched beyond equilibrium value r0 = 0.38 nm or lower if it
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is contracted. The plot of distension is shown in Figure 5B. In particular, it shows that the presence
of the thread elevates the distension, again indicating the flattening of the loop. Similarly to Rg,
the effect of the presence of the thread is visible also for large loops, where the effect of the thread
thickness vanishes.

Table 1. Parameters fitted for the shape parameters scaling as the function of the thread thickness.
The “ratio” is the value of the preexponential factor compared with the case of unthreaded loop
ar(thickness = n)/ar(thickness = 0). The scaling factor for the asphericity for the unthreaded loop was
given in italic as it stands out from the trend and the fitting error obtained in this case was significant
(see Section S3 in Supplementary Materials).

Thread Radius of Gyration Asphericity Prolatness

Thickness aR[nm] cR[nm] ratio aA µ A∞ aP P∞

0 0.154 −0.102 1.00 0.0342 −0.186 0.0708 −1.37 0.300
1 0.164 −0.0825 1.06 0.188 −0.753 0.0853 −3.07 0.315
2 0.164 −0.0162 1.06 0.353 −0.822 0.0858 −4.57 0.384
3 0.164 0.0376 1.06 0.845 −0.993 0.0869 −5.53 0.420
4 0.164 0.106 1.06 1.05 −0.969 0.0856 −6.10 0.413

The flattening and elongation are well visible in the plots of asphericity and prolateness.
The asphericity measures the deviation from the spherical shape. In terms of the ellipsoid of inertia
semi-axes a, b, and c it is given by:

A =
(a− b)2 + (b− c)2 + (c− a)2

2(a + b + c)2 (7)

(we used the definition of Rawdon et al [68], as in this definition the asphericity is an unbiased
parameter). The asphericity attains values in the interval A ∈ [0, 1], with 0 for a sphere, 0.25 for
a flat disk and 1 for a stick (see also Figure 2C). In our case, the excluded volume forces the small
loops to attain more planar shapes (as seen also by the distension), which results in the values of
asphericity characteristic for disk-like structures. For non-threaded loop, the asphericity has a very
shallow minimum for a size of 7 beads (similar shapes were also registered for loops without excluded
volume [68]). However, the presence of the thread modifies this behavior. The traces for threaded
loops do not have a minimum and therefore approach their asymptotic values from above.

To calculate the effect of thread thickness on the asymptotic value of asphericity, we fitted the
asphericity of all threaded loops larger than 30 beads with the equation [74]:

< A >= A∞ + aANµ (8)

The results of the fit are contained in Table 1. For a non-threaded case, we observe the value
A∞ = 0.0708, comparable with earlier results (A∞ = 0.078 in [77]). The presence of the thread increases
the asymptotic value of the asphericity to the average value A∞ = 0.589 with no visible dependence
on the thread thickness. However, the thread thickness manifests itself by the rate by which the limit
value is obtained. This rate of approaching the limit may be quantified by the scaling exponent µ,
visible as the curvature of the plot.

The second shape parameter used is the prolateness, also referred to as the nature of asphericity.
It can be calculated for the aspherical loops according to the equation [68]:

P =
(2a− b− c)(2b− c− a)(2c− a− b)

2(a2 + b2 + c2 − ab− bc− ca)
3
2

. (9)

The results of the fit are contained in Table 1. Prolateness attains its values in interval P ∈ [−1, 1],
with negative values attained for oblate ( a+c

2 < b, M&Ms-like shape) and positive for prolate structures
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( a+c
2 > b, rugby-ball-like shape, assuming a ≥ b ≥ c, see also Figure 2C).The prolateness dependence

on the threading is shown in Figure 5D. All small, threaded loops are oblate, becoming more elongated
in one direction (more prolate) with the extension of the chain. The thickness of the thread has a
smaller effect on the prolateness than just the thread existence.

To quantify this effect, we turned towards scaling of the prolateness. However, there is an
inconsistency in the literature according to the scaling law with either linear [74], or almost inverse
square root power law [79] scaling for intermediate-length chains. As in our case, the traces are
concave, and we could not fit the data with variable exponent, we turned towards the almost inverse
square root dependence:

< P >= P∞ + aPN−0.47 (10)

The asymptotic prolateness for non-threaded loop (P∞ = 0.331) agrees with previous
results [68,77]. The presence of the thread increases the prolateness, indicating that the threaded
loop is more elongated in one dimension. However, conversely to asphericity, the asymptotic values of
the prolateness still seem to be affected by the thread thickness. This effect is visible both in the plot as
in the fitting parameters. As we expect the prolateness to be asymptotically free of the thickness of
the thread, this indicates that used scaling law is valid only in a narrow interval of chain lengths and
better scaling should be used.

The difference between the threaded and non-threaded case is well visible especially by plotting
the traces in the space of the ellipsoid semi-axis, along with rising loop length (Figure 5E). We used
this presentation, rather than the asphericity-prolateness space used in other works, as in the latter,
part of the space is forbidden [74]. As the very small loops should be treated separately, the plot
encompasses the traces starting from loops with at least 8 beads. For 8 beads, the presence of the thread
still flattens the loop, increasing the asphericity and decreasing the prolateness. This shifts the starting
point towards the right-bottom corner of the plot compared to the non-threaded case. The difference in
approaching the asymptotic asphericity value is visible as a different sign of the curvature of the traces.
The threaded loops tend towards the same point (asymptotical independence on the thickness of the
thread), which is, however, distinct from the limit point for the unthreaded loop (the dependence of
the shape on the thread existence).

3.3. Comparison Of Simulated Polymers with Complex Lasso Proteins

One of the biological realizations of the lasso geometry are the complex lasso proteins. As stated
in the introduction, the general role of the lasso motif in proteins is still unknown; however, in some
cases (miniproteins, leptin) the motif was shown to be functional. Our results indicate that the lasso
may be functional in many other cases. In particular, similarly as in the case of knots [82], we analyzed
the probability of a protein trivial lasso versus the probability of trivial lasso occurrence in phantom
lasso polymers (Figure 6A). In most cases the points corresponding to the protein data locate above the
surface describing polymers, indicating that the non-trivial lassos are scarcer in biopolymers. However,
some particular points lie well below the polymer surface. This may be regarded as a hallmark of
the importance of the lasso structure, as the loop or the tail has to be additionally stabilized by some
enthalpic effects despite entropic tendency to form a trivial structure.

On the other hand, the number of non-trivial lassos in proteins (18% of all proteins with
disulfide-based loops [44]) can be compared with the expected number of non-trivial structures in our
polymeric model. Therefore, we estimated the threading probability for each chain, using Equation (2).
As in general the protein lassos possess two tails, and some protein chains possess more than one lasso
loop, we calculated the probability of at least one threading, using the inclusion-exclusion principle
(see Section S4.2 of the Supplementary Materials for details). Next, we calculated the expected number
of chains with non-trivial lasso structure as a function of chain length. The result of the calculation
is shown in (Figure 6B). Although the curves are highly variable, the trend shows that the observed
number of non-trivial lassos is smaller than the expected number, especially for long chains (more than
200 residues).



Polymers 2019, 11, 707 11 of 17

N
on

-t
riv

ia
l l

as
so

s

0

4

8

12

16

Chain length
0 800 1200

B

400

A

Tail length t

Loop length N

0     200    400 0           200          400

L
0
 p

ro
ba

bi
lit

y

0.0
0.2
0.4
0.6
0.8

40

30

20

0 0

Trivial Non-trivial
Asphericity

 

Asphericity
0.12 0.160.04 0.08

10

 Trivial Non-trivial
Loop length

Loop length
0 100 200 300 400 500

0.00

0.01

0.02

0.03

N
or

m
. #

 o
f o

cc
ur

. C D

Expected
Observed

N
or

m
. #

 o
f o

cc
ur

.

Figure 6. The complex lasso shapes in proteins. (A) The probability of trivial protein lasso versus the
trivial lasso polymer surface, as a function of loop and tail length. (B) The expected and observed
number of the non-trivial lassos as a function of the chain length. The light color curves show the
smoothed traces. The normalized histogram of (C) loop lengths and (D) asphericity for the pierced and
non-threaded (trivial) case. The arrows denote the shift of the distribution from trivial to the non-trivial
case. The dotted lines denote the smoothed fit.

To identify the protein structures, for which the non-trivial lasso may be functional, we selected
the non-trivial structures, with very low threading probability (<0.2) estimated for the polymer model,
reasoning as previously that either the loop or the thread has to be additionally stabilized. In the
probability estimation, we also included the effect of multiple piercings through the loop, by treating
the piercing number as a geometric distribution, as argued earlier.

The set of structures with potentially functional lassos selected this way included all miniproteins
(18 structures with the average threading probability equal to 0.024), for which the non-trivial lasso
motif was already shown to be functional. Moreover, the set contained a few other small toxic,
antimicrobial, defensin-like or immune system related proteins (27 structures with the average
threading probability equal to 0.122) with the same lasso motif as miniproteins (see e.g., Figure 1A).
Apart from those, we identified 8 hydrolases or hydrolase inhibitors (with the average threading
probability equal 0.141), one sugar binding protein and the proteins with 6 piercings (metal-binding
protein with PDB code 6bdj and oxidoreductases with PDB codes 4qi7 and 5vg2). The full list of
identified proteins with their estimated threading probability and the spectrum of all threading
probabilities are contained in section S4.3 in Supplementary Materials. Apart from those, the
chemokines and other signaling proteins with L2 motif were pointed out previously based on the
simple statistical analysis [44]. In fact, most of these proteins have the piercing probability just above
0.2 according to our estimate.

On the other hand, one could select the structures for which the threaded loop has an unexpected
shape measured by the values of the asphericity or prolateness. In particular, we showed and argued
for the piercing results in the flattening of the loop, implying the increase of asphericity, compared
to the non-threaded loop of the same length. Therefore, as the threaded loops are larger in general
(Figure 6C) than non-threaded, one would expect the shift of the asphericity distribution towards
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higher asphericity values, upon threading. However, the entirely opposite effect is seen in proteins,
where the threaded loops are more spherical (Figure 6D). Again, we associate this counterintuitive
effect with possible stabilization of the loop or the tail balancing the natural entropic tendency to
increase the asphericity. However, the results based on shape parameters are much vaguer, and more
subtle tests, taking into account also internal protein geometric features are needed.

4. Discussion

In this work, we analyzed the probability of piercing and its result on the shape of the loop for
a broad range of loop and tail lengths. In contrast with previous works, in our case, the loop was
threaded by a tail with one free terminus. In particular, we showed that the probability of trivial
phantom lasso is non-zero even for the infinite structure. This has a direct influence on the distribution
of non-trivial lassos, with the simplest L1 type being the most common pierced lasso regardless of the
loop and the tail lengths. On the other hand, we showed that the threading flattens the loop, which
is visible in both asphericity and prolateness. The effect of the thread is visible for all sizes of lassos;
however, the influence of the thickness of the thread asymptotically disappears.

The shape parameters were calculated for the loop with excluded volume. The excluded volume
affects in particular the shape of the small loops. It would, therefore, be interesting to see how the
asphericity and prolateness of the loop depend on the loop thickness. The excluded volume may
also have an important effect on the probability of non-trivial lasso. In this work, we analyzed the
probability that lasso is non-trivial for phantom chains, also registering an effect specific to small
structures, increasing this probability. We attribute this effect to sharp turns of the tail or loop, which
would disappear upon introduction of non-zero chain thickness.

Apart from the excluded volume, the probability of threading and its influence on the shape
of the loop may be modulated by other factors, such as chain persistence length, confinement, or
by imposing some specific distribution of planar and dihedral angles. For unthreaded loops, some
works concerning the influence of these parameters on the shape of the loop have already been done
[73,74,83]. In fact, confinement was shown previously to increase the probability of knotting, both
in the case of polymers and in proteins [25,84–87]. In the case of lassos, confinement is expected to
decrease the asymptotical probability of a trivial lasso, and therefore change the distribution of total
piercing number.

Such modifications would enable adjusting the model to the specific case, e.g., prediction of lassos
in proteins. Based on the general results, we singled out some protein structures for which the lasso
motif may be functional. In accordance with previous studies, our analysis selected in particular the
antimicrobial proteins, with single threading. The structural and functional similarity to miniproteins
indicates that those proteins may also act as plugs for some crucial channels. This, in turn, creates the
possibility of medical use for small complex lasso proteins. Most of the other proteins selected by our
analysis are enzymes. This resembles the case of proteins with knotted backbone, around 80% of which
are enzymes [88]. For those proteins, the existence of knot-induced rigidity was shown to create places
favorable for the enzymatic active sites [89]. Possibly, a similar effect is present in the case of complex
lasso proteins, with the rigidity induced by the covalent loop. Enhancing the model with excluded
volume mimicking cell crowding or imposing the protein-like distribution of the planar and dihedral
angles could tune the predicting power of the analysis to indicate more subtle examples of lassos,
for which the threading must be additionally stabilized, and therefore is suspected to be important
for the protein structure or function. Similarly, such enhanced models could allow the obtaining of
more detailed statistics on the expected number of proteins with complex lasso topology. However,
as the static polymeric approach does not include the effect of protein folding, we expect such results
to overestimate the number of complex lasso proteins. This also shows the necessity to investigate
further the topic of folding of such structures.

Another way to test the stabilization of the tail is the direct measurement by experimental or
simulated pulling. In general, the analysis of the thermodynamic properties of lasso (bio)polymers,
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including their dynamics, and formation constitutes the natural continuation of this work. Until now,
only dynamic studies of mutual loop-threading and study on the thermal unthreading of one lasso
protein have been performed [13,90].

Threading is a fascinating topological phenomenon, which, although it has profound effects on
the shape and dynamics (topological glue) of polymers, has not yet been studied extensively. With this
work and our parallel of the complex lasso proteins in mind, we hope, however, to positively stimulate
the development of the study of the threading effects on the polymers with its applications in biology.

Supplementary Materials: The following are available at http://www.mdpi.com/2073-4360/11/4/707/s1.
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