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Abstract
To ensure the nutritional needs of an expanding global population, it is crucial to 
optimize the growing capabilities and breeding values of fruit and vegetable crops. 
While genomic selection, initially implemented in animal breeding, holds tremen‑
dous potential, its utilization in fruit and vegetable crops remains underexplored. 
In this systematic review, we reviewed 63 articles covering genomic selection and 
its applications across 25 different types of fruit and vegetable crops over the last 
decade. The traits examined were directly related to the edible parts of the crops 
and carried significant economic importance. Comparative analysis with WHO/
FAO data identified potential economic drivers underlying the study focus of some 
crops and highlighted crops with potential for further genomic selection research 
and application. Factors affecting genomic selection accuracy in fruit and vegetable 
studies are discussed and suggestions made to assist in their implementation into 
plant breeding schemes. Genetic gain in fruits and vegetables can be improved by 
utilizing genomic selection to improve selection intensity, accuracy, and integration 
of genetic variation. However, the reduction of breeding cycle times may not be ben‑
eficial in crops with shorter life cycles such as leafy greens as compared to fruit 
trees. There is an urgent need to integrate genomic selection methods into ongoing 
breeding programs and assess the actual genomic estimated breeding values of prog‑
eny resulting from these breeding programs against the prediction models.
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Introduction

Definition of fruits and vegetables

Fruits and vegetables, as defined by The Food and Agriculture Organization of 
the United Nations (WHO/FAO) include “edible parts of plants, either cultivated 
or harvested wild, in their raw state or in a minimally processed form.” This defi‑
nition excludes “starchy roots and tubers, dry grain legumes, cereals, medicinal 
plants, stimulants (e.g. tea, coffee and cacao) and ultra‑processed foods” (FAO 
2021). Furthermore, staple food crops such as rice, wheat, maize, millet, barley, 
oats, and others are also excluded from the classification of fruits and vegetables 
for the purposes of this review.

Definition of genomic selection

Genomic selection (GS), also known as genomic prediction or genetic improve‑
ment, is the use of genome wide genetic markers to build models that predict 
plant phenotypic traits and can hence be applied to both animal and plant breed‑
ing programs (Desta & Ortiz 2014). All statistical and machine learning mod‑
els calculating genomic estimated breeding values (GEBV) using genome wide 
genetic markers were considered as GS tools, and hence included in this review.

Background

Food security is a growing need presented to many communities, as nations work 
to become self‑sufficient in the worrying scenarios of geo‑political strife. Climate 
change is also drastically pressuring global food production and decreasing pro‑
ductivity levels (Campbell et  al. 2016). Global wheat production was estimated 
to decrease by a staggering 6% per °C of global warming (Asseng et al. 2015). 
Lastly, an ever‑growing world population is steadily increasing the world’s food 
demands. An estimated global population of 9.1 billion people is expected to 
increase global crop demands by up to 110% from 2005 to 2050 (Tilman et  al. 
2011). A key aspect of food security is nutrition security. WHO/FAO recom‑
mends a healthy diet to consist of “at least 400  g of fruit and vegetables per 
day, excluding potatoes, sweet potatoes, cassava and other starchy roots” (Who 
& Consultation 2003). Hence, the issue of food security must also be addressed 
from a nutritional standpoint (Ingram 2020), where sufficient fruits and veg‑
etables must be produced to allow for healthy diet consumption for the world’s 
population. Increasingly, genomics and its applications in agriculture has been 
regarded as the key to global food security issues (Kumar et al. 2021). Through 
genomics approaches, the speed of agricultural breeding processes for livestock 
such as cattle and crops such as rice, has increased tremendously (Hayes et  al. 
2009) (Xu et  al. 2021). Despite its apparent translational successes in certain 
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areas of agriculture, to our knowledge, little work has been done to apply GS 
methods to fruit and vegetable crops.

Aim of review

This systematic scoping review aims to evaluate the extent of application of GS 
in fruits and vegetables, focusing on a wide variety of crops with a large array of 
desirable traits. To this end, our objectives are: 1) To identify the fruit and vegeta‑
ble crops that have been studied extensively, thereby highlighting the specific crops 
that may require more research attention; 2) To examine the traits that have been 
improved through GS, and those that could potentially be benefited from the same 
approach; 3) To assess the methods involved in GS applications within fruits and 
vegetables, and, 4) To present findings on how GS studies have been implemented in 
actual fruit and vegetable breeding strategies. To date, there is no systematic review 
available that specifically addresses the use and application of GS methods targeted 
at this specific category of crops.

Methodology

Search Strategy

This review was conducted in accordance with the Preferred Reporting Item for Sys‑
tematic Review and Meta‑Analyses (PRISMA) guidelines (Page et  al. 2021). The 
PRISMA checklist is found in Supplementary Table 1. Scopus, Web of Science and 
BIOSIS databases were used to conduct the literature search on 21 December 2023. 
Full search terms for the databases are found in Table 1. An initial primary search 
was performed using these search terms followed by a secondary search using the 
same parameters but removing the "vegetable" and "fruit” search term to identify 
any other eligible results to comprehensively identify all relevant studies.

Table 1  Full search terms 
applied to databases; Scopus, 
Web of Science and BIOSIS for 
the literature search. All three 
databases were filtered for only 
English, research articles

Database Full search term

Scopus ("Genom* select*" OR "Genom* 
improve*" OR "Genom* predict 
*") AND ("vegetable*" OR 
"crop*" OR "fruit*") AND NOT 
(" wheat " OR " oil " OR " grain 
" OR " rice " OR "barley" OR 
"maize" OR "soy")

Web of Science/BIOSIS ("Genom* select*" OR "Genom* 
improve*" OR "Genom* predict 
*") AND ("vegetable*" OR 
"crop*" OR "fruit*") NOT (" 
wheat " OR " oil " OR " grain 
" OR " rice " OR "barley" OR 
"maize" OR "soy")
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Eligibility Criteria

With reference to the pre‑stated definitions of “fruits and vegetables”, as well as 
“genomic selection”, this review selected articles that focus on the application of GS 
methods in these crops. All articles in English with full text available were included. 
Articles were excluded for one or more of the following reasons: the target crop was 
not included in the pre‑defined definition of vegetables, or no target crop was speci‑
fied; the article was a method paper reporting a protocol of GS with no model accu‑
racy reported; the article did not use GS methods; the article was a review or meta‑
analysis article; or the full text was unavailable. Using these criteria, the primary 
search yielded an initial 850 articles that were screened. Their titles and abstracts 
were initially reviewed to identify suitable articles, before full texts were retrieved 
and reassessed for suitability based on the same exclusion criteria. Only articles that 
passed both abstract and title screening, as well as full text screening were included 
in the data extraction step for the final review. 2608 initial articles were identified 
in the secondary search, and they were screened using the same eligibility criteria. 
Duplicate studies identified in the primary search were removed so that only previ‑
ously unidentified, eligible studies were finally included in the review.

Data Extraction

The following data was extracted from the filtered full‑text articles: author(s), year, 
publishing journal, species studied, GS model used, statistical validation method 
used, prediction accuracy method used, accuracy of GS models reported, DNA 
extraction method used, sequencing method used, study sample size and traits of 
interest studied. The extracted data can be found in Table  2 (further details are 
included in Supplementary Table 2). Where details were unclear, not stated, or could 
not accurately be extracted from the article, data was not extracted from the article 
and regarded as ‘NA’. All further data analysis and visualization were performed in 
RStudio.

Results and Discussion

Literature Search

Abstracts and titles from 850 articles were screened in the primary search for suit‑
able articles. This resulted in 69 articles that qualified for further full‑text screening. 
A total of 59 full‑text articles were finally included into this review from the pri‑
mary search after fulfilling the eligibility criteria (Fig. 1, Supplementary Table 3). 
In summary, Nagano et  al. (2017) was excluded from the review during full‑text 
screening as it was deemed to be a method paper reporting a protocol of GS with 
no accuracy reported while Yamamoto (2021) was excluded due to it being a review 
article, despite the two papers studying suitable target crops of strawberry and pear. 
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Similarly, Hardigan et al. (2023); Liabeuf and Francis (2017); Longhi et al. (2013); 
Nyine et al. (2017); Ohyama et al. (2023); Wilkinson et al. (2022) were all excluded 
despite their study of fruit and vegetable crops as they did not use GS methods. An 
additional four articles were identified from the secondary search and included in 
this review (Li et al. 2020; Lozada et al. 2023; Minamikawa et al. 2018; Roth et al. 
2020), totaling the number of articles included in this review to 63.

Based on the definition of fruits and vegetables specified, seventeen crops were 
excluded from the study at abstract screening stage. They included alfalfa (Medicago 
sativa), black tea (Camellia sinensis), cacao (Theobroma cacao), cassava (Manihot 
esculenta), chickpea (Cicer arietinum), chestnut (Castanea sativa), chrysanthemum 

Fig. 1  PRISMA flow diagram of the process used to identify and shortlist articles for systematic review
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(Chrysanthemum morifolium), coffee (Coffea arabica), common bean/snapbean 
(Phaseolus vulgaris), cowpea (Vigna unguiculata), flax (Linum usitatissimum), 
groundnut/peanut (Arachis hypogaea), pea (Pisum sativum), potato (Solanum 
tuberosum), sesame (Sesamum indicum), sugarcane (Saccharum officinarum), and 
walnut (Juglans regia).

Overview of studies

GS in fruits and vegetable crops is relatively new. A database search on related top‑
ics revealed publication released only from 2013 onwards. Since then, there has been 
an overall increase in the number of publications annually (Fig. 2). This increasing 
trend could be largely attributed to the rapidly decreasing cost of genomic sequenc‑
ing technology and the rapid availability of genomic data as well as reference 
genomes (Muir et al. 2016). GS was popularized in 2001 (Meuwissen et al. 2001) 
and largely applied to livestock as well as staple crops. The successes of GS are well 
recorded in livestock. Specifically, the cattle industry has greatly benefited from the 
use of GS breeding (Weller et al. 2017). The aquaculture industry has also largely 
benefitted from GS breeding particularly in the area of disease resistance (Houston 
et al. 2020). When discussing key products delivered by genomics‑assisted breeding, 
Wang et al. (2022) shares key developments in staple crops such as rice, wheat and 
legumes, with no specific mention of fruit or vegetable crops. It has seemingly taken 
a decade for GS to be applied to fruits and vegetables, starting in 2013. Despite the 
difference in agricultural organism, there are key lessons that can be taken from such 

Fig. 2  Number of articles meeting the inclusion criteria of GS studies in fruits and vegetables published 
each year from 2013 to 2023
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successes. In dairy cattle, breeding pedigree for breeding lines have been developed 
over decades in such a mature industry (Gutierrez‑Reinoso et al. 2021). Genotypic 
and phenotypic data for breeding lines are readily available for purchase together 
with breeding material, meaning that the initial phenotyping and genotypoing work 
by the breeders are no longer required. Such data may not be as readily available in 
some fruits and vegetable species, hence breeding plans must first collect such data 
and develop breeding lines, which can be costly. In staple crops, Xu et al. (2020)’s 
genomic selection review recommends the creation of genetic chimeras that contain 
haplotype combinations of two or more elite parental lines to maximise GS efforts.

Overview of fruit and vegetable crops studied

From the literature search, a total of 25 different fruits and vegetables have been 
utilized in GS studies in the last 10  years. They comprise 16 fruit and 9 vegeta‑
ble crops (Table 2). Sugar kelp (Saccharina latissima) was classified as a vegetable 
crop as it is a commonly consumed edible kelp in Asia for its nutritional value and 
flavor (Stévant et al. 2018). Huang et al. (2023) studied GS for 11 yield and morpho‑
logical traits from a study population of 866 sugar kelp individuals and reported GS 
cross validation accuracies ranging from ‑0.23 to 0.48. GS models were applied to 
make crosses for experimental validation. There is only one leafy vegetable species 
included in this review, spinach (Spinacia oleracea) (Bhattarai et al. 2022a; Bhatta‑
rai et al. 2022b; Shi et al. 2022). All three publications reported GS work in spinach 
relating to disease resistance. Bhattarai et  al. (2022b) and Bhattarai et  al. (2022a) 
both reported genome wide association studies (GWAS) to identify single nucleotide 
polymorphisms (SNP) associated with resistance to downy mildew disease, caused 
by the oomycete pathogen Peronospora effusa in spinach. They further implemented 
genomic prediction for this trait by utilizing significant SNPs associated with disease 
resistance. Another GS study in spinach related to disease resistance was on white 
rust disease caused by Albugo occidentalis (Shi et al. 2022). Cauliflower (Brassica 
oleracea var. botrytis) was also studied (Rosen et al. 2018; Thorwarth et al. 2018) 
on traits such as curd developmental, morphological, and induction time‑related 
traits. Rosen et al. (2018) reported the training of ridge‑regression best linear unbi‑
ased prediction GS models with prediction accuracies ranging from 0.52–0.61 for 
predicting curding times, while Thorwarth et al. (2018) reported accuracies ranging 
from 0.10–0.66 for different curd‑related traits using genomic best linear unbiased 
prediction and Bayesian B GS models. There is a clear distinction between the num‑
ber of studies conducted on different types of fruit and vegetable crops over the last 
decade. In total, 39 reports published GS work in fruit type crops, while there were 
only 20 reports in vegetable crops (Table 2). Of the crops studied, apples (Malus 
domestica) (n = 9), strawberries (Fragaria × ananassa) (n = 7) and tomatoes (Sola-
num lycopersicum) (n = 6) were identified to have the greatest number of reports 
(Fig. 3a).

Data provided by the Food and Agriculture Organization of the United Nations 
Statistics Division (FAOSTAT) (Food, Agriculture Organization of the United 
1997) shows a slight economic importance of fruit over vegetable crops. From the 
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Fig. 3  a: Number of articles published for each fruit and vegetable crop from 2013 to 2023. b: Annual 
gross production value (billion USD) of fruit and vegetable crops from 2013 to 2022 (Food & Agri‑
culture Organization of the United, 1997). c: Total gross production value of crops from 2013 to 2022 
(Food, Agriculture Organization of the United 1997)
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period of 2013 to 2022, the annual average gross production value (USD) of fruits 
crops ($4.86 trillion) was 15.14% higher than that of vegetable crops ($4.22 trillion) 
(Fig.  3b). Further analysis revealed tomatoes ($859.70 billion) to have the highest 
total gross production value within that time frame, followed by grapes (Vitis spp) 
($649.36 billion) and apples ($525.41 billion). This may explain the relative research 
importance represented by increased research publications for apples and tomatoes. 
However, the similar trend is not observed for grapes, with only four GS publica‑
tions identified despite its high gross production value (table grape, n = 1; grapevine, 
n = 3) (Fig.  3a, Fig.  3c), potentially identifying grapes as a fruit crop with greater 
capacity for genomic breeding research using GS. Conversely, despite ranking 12th 
in gross production value ($172.90 billion), strawberries had the second highest num‑
ber of publications (n = 7). The range of fruit and vegetable crop species studied for 
the application of GS remains limited, particularly in vegetable species, compared 
to other wheat and grain crops, and to livestock. The higher economic value of each 
individual, coupled with greater reduction in generation time means that there is a 
larger genetic gain for GS application in livestock such as cattle (Xu et al. 2020). In 
turn, the smaller economic importance of vegetable crops and shorter generation time 
may potentially serve to hinder researchers from studying GS in such crops. How‑
ever, this research gap needs to be actively addressed as the world strives towards 
food and further nutritional security, ensuring the availability of healthy diets to the 
world population. Fruits and vegetables must be readily available, and their growing 
capacities enhanced. We recommend research of GS methods for enhanced breeding 
of more fruit and vegetable crops, specifically vegetable crops.

Overview of fruit and vegetable traits improvement

Categorization of traits is difficult to generalize as different studies contain differ‑
ent definitions and methods of measuring various traits. The difficulty in general‑
izing traits makes their comparison across multiple studies challenging. Not surpris‑
ingly, traits reported in this review are mostly directly related to the crop product 
to be consumed. In fruit crops, these traits were largely related to yield as well as 
quality of the fruit itself. Of the nine apple GS studies, five studied some form of 
yield‑related trait (such as fruit size or weight) (Jung et al. 2022; Kostick et al. 2023; 
Kumar et  al. 2020; McClure et  al. 2018; Muranty et  al. 2015) while five studied 
varying color related traits (Cazenave et  al. 2022; Jung et  al. 2022; Kostick et  al. 
2023; McClure et al. 2018; Muranty et al. 2015). Additionally, five looked at fruit 
firmness (Jung et al. 2022; Kumar et al. 2020; McClure et al. 2018; Roth et al. 2020; 
Wu et al. 2021), three looked at crispness (Cazenave et al. 2022; Kumar et al. 2020; 
Roth et  al. 2020); all in relation to the quality of the fruit. McClure et  al. (2018) 
studied post‑harvest qualities by measuring the firmness, soluble solids content 
(SSC) and titratable acidity (TA) of apples after three months in refrigerated stor‑
age. In six tomato studies, yield and fruit quality traits also played large importance 
(Bhandari et al. 2023; Duangjit et al. 2016; Hernández‑Bautista et al. 2020, 2016; 
Liabeuf et al. 2018; Yamamoto et al. 2017). Only Liabeuf et al. (2018) studied GS 
methods for disease resistance in tomatoes, while Hernández‑Bautista et al. (2020) 
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studied fruiting earliness in tomatoes as it “indirectly increases yield and offers more 
supply opportunities by increasing the production window”. Such studies are an 
example of utilizing GS for traits not directly related to yield or quality, but which 
may have important indirect impacts that can still result in economic gain for farm‑
ers. More of such studies should be performed to understand GS methods in indirect 
traits that may still affect fruit and vegetable production. Disease resistance was also 
noted to be an important aspect of breeding in strawberries; four of six strawberry 
studies reported GS models focused on plant disease resistance, for example, Phy-
tophthora crown rot (Jiménez et  al. 2023), gray mold (Petrasch et  al. 2022), and 
Verticillium wilt resistance (Feldmann et  al. 2023; Pincot et  al. 2020). Similarly, 
studies on kiwifruit (Actinidia chinensis) (Brzozowski & Mazourek 2020), peach 
(Prunus persica) (Fu et  al. 2022), spinach (Bhattarai et  al. 2022a; Bhattarai et  al. 
2022b; Shi et  al. 2022), and squash (Cucurbita) (Brzozowski & Mazourek 2020) 
among others, also addressed disease resistance. Meanwhile, Gezan et  al. (2017) 
studied strawberry traits in relation to the marketability of strawberries, Li et  al. 
(2020) explored genomic selection in strawberry shape uniformity and Yamamoto 
et al. (2021) studied petiole length and leaf area of the leaves of strawberry plants 
on top of the usual fruit‑related traits. The term “phenotyping bottleneck” describes 
the limitations or bottlenecks in the phenotyping process, which involves measuring 
and assessing traits or phenotypes of organisms—in this case, fruits, and vegetables. 
The difficulties in accurately and efficiently measuring traits gives rise to this bot‑
tleneck, which can hinder the advancement of GS and breeding programs. Pheno‑
typing is also extremely costly and laborious if one intends to collect high‑quality, 
large datasets, which are crucial for accurate GS model training. Increasingly, there 
are technological advancements primarily making use of the improvement in image 
capturing and processing technology to deal with this bottleneck. Li et  al. (2020) 
used a 3D imaging approach to measure strawberry uniformity and show that it 
is comparative to manual measurements before implementing these data sets into 
genomic selection models. They present an example of using imaging technology to 
deal with the phenotyping bottleneck while benefit genomic selection model train‑
ing. However, there is still work that needs to be done to validate many of these new 
technological advancements and it will take time before many of these technologies 
are readily applicable to varying crops. These technologies, challenges and opportu‑
nities have been heavily presented in reviews over the years (Bongomin et al. 2024; 
Sheikh et al. 2024; Yang et al. 2020). Artificial intelligence coupled with advanced 
imaging technology has potential to truly advance high‑throughput phenotyping. 
Imaging technology, hyperspectral imaging, thermal imaging, 3D imaging and flu‑
orescence imaging, together with artificial intelligence now means that more data 
than ever can be collected and processed to identify patterns and draw conclusions 
(Sheikh et al. 2024).Such non‑destructive phenotyping allows researchers to actively 
monitor crop traits over periods of time and collect data without causing potential 
harm to the plant. Phenotypes collected by the reported studies can largely be cat‑
egorized into crop quality (including chemical and metabolic analysis of crops), 
post‑harvest related traits, yield‑related traits, and growth‑related traits (including 
disease resistance and growth of the plant itself). Within these categories, traits are 
limited by the availability of methods to measure them effectively and accurately. As 
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such, traits tend to be biased towards those that are economically important or easily 
measured through simple phenotyping means. Phenotypic traits with similar under‑
lying genetic architecture can often be correlated with one another to identify asso‑
ciated and secondary traits. In breeding programs, indirect selection for traits that 
are expensive or difficult to measure using correlated secondary traits is common 
(Rutkoski et al. 2016). While it is important to gather economically important pri‑
mary traits, the collection of seemingly unimportant, secondary traits can prove to 
be vital in reducing the cost of phenotyping in GS breeding schemes. This work will 
require an initial “deep” phenotyping of desired organisms, followed by phenotypic 
correlation studies to understand the relationships between phenotypes and identify 
useful secondary traits. The repertoire of deep phenotypes collected and made avail‑
able to the public will aid researchers in selecting and identifying cheaper methods 
of phenotyping desired traits.

Factors affecting genomic selection prediction accuracy in fruits and vegetables

GS model performance is influenced by factors such as study sample size and popu‑
lation structure, marker density, trait genetic architecture and heritability, as well as 
the GS model selection (Budhlakoti et al. 2022). The correlation coefficient between 
genomic predicted GEBVs and observed trait values is most used to assess model 
accuracy. Cross validation methods are regularly used to ensure model stability and 
robustness as they simulate real world breeding programs. In a k ‑fold cross vali‑
dation, available genotypic with coupled phenotypic data is divided into k groups. 
k − 1 subgroups are then used to train the model, and the model tested over the kth 
group. This process is iteratively repeated to obtain variations of cross validation 
accuracies to calculate mean and standard deviations of GS model performance. 
Allowing the user to understand the robustness and reliability of their GS model.

Training population design

For effective application of GS model training, the training population used must be 
large and representative of the available allele combinations and linkage disequilib‑
rium (LD) patterns of the desired trait and crop target. Without such representation 
in the model training, model performance often dips considerably when applied to 
breeding programs (de Los Campos et al. 2013). Models trained on a small diver‑
sity of genetically related individuals lack prediction accuracy when tested. Corak 
et al. (2019) applied five different strategies of sampling from a collection of 433 
domesticated carrot (Daucus carota) accessions to develop a smaller, core collec‑
tion of representative accessions. They found that none of the strategies signifi‑
cantly affected GS model accuracy  (r2 = 0.2–0.3) and concluded that although it is 
still possible to use diverse germplasm collections to train accurate GS models, the 
aim of using core collections of 10–20% may be unreasonable as there is insuffi‑
cient genetic diversity in the suggested training data. Similarly, breeding programs 
implementing GS models in populations trained with different genetic backgrounds 
will find that model performance no longer holds to the prediction accuracies first 
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recorded. In Cazenave et al. (2022), models trained for apple fruit traits and tested 
on a genetically different population consistently showed a reduction of prediction 
accuracy. However, they demonstrated that models trained using a combination of 
both differing populations exhibited prediction accuracies like that of the within 
population model tests. Thus, it is important to factor in the genetic background and 
composition of the training and eventual breeding population of the breeding pro‑
gram. Where training and subsequent breeding populations may be genetically dis‑
similar, efforts should be made to introduce more diversity from the breeding popu‑
lation into training the GS model.

Minimally effective population size is important to reduce genotyping and logis‑
tic costs in a breeding program yet provide maximum model training efficiency. 
Model accuracy is often well correlated with training population sample size. Nsibi 
et al. (2020) tested GS model application using 25%, 50% and 75% of the total pop‑
ulation size (n = 152) as the training population and consistently found that models 
trained on 75% of the total population exhibited greater model accuracies in apricots 
(Prunus armeniaca). The same was observed in Duangjit et  al. (2016) with 75% 
of the total population size (n = 163) of tomatoes trained models with the highest 
accuracy. However, model accuracy eventually evens out after which the addition of 
more samples is no longer cost‑effective. (Arruda et al. 2015; Fernández‑González 
et al. 2023; Sverrisdóttir et al. 2018) The elbow point serves as a crucial intersec‑
tion to identify the most cost‑effective training population sample size for use in 
breeding programs. In wheat, Edwards et al. (2019) concluded that a small number 
of close relatives or a very large number of distant relatives are expected to improve 
model training accuracy. Given that breeders often rely on a relatively narrow pool 
of genetically similar crops for breeding, smaller sample sizes should suffice in 
training accurate GS models. However, breeders that would like to incorporate more 
trait and genetic diversity will have to factor in the increased costs of phenotyping 
and genotyping a larger population. While this may be possible for smaller fruit and 
vegetable crops such as leafy greens, this may prove to be difficult when applied to 
crops such as fruit trees, which are logistically large and often take many years to 
mature.

Trait heritability

Phenotypic variance, V
P
 , is the combined effects of genetic variance, V

G
 , and envi‑

ronmental variance, V
E
.

Heritability measures the extent of which the phenotypic variation is contributed 
to by genetic factors. Together with the observed selection differential, S , that is the 
phenotypic difference between the selected parents and the parental population, her‑
itability, h2 , can be used to calculate the observed selection response, R . This is also 
known as the breeder’s equation.

V
P
= V

G
+ V
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The prediction accuracy of a GS model is greatly influenced by the heritability of 
the trait of interest. That is, traits that are largely contributed by genetic variance are 
more accurately predicted using genomic markers. The heritability of the trait can 
also affect the optimum sample size required for model training, as previously dis‑
cussed. Self‑pollinated crops with huge LD blocks passed down over many genera‑
tions maintain a relatively high heritability for many traits (Anilkumar et al. 2022). 
Poor predictive accuracy is often attributed with traits of low heritability as the vari‑
ation can largely be attributed to the environmental variance. Duangjit et al. (2016) 
demonstrated in 45 tomato crop traits the positive correlation between trait heritabil‑
ity and predictive accuracy (r = 0.69). The predictive accuracy of traits decreased 
with the heritability of the trait when models were trained on the same training data. 
In cauliflower, GS prediction worked best for highly heritable traits (number of days 
to budding and cluster width) compared with traits of low heritability (apical length 
and length of nearest branch) (Thorwarth et al. 2018). An increase in sample size of 
training data could demonstrate an increase in accuracy for traits with low heritabil‑
ity. Breeding programs must hence consider trait heritability in designing breeding 
programs of maximum efficiency and value. Although GS is effective for complex 
traits controlled by many gene loci, traits that are largely affected by environmental 
variability can greatly lower GS accuracy. In such situations, multi‑environmental 
trials and models incorporating random and fixed effects can be used as an attempt 
to rectify this. Nyine et al. (2018) found that models which included averaged envi‑
ronmental data as added effects across multiple test years improved GS accuracy. 
They evaluated 15 traits in bananas (Musa spp) in two environmental crop condi‑
tions over two crop cycles. Jung et al. (2020) describes a method to deal with the 
spatial heterogeneity within environments to reduce the effect of environmental vari‑
ability that may affect GS accuracy. These methods can be employed to deal specifi‑
cally with traits of low heritability when designing GS experiments.

Marker density

Marker density and type plays an important role in enabling GS model accu‑
racy. Genomic markers reviewed in this article primarily consisted of SNPs, 
with the exception of eight studies that utilized simple sequence repeats (SSRs) 
(Cañas‑Gutiérrez et  al. 2022; da Silva et  al. 2021; Hernández‑Bautista et  al. 
2020, 2016; Iwata et  al. 2013a, b; Iwata et  al. 2013a, b; Viana et  al. 2017, 
2016). Sekine and Yabe (2020) and Fodor et al. (2014) utilized simulated data 
to perform simulation genomic breeding program studies and understand its 
applications within an artificial environment. Next‑generation sequencing and 
high‑throughput genotyping processes have resulted in the widespread availa‑
bility of dense SNP markers, making it the preferred genomic marker to use due 
to this cost per marker efficiency. Many of the reviewed articles all reported 
the identification of minimally 10,000 SNP markers through next generation 
sequencing techniques (Table 2), Huang et al. (2023) identified up to 909,747 
high quality SNPs in sugar kelp after genotypic filtering. (estimated genome 

R = h
2
× S
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size: 537‑Mb (Ye et  al., 2015)). While the importance of genome size cannot 
be completely ignored when discussing the importance of marker density, we 
argue that extreme marker densities may not always be effective in training 
predictive models. As with training population sample sizes, GS model accu‑
racy has also been found to increase with an increased marker density, before 
plateauing at an elbow point (Wang et  al. 2017). Such a pattern is observed 
when visualizing the proportion of genetic variance explained with an increas‑
ing number of markers (Minamikawa et al. 2017). Again, identification of this 
elbow point can allow plant breeders to identify the minimally required number 
of markers to reduce genotyping costs for their programs. In dairy cattle, Zhang 
et al. (2011) argues that 95% of the prediction accuracy obtained through a high 
density SNP panel can be obtained with low density SNP panels and present 
multiple ways to reduce this SNP density. Similar low density SNP panels are 
recommended by Habier et al. (2009) to maximize cost effectiveness.

Marker selection and filtering have been suggested as means to reduce marker 
density. Including: LD‑pruning, trait association filtering and random sampling. LD‑
pruning involves a process of removing genetic variants above a certain LD thresh‑
old, resulting in a subset of genetically independent variants. These independent var‑
iants are representative of the entire set of genetic variants but are represented in a 
much smaller subset of markers. Tong et al. (2022) applied LD‑pruning and selected 
13,590 tomato (17% of all SNPs) (estimated genome size: 900 Mb (Tomato Genome 
Consortium, x, 2012)), and 19,685 pepper (Capsicum spp) (25.45% of all SNPs) 
(estimated genome size: 3.5 Gb (Hulse‑Kemp et al. 2018)) tag SNPs. When com‑
paring models trained by the two sets of SNPs, markers trained with the LD‑pruned 
SNPs showed similar accuracies as compared to when using all SNPs. This process 
can prove to be useful for plant breeders in identifying a smaller, minimal subset of 
genetic variants to be used in training GS models, further decreasing genotyping 
costs. Ferrão et al. (2021) further compared GS model accuracy in blueberries (Vac-
cinium corymbosum) with two varying sequencing read depth scenarios (6 × and 
60x) and showed no significant differences in accuracy between the two. Associa‑
tion filtering can be useful in removing genetic markers that have zero or even nega‑
tive effects on GS model accuracy. Individual marker effects vary depending on the 
trait of interest and complexity of trait genetic architecture. In scenarios where traits 
are contributed by a small number of QTLs, the inclusion of all available genetic 
marker can often provide little to no additional effect on GS model accuracy. In fact, 
Minamikawa et al. (2017) observed that traits controlled by an estimated lower num‑
ber of QTL in citrus required much less marker density in training GS models of the 
highest accuracy. The process of identifying and filtering markers based on associa‑
tion often requires quantitative genetic processes such as QTL mapping and GWAS 
to first estimate individual marker effects. Models trained on marker sets contain‑
ing 215, 20, and 3 GWAS‑associated SNPs all showed greater prediction accuracy 
as compared to 8189 non‑filtered SNPs (estimated genome size: 989 Mb (Collins 
et al. 2019)), as well as smaller standard deviation across 100 test iterations in GS 
models trained for mildew resistance in spinach (Bhattarai et  al. 2022a). Random 
sampling of genetic variants can be used to reduce marker quantity and identity the 
minimum number of markers required across the genome to enable high predictive 
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accuracies. In Nsibi et al. (2020), genetic markers were randomly sampled across the 
genome and compared to study their effects on GS accuracy for fruit quality traits 
in apricot (Prunus armeniaca). In this study, they demonstrated a mere randomly 
sampled 10% of 61,030 SNPs (estimated genome size: ~ 220–230 Mb (Groppi et al. 
2021)) were required to train rrBLUP models, any further addition of markers used 
to train the model did not significantly increase the GS model accuracy. While there 
is a general positive correlation of marker density with model accuracy, increasing 
the marker density beyond a certain threshold does not significantly improve model 
accuracy and genetic gain of the breeding program. Hence, the identification of min‑
imally required markers for effective model training should be analyzed when plan‑
ning each breeding program to maximize genotyping and phenotyping data.

Genomic selection predictive models

GS methods comprise a wide range of statistical and machine learning techniques 
that are continuously advancing, utilizing genome wide markers to predict the 
GEBV of individuals. In our review and subsequent analysis, we categorized these 
methods into: (1) Bayesian models (43.7%), including Bayes LASSO (n = 20), Bayes 
RR (n = 15), Bayes A (n = 13) and Bayes B (n = 19), which utilize Bayesian statisti‑
cal frameworks to model marker effects and calculate GEBVs (Montesinos López 
et al. 2022); (2) best linear unbiased prediction (BLUP) methods (30.5%); genomic 
BLUP (GBLUP) (n = 26) and its extensions, estimate GEBVs by fitting linear and 
mixed models (Habier et  al. 2013); (3) regression‑based methods (2.5%), such as 
ridge regression (RR) (n = 5), make use of regression models to predict GEBV while 
penalizing marker effects (Ogutu et  al. 2012); (4) machine learning algorithms 
(13.7%), including least absolute shrinkage and selection operator (LASSO) (n = 5), 
random forest (RF) (n = 9) elastic net (n = 3) and support vector machine learning 

Fig. 4  Pie chart visualizing the frequency of use of GS methods in the articles reviewed
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(SVM) (n = 3), leverage advanced machine learning techniques to model complex 
relationships between markers and phenotypic traits (Fig.  4). Understanding of 
statistical and machine learning modelling can be challenging for traditional plant 
breeders who are not well‑versed in the field (Tuggle et al. 2024). The challenge lies 
in identifying the most suitable model specific to the needs of the breeding program. 
Understanding the genetic architecture of the trait in question is vital in appropriate 
selection of GS models. The genetic architecture of a trait, namely the contribution 
of genes and their interaction to the trait plays an important role in the accuracy 
of a GS model. GS was quickly suggested to overcome the problems in marker‑
assisted selection for dealing with complex traits, where many quantitative trait 
loci (QTL) were found to contribute to the phenotypic trait in question (Bhat et al. 
2016). Selection of appropriate GS model and statistical tools can assist in over‑
coming such problems introduced from trait complexity. For instance, Gezan et al. 
(2017) compared GS models of 1628 strawberries using GBLUP, Bayes B, Bayes C, 
Bayes LASSO, Bayesian Ridge Regression (BRR) and Reproducing Kernel Hilbert 
Spaces (RKHS), finding that Bayes B produced the highest predictive accuracy for 
yield‑related traits. Meuwissen (2009) initially reported the advantages of Bayesian 
approaches in the prediction of traits controlled by few loci. Compared to regular 
BLUP models, Bayesian approaches apply differently weighted effects to different 
loci. In comparison, traditional BLUP methods apply fixed variance effects across 
all loci and are more suitable when predicting traits affected by many QTLs. Simi‑
larly, Minamikawa et al. (2017) showed that GBLUP, RR, and Bayesian regressions 
were more accurate for most fruit quality traits in citrus, whereas the accuracies of 
RF, elastic net, and LASSO varied among other traits. Uptake of machine learn‑
ing models is still low largely due to the lack of reproducibility and interpretabil‑
ity of models when trained with biological data. Machine learning models are often 
considered ‘black boxes’ and are notoriously hard to interpret. There are also no 
evident outperformance of these models as compared to traditional statistical model‑
ling approaches (Chafai et al. 2023). Where conventional machine learning models 
have struggled to process natural data and required much prior feature engineering, 
deep learning machine learning models have been able to uncover patterns in data of 
high dimensionality (LeCun et al. 2015). There have been reported use cases of its 
effectiveness in human genetics (Leung et al. 2014). In plant genetics, deep learn‑
ing methods are relatively new. Lozada et al. (2023) reported the use of deep learn‑
ing models (RF, multilayer perceptron and convolutional neural network models) in 
comparison to traditional GS models in pepper. However, they noted that there was 
no pattern identified between model used and accuracy of prediction. They reiterate 
that deep learning models can be added to the repertoire of available GS models, 
but large training sample size would be required (Montesinos‑López et  al. 2021). 
Initially, most GS models were designed based on additive gene effects, ignoring 
non‑additive effects on the trait. However, non‑additive gene effects are increasingly 
being incorporated into GS models and can provide improved accuracy. Wu et al. 
(2019) incorporated both additive and dominance gene effects into GS models for 
pumpkin and regularly showed an improvement in accuracy. They deemed that such 
models were capable of factoring for the heterozygosity effects of hybrid crossing. 
Hence, while there has been some attempt at understanding the effect of varying 
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models within different environmental conditions, traits and population types, it is 
still largely unexplained. This emphasizes a further research gap on understanding 
the exact workings and benefits of differing GS models under varying conditions. 
Tests on eight different pepper traits and twelve models showed minimal differences 
of performance across models for each phenotype, despite the large differences in 
models used (Lozada et al. 2023). The same is shown across four different growth 
periods in strawberries where GS model selected made no apparent difference to 
prediction accuracy (Gezan et al. 2017). Similar results are observed in aquaculture 
breeding programs, where systematic review identified no outperforming GS model 
type (Wang et al. 2022).

Implementation and application of genomic selection into fruit and vegetable 
breeding programs

Tuggle et al. (2024) performed a survey to understand the pressing and critical needs 
for advancing agricultural genome‑to‑phenome research in the USA. Their find‑
ings revealed critical needs in funding for “advancing plant and animal breeding”, 
“phenotyping technology development”, “advancing genomic (and epigenomic) 
research” and “predictive analytics development”. Despite the abundance of meth‑
ods and tools available to the breeder, their application remains limited, highlighting 
the imperative to translate these theoretical methods into tangible gains. GS methods 
and experiments are often validated using statistical tools such as cross‑validation, 
and adjustment of training and testing population sizes. These tools ensure the reli‑
ability and robustness of the trained models. However, the validation using these 
tools is often theoretical and not realized in practice. Limited research has been per‑
formed to apply the GS models into actual breeding schemes and to study the empir‑
ical results of these models in their respective crops. Many of the published studies 
simply focus on GS methodology. In this imperative to study GS methods directly 
in fruit and vegetable breeding plans to understand their effects against genetic gain. 
Genetic gain, ΔG , is defined by the increase in mean phenotypic value over time 
through a selection program.

where i is the selection intensity, �A is the genetic variation, rMG is the accuracy of 
selection and t is the breeding cycle time. In this context, genetic gain is improved 
where there is an increase in selection intensity, selection accuracy or genetic var‑
iation together with the decrease in time taken for each breeding cycle (Xu et  al. 
2017).

Increasing selection intensity and accuracy using genomic selection in breeding 
plans

The most obvious implementation of genomic selection into plant breeding pro‑
grams for fruits and vegetables is the use of GS to select genetically superior parents 

ΔG =
i × �A × rMG

t
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more efficiently and accurately as compared to the traditional phenotypic trunca‑
tion selection method. In silico breeding makes use of available genomic data and 
crossing simulation, incorporated with GS models to select ideal breeding parents. 
The GEBV of progenies from the simulated crossings can be calculated within these 
models to rank parental crossings. These methods increase both selection inten‑
sity and accuracy to improve genetic gain. However, they are still largely unknown 
to traditional breeders but have immense economic benefits for both growers and 
stakeholders alike. Gezan et al. (2017) selected top strawberry parents by genotypic 
information without any phenotypic information and showed an efficiency of above 
50% when selecting parents this way, as compared to selecting parents with the full 
repertoire of phenotypic and genotypic data, demonstrating the successes of GS 
models in selecting ideal individuals as parents based on GEBV. Further, Yamamoto 
et  al. (2021) showed high predictability of  F1 strawberry hybrids when using GS 
models with observed phenotypes. GS models can be used to simulate and select 
crossing of parents, and progeny testing can be performed to experimentally validate 
the results of these simulated crossings. Yamamoto et al. (2017) simulated proge‑
nies for four crosses of tomatoes to assess the potential of GS for increasing soluble 
solids content and total fruit weight. They tested the progeny of these crosses and 
found that the correlation between the predicted GEBVs and the observed pheno‑
typic values were comparable to the estimated predictability calculated in the cross‑
validation approach. A similar study performed was by Iwata et al. (2013a, b) based 
on 84 Japanese pear (Pyrus pyrifolia) cultivars, predicting progeny traits based on 
simulated, in silico crossings. Ferrão et al. (2021) have already begun implementing 
GS models for GEBV‑based parental selection in their blueberry breeding program 
with the aims of increasing genetic gain as well as maintaining genetic diversity. 
GS methods were tested in pepper by Hong et al. (2020), who evaluated GS mod‑
els in a separate population of recombinant inbred lines derived from two parental 
lines. They reported prediction accuracies ranging from 0.32 to 0.50 for fruit related 
traits and attributed the moderate accuracy to the large difference in genetic diversity 
between the training population and the test population. The simulation of progeny 
trait distributions allows for breeders to select crossings based on desired selection 
intensity on top of increasing selection accuracy, as demonstrated in some studies. 
Selection intensity can be selected based on the range of simulated crossings to thus 
direct the actual crosses. Improvement of both selection intensity and accuracy will 
assist in increasing genetic gains for fruit and vegetable crops.

Introduction of genetic diversity into breeding plans

To increase genetic gain, improved genetic variation and diversity can also support 
breeding efforts. Leveraging of germplasm diversity as well as other crop wild type 
cultivar to improve genetic diversity is well discussed, however the cost of accu‑
rate and precise phenotyping still serves as a bottleneck (Voss‑Fels et al. 2019). If 
these “phenotyping bottlenecks” can be overcome, GS methods have great potential 
to aid in the introgression of exotic alleles into current breeding plans to improve 
genetic gain. Jiménez et al. (2023) underscored the lack of available genomic diver‑
sity towards the resistance of strawberries to Phytophthora crown rot. They hence 



Molecular Breeding           (2024) 44:60  Page 41 of 50    60 

implemented diverse genetic cultivar of underutilized germplasm resources to train 
and implement GS models. The implementation of GS models allows for varying 
complex selection indexes to be introduced to simulate and hence select the best, 
long‑term breeding model. Serial, truncated selection for genetic gain has often 
resulted in the reduction of genetic diversity and has been a cause for concern for 
environmentalists and plant breeders alike (Vanavermaete et al. 2020). In these tra‑
ditional breeding models, the best genotypes are selected from every cycle and used 
to breed the next cycle, creating a funneling effect on genetic diversity based on 
desired traits. There have been several suggested means to deal with the concern 
of a loss of genetic diversity over breeding generations. Indexes find a compro‑
mise between short term genetic gain and genetic diversity loss, but studies have 
shown that there are long term genetic gains to be made. Cowling et al. (2023) has 
developed means to overcome the loss of genetic diversity by incorporating such 
genetic diversity indexes into breeding schemes, known as ‘Optimal Contribution 
Selection’. This selection based on an index of key economic traits increased the rate 
of genetic gain while minimizing population inbreeding in oilseed rape (Brassica 
napus) over three cycles of serial selection. Sonesson et al. (2012) compared trunca‑
tion selection against optimum contribution selection and found that pedigree‑based 
inbreeding control was a sufficient measure to deal with the potential inbreeding in 
a breeding plan. A weighted genomic selection method can also be implemented to 
upscale rare alleles in the model while retaining long‑term genetic gain and a lower 
inbreeding rate (Beukelaer et al. 2017). However, such concerns may be less valid 
for hybrid breeding schemes using exotic germplasm resources as breeding mate‑
rial. Given a vegetable breeding scheme where breeders return to a diverse pool of 
parental genotypes to continually develop new hybrids, the genetic diversity of such 
a breeding plan should continue to improve with new allele combinations. Provided 
a plant breeder has access to a diverse, exotic gene pool of plant genotypes within 
the desired crop, and capabilities to precisely phenotype and genotype it, we recom‑
mend the use of such a breeding program to develop new and exciting hybrid culti‑
vars to overcome the decrease in genetic diversity resulting from traditional breed‑
ing schemes and uncover new and useful phenotypic traits made possible by use of 
GS methods.

Increasing genetic gain through reduction of breeding cycle time

Another commonly discussed benefit of the implementation of GS models into 
breeding plans is the reduction of breeding cycle time, which can greatly improve 
genetic gain in crops. This is achieved through use of GS models to enables breeders 
to select ideal genotypes early, without having to wait for plant maturity for phe‑
notypic selection. Such methods provide valuable gains in shortening the breeding 
cycle, especially for long cycle fruit and vegetable crops such as fruit trees. Kumar 
et  al. (2019) recommended the use of GS models to accelerate the pear breeding 
cycle by making selections without waiting for extensive fruit‑quality phenotyping. 
However, this same improvement is limited in crops with a short life cycle such as 
leafy greens. The relatively short and quick breeding cycle of leafy greens means 
that implementation of GS methods may not immediately result in genetic gain by 
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reducing breeding cycle time. The time taken to genotype such vegetable crops may 
even be longer than using traditional phenotypic selection due to the short growth 
cycle. This may provide an explanation as to the lack of GS implementation and 
research in such crops. GS performed on spinach measured white rust disease sever‑
ity a mere 65–70 days after planting (Shi et al. 2022). While GS may not necessarily 
decrease the breeding cycle time in such an instance, GS methods are extremely 
useful in reducing the need to further measure such difficult traits that involve long, 
complicated protocols.

While GS implementation methods vary, it is evident that few studies report the 
actual application of breeding and the actual realized gain. This may be attributed to 
the sheer duration taken to cross and phenotype the progeny of the simulated cross 
before further comparing it to the calculated GEBVs to determine experimentally 
validated prediction accuracies. Breeders may find it hard to apply such technologies 
as a result. We believe that it is important to empirically validate GS models on the 
diversity of fruits and vegetables being studied, and report both their successes and 
failures for both the scientific community and farmers to learn from. While much 
focus has been placed into genome‑based studies of fruits and vegetables, the trans‑
lation of GS into real world application has lagged and must be furthered to meet 
nutritional security needs and overcome climate change problems in agriculture.

Conclusion

To comprehensively identify all relevant studies for this review, the primary and sec‑
ondary search were performed with appropriate eligibility criteria to identify suit‑
able studies. Studies with insignificant genomic prediction studies and breeding val‑
idations are unlikely to be published, resulting in a lack of evidence and bias against 
understanding the failures of genomic predictions in fruits and vegetables.

This scoping review serves to present an understanding of GS and its applications 
specifically in fruit and vegetable crops. While such methods are well understood 
in livestock and other agricultural crops, the same understanding and application is 
not presented in fruit and vegetable crops, although their breeding is vitally impor‑
tant. We have presented an understanding of the specific fruit and vegetable crops 
that have been widely studied in relation to GS. There is some pattern between the 
global value of crop production and their corresponding research publication atten‑
tion. However, other important vegetable crops such as leafy vegetables have barely 
been studied with reference to GS methods and can yield important advancements 
for food and nutritional security. Specific traits studied within crops are largely 
directed towards fruit and vegetable quality, while less research is performed on 
plant resource use and other traits that are not directly linked to crop yield or qual‑
ity. Studies in these traits as well as other seemingly unrelated secondary traits can 
prove to be vital in providing phenotypic trait understanding and selection of sec‑
ondary traits to reduce phenotyping costs. GS methods are diverse and have varying 
effects and accuracies depending on trait heritability and genetic architecture, train‑
ing population sample size and structure as well as marker density. The selection 
of appropriate methods and study size decided based on traits of interest as well 
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as population structure is of utmost importance in maximizing GS accuracy with 
limited cost. While much research has been reported in advancing and improving 
GS methods, validation and application of such methods are largely theoretical and 
seldom proven empirically. Even though the models, methods, and availability of 
genomic data for GS is rapidly growing, the same is not seen in realized genetic 
gain and implementation resulting in real world results. We highly recommend an 
increased effort of research translation into tangible, appliable results, specifically 
towards crops that hold important positions in both food and nutritional security yet 
are seldom studied.
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