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SUMMARY

Retinoic acid (RA) signaling plays an important role during heart

development in establishing anteroposterior polarity, formation of

inflow and outflow tract progenitors, and growth of the ventricular

compact wall. RA is also utilized as a key ingredient in protocols de-

signed for generating cardiac cell types from pluripotent stem cells

(PSCs). This review discusses the role of RA in cardiogenesis,

currently available protocols that employ RA for differentiation of

various cardiovascular lineages, and plausible transcriptional mech-

anisms underlying this fate specification. These insights will inform

further development of desired cardiac cell types from human PSCs

and their application in preclinical and clinical research.
INTRODUCTION

Retinoic acid (RA), the active derivative of vitamin A,

has pleiotropic functions during vertebrate development,

differentiation, and homeostasis. Vitamin A is obtained

fromdiet, either as preformed vitamin A (retinol, retinyl es-

ters) found in animal products or precursors such as carot-

enoids found in plant products. Retinol is bound by plasma

retinol binding protein and transthyretin complexes for

transport to target tissues, where it is taken up through

STRA6 cell-surface receptors (Kanai et al., 1968; Kawaguchi

et al., 2007). Once inside the cell, retinol forms a complex

with intracellular retinol binding proteins (Napoli, 2016),

and is processed by short-chain dehydrogenase/reductase,

RDH10, for conversion to retinaldehyde (Sandell et al.,

2007). Retinaldehyde can be reconverted back to retinol

by DHRS3 for storage, which helps in maintaining RA ho-

meostasis (Billings et al., 2013). Oxidation of retinaldehyde

to RA is carried out by retinaldehyde dehydrogenases

(RALDH1–3, also known as ALDH1A1–3) (Duester, 2008).

Among RALDH enzymes, RALDH2 is the major source of

RA during embryogenesis, and its expression was shown

to closely correlate with active RA signaling (Niederreither

et al., 1997; Moss et al., 1998). RA uptake is mediated by

binding to cellular RA binding proteins, CRABP, which

deliver RA to the nucleus for regulation of gene expression

or to CYP26 enzymes (CYP26A1, CYP26B1, and CYP26C1)

for degradation. Biosynthesis and metabolism of RA is

briefly summarized in Figure 1 and extensively reviewed

elsewhere (Kedishvili, 2016; Metzler and Sandell, 2016).
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Vitamin A is an essential nutrient required throughout

life. Notably, RA, the physiologically active form of vitamin

A, is critical for proper development of the embryo. The

majority of our knowledge regarding the consequences of

maternal vitamin A deficiency and the impact on fetal

development came from studies in animal models. A

wide spectrum of multi-organ abnormalities including

those of the heart were observed in the progeny of vitamin

A-deficient rats (Wilson et al., 1953; Wilson and Warkany,

1949). In humans, congenital heart defects have been re-

ported in people carrying mutations in STRA6 and

RALDH2, which results in RA deficiency (Pasutto et al.,

2007; Pavan et al., 2009). Importantly, an excess of vitamin

A during pregnancy has also been associated with heart de-

fects among othermalformations andwas even found to be

teratogenic (Lammer et al., 1985; Rothman et al., 1995).

These findings suggest that a precise balance in RA avail-

ability underscores normal development.

The functions of RA in embryogenesis mainly stem from

its role in gene regulation. RA acts as a ligand for members

of the steroid hormone superfamily of transcription fac-

tors, the retinoic acid receptors (RARs) and the retinoic

acid X receptors (RXRs). Both receptor subfamilies

comprise three independent genes: RARa, RARb, RARg

and RXRa, RXRb, RXRg. While RA is the sole ligand for

RARs, RXRs can also be bound by other ligands such as

polyunsaturated fatty acids (Dawson and Xia, 2012).

RARs and RXRs form heterodimers and bind to RA-

response element (RARE) in the regulatory regions (pro-

moters, enhancers) of target genes and recruit co-activators

or co-repressors to regulate gene expression in a ligand-

dependent manner. In this review, we focus on the role of

RA in heart development, particularly in the specification

of various cardiac cell types and its application in differen-

tiating these cell populations from human pluripotent

stem cells (hPSCs).
OVERVIEW OF RA SIGNALING IN CARDIOGENESIS

Heart development begins at gastrulation, when cell popu-

lations in the primitive streak are patterned to formdistinct

cardiac cell types (Devine et al., 2014; Lescroart et al., 2014;

Ivanovitch et al., 2021). Left ventricular progenitors are the
Vol. 16 j 2589–2606 j November 9, 2021 j ª 2021 The Author(s). 2589
cle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

mailto:h.d.devalla@amsterdamumc.nl
https://doi.org/10.1016/j.stemcr.2021.09.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.stemcr.2021.09.010&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Figure 1. Biosynthesis and metabolism of RA in vertebrates
Retinol obtained from diet is converted to retinaldehyde by retinal dehydrogenase enzymes. Retinaldehyde can also be synthesized from
b-carotene. Oxidation of retinaldehyde to RA is carried out by RALDH enzymes. RA is a diffusible morphogen with autocrine as well as
paracrine actions. RA is the ligand for heteromeric RAR and RXR receptors, which bind to RARE in promoters of target genes. In non-target
tissues, RA is degraded by CYP26 enzymes.
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first to emerge from distal primitive streak at mid-streak

stage (between embryonic day 7 [E7.0] and E7.75), fol-

lowed by right ventricular progenitors at late-streak stage

(E7.25–E7.75) and outflow tract (OFT) progenitors at no-

allantoic-bud to early-allantoic-bud stages (E7.25–E8.0).

Atrial progenitors leave the primitive streak concomitant

with OFT progenitors, albeit from a more proximal region

(Ivanovitch et al., 2021). The cardiac progenitors migrate

from the primitive streak to the anterior lateral plate meso-

derm and form bilateral fields, termed the first heart field

(FHF) and the second heart field (SHF). The FHF cells ex-

press Hand1 and Hcn4 among other markers. Recently, an

additional multipotent progenitor field anterior to the

FHF, also expressing Hand1, has been identified to

contribute to myocardium of the left ventricle, atrioven-

tricular canal, and the proepicardium (Tyser et al., 2021;

Zhang et al., 2021). While the FHF differentiates and forms

the linear heart tube, the SHF is maintained in a prolifera-

tive progenitor state (Prall et al., 2007). Subsequently, cells

of the SHF are progressively added to the heart tube. The

SHF dorsal of the forming heart tube is partitioned into

an anterior component (aSHF) marked by Tbx1 and a pos-

terior component (pSHF) marked by Tbx5 (Bruneau et al.,

1999; De Bono et al., 2018). The aSHF progenitors of the

right ventricle and outflow tract are contiguous with the

arterial pole of the heart tube, and pSHF progenitors of
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the atria and sinus venosus are connected to the venous

pole of the linear heart tube. The elongating heart

undergoes rightward looping. Simultaneously, the proepi-

cardium develops caudoventrally of the inflow tract,

undergoes epithelial-to-mesenchymal transition (EMT),

and forms the epicardium, the outer layer of the heart.

RA signaling has been implicated in multiple stages of

heart development including formation of anterior-poste-

rior boundaries of cardiacmesoderm, specification of cardi-

omyocyte subtypes, development of the epicardium, the

outflow tract, and growth of the ventricular compact wall

and coronary arteriogenesis. Early studies investigating

the expression of Raldh2 (Figure 2), and the effects of its

deletion provided insights into spatiotemporal require-

ments of RA in the developing heart. At primitive-streak

to early-bud stages, cardiac progenitors do not express

Raldh2 (Ivanovitch et al., 2021). At late-bud stages (E7.5–

E8.0), Raldh2 is expressed in the posterior lateral plate

mesoderm and expands anteriorly, encountering caudal

cardiac precursors at early head fold stage (E7.5–E8.0)

(Niederreither et al., 1997; Hochgreb et al., 2003). Subse-

quently, Raldh2 is expressed by pSHF progenitors them-

selves and remains confined to the prospective sinoatrial

and atrial tissues until E9.5 (Moss et al., 1998; Hochgreb

et al., 2003; Ivanovitch et al., 2021). At E9.5, the proepicar-

dium is formed, which also shows robust expression of



Figure 2. Expression of Raldh2 in the developing mouse heart
Cardiac progenitors migrate anterolaterally from the primitive streak. Raldh2 is expressed in the posterior part of the embryo at E7.5, which
expands anteriorly, toward the cardiogenic fields. Thereafter, the pSHF progenitors express Raldh2 and the expression is found in the sinus
venosus, atria, and the proepicardium at E9.5. Raldh2 expression is restricted to the atrial myocardium at E10.5–E11.5 and to the
epicardium at E12.5.
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Raldh2 (Del Monte et al., 2011). At E10.5 and E11.5, Raldh2

expression persists in the atrial myocardium. At E12.5,

Raldh2 expression is restricted to the epicardium of both

the atria and the ventricles (Moss et al., 1998; Brade et al.,

2011), and gradually decreases at late gestational stages.

The balance between RA synthesis by RALDH2 and degra-

dation by CYP26 enzymes determines RA availability and

distribution in the embryo. Interestingly, Raldh2 and

Cyp26 expression domains are largely complementary (Nie-

derreither and Dollé, 2008). In the heart, Cyp26a1 is ex-

pressed in the endocardium of the outflow tract, atria, and

sinus venosus between E8.0 and E9.0 (MacLean et al.,

2001). At E14.5,Cyp26a1 expression is restricted to atrioven-

tricular valves, whereasCyp26b1 is expressed in the endocar-

diumof the outflow tract (Abu-Abed et al., 2002). Unlike the

strict expression patterns of RALDH2 and CYP26 enzymes,

RA receptors are expressed widely. In particular, Rara and

all three Rxr genes show ubiquitous expression in the devel-

opingheart.Rarb1expression is restricted to theoutflowtract

mesenchyme, while Rarb2 is found throughout the devel-

oping myocardium. Rarg is specifically expressed in the

endocardial cushions and developing vessels at E12.5

(reviewed inDollé, 2009). Insights on RA signaling obtained

from experimental animalmodels greatly contributed to the
understanding of organ development and have been suc-

cessfully applied to in vitro differentiation protocols dis-

cussed below (Zhang et al., 2011; Devalla et al., 2015; Iyer

et al., 2015; Guadix et al., 2017; Lee et al., 2017; Protze

et al., 2017; Zhao et al., 2017).
RA IN ATRIAL DEVELOPMENT

Themajority of the atrial compartments are formed by con-

tributions from the pSHF progenitors. While the caudal

pSHF gives rise to the sinus venosus and distal atria, cranial

sections of the pSHF form the proximal portions of the atria

closer to the atrioventricular junction (Domı́nguez et al.,

2012). Left-right identity is conferred by Pitx2c expression

in the left pSHF, which contributes to most of the left

atrium (Galli et al., 2008). RA signaling is instrumental in

maintaining the posterior limits of the SHF (Ryckebusch

et al., 2008). Moreover, the boundary between aSHF and

pSHF is facilitated by the expression of RA-responsive

Hox genes as well as T-box transcription factors Tbx1 and

Tbx5 (Bertrand et al., 2011; De Bono et al., 2018; Stefanovic

et al., 2020). While Tbx1 expressed in aSHF antagonizes RA

signaling, RA-induced Tbx5 in the pSHF is required to
Stem Cell Reports j Vol. 16 j 2589–2606 j November 9, 2021 2591
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suppress the Tbx1-dependent aSHF program (De Bono

et al., 2018). Abrogation of RA signaling in Raldh2

knockout mice results in hypoplastic atria and sinus veno-

sus (Niederreither et al., 2001), while a more dramatic total

lack of the sinus venosus was observed in vitamin A-defi-

cient quail embryos (Kostetskii et al., 1999). Similarly, inhi-

bition of RA signaling in Hamburger-Hamilton stage 4–7

chicken embryos using a pan RA receptor antagonist re-

sulted in a smaller inflow tract compartment and enlarged

ventricles (Hochgreb et al., 2003).

Consistent with in vivo studies, the role of RA in atrial dif-

ferentiation has also been investigated and confirmed in

several in vitro studies (Gassanov et al., 2008; Zhang et al.,

2011; Devalla et al., 2015; Lee et al., 2017). The first report

was based on experiments with transgenic mouse embry-

onic stem cells (mESCs), in which GFP expression was

driven by the atrial-specific promoter of Nppa (Wobus

et al., 1997; Gassanov et al., 2008). The authors examined

the effect of varying concentrations of RA treatment for

5 days, during early or late stages of differentiation. They

concluded that embryoid bodies treated with 100 nM and

1 nM RA from day 1–6 differentiated toward an atrial

phenotype as assessed by an increase in Nppa-GFP+ areas.

However, this increase was a moderate 6%–9% in the RA-

treated group, and the changes in Myl7 (Mlc2a) and Myl2

(Mlc2v) mRNA expression were only significant in the

100 nM condition. Nonetheless, this study indicated a

possible role for RA in atrial differentiation in vitro. Subse-

quently, a role for RA in directing atrial specification of hu-

man embryonic stem cells (hESCs) was described (Zhang

et al., 2011). In this study, upon mesoderm formation,

bone morphogenetic protein (BMP) signaling was in-

hibited using Noggin, followed by treatment with 1 mM

RA and wingless-related integration site (WNT) inhibitor

DKK1. The differentiation timeline suggested that RA treat-

ment was performed at the cardiac progenitor stage in this

approach; however, corroborating data are not available. In

the study by Zhang et al., atrial versus ventricular pheno-

type of resulting cells was primarily assessed by a decrease

in MLC2V and an increase in MLC2A, as well as ANP pro-

tein expression. Furthermore, action potential shape and

calcium transient properties were used to differentiate

atrial and ventricular cardiomyocytes. Studies performed

in hPSCs are summarized in Figure 3.

Further evidence for RA-driven atrial specification in

hESCs was provided by our group (Devalla et al., 2015).

In contrast to the study by Zhang et al. (2011), we found

that atrial differentiation relies on the stimulation of RA

signaling shortly after the peak expression of MESP1 at

the cardiac mesoderm stage. In agreement with concentra-

tion-dependent effects of RA, we observed that treatment

with a lower concentration of RA (1–10 nM) improved

differentiation efficiency but had no effect on subtype
2592 Stem Cell Reports j Vol. 16 j 2589–2606 j November 9, 2021
specification. This is consistent with findings in mESCs

that 1–10 nM RA accelerates cardiac differentiation

(Wobus et al., 1997). However, treatment with a higher

concentration of RA (1 mM) at late mesoderm stage (day

4) steered differentiation toward atrial fate. Moreover, we

identified that atrial-specific genes NR2F1 (COUP-TFI) and

NR2F2 (COUP-TFII) are induced in response to RA, as also

observed in zebrafish mesoderm (Dohn et al., 2019). These

transcription factors bind directly to regulatory DNA se-

quences of ion channel genes KCNA5 and KCNJ3, which

confer unique electrophysiological properties to atrial cells.

In addition, in vivo studies identified a role for Nr2f2 in

maintaining atrial chamber identity and size (Wu et al.,

2013; Duong et al., 2018).

RA-directed atrial fate specification in vitro has been

shown to be orchestrated by MEIS2, which antagonizes

ISL1, in order to induce the atrial transcription factor,

NR2F1 (Quaranta et al., 2018). Mounting evidence suggests

that the TALE family of genes such as MEIS1/2 and PBX1–3

are co-factors for HOX-mediated gene regulation (reviewed

in Lescroart and Zaffran, 2018). Indeed, putative enhancer

regions identified in pSHF cells revealed enrichment for

HOX and TALE binding motifs (Stefanovic et al., 2020).

While HOX and MEIS genes appear to be direct targets of

RA itself (Mercader et al., 2000; Berenguer et al., 2020),

studies have shown that they can also regulate Raldh2

expression and thereby RA levels through a positive feed-

back loop (Vitobello et al., 2011; López-Delgado et al.,

2021). Interestingly, misexpression of Hoxb1 in the aSHF

domain resulted in an upregulation of Tbx5 andNr2f2 (Ste-

fanovic et al., 2020), both of which are implicated in the

differentiation of atrial and sinoatrial nodal cells in vivo

and in vitro (Liberatore et al., 2000; Wu et al., 2013; Devalla

et al., 2015; Protze et al., 2017). These findings suggest that

co-operative binding of HOX and MEIS proteins to target

genes is one of the earliest events directing specification

toward atrial and sinoatrial lineages.

Current protocols yield 50%–90% TNNT2+ cells in atrial

differentiations. Analyses of these cardiomyocytes by ge-

netic marker expression, such as NR2F2 or by action poten-

tial morphology, indicate that a large majority of these car-

diomyocytes have an atrial-like phenotype. Nonetheless,

the expression of SHOX2 in cells obtained from atrial differ-

entiations suggests the presence of a sinoatrial node-like

cardiomyocyte (SANCM) side population in these cultures

(Devalla et al., 2015; Cyganek et al., 2018). To improve ef-

ficiencies across various cell lines, it is important to better

characterize the differentiation process. Besides optimizing

timing and concentration of RA application, the induction

of appropriatemesodermhas been proposed to regulate dif-

ferentiation of hPSCs to atrial versus ventricular identities.

The RALDH2-expressing mesodermal population has been

shown to have a higher potential for atrial fate compared



Atrial differentiation protocols Efficiency/ 
Heterogeneity Functional readout

Zhang et al. 2011

D14
50.7% TNNT2+

- Atrial-like action 
potential shape and 
Ca2+ release 
properties

Devalla et al. 2015

D15
50% NKX2-5+

- Atrial-like action 
potential properties
- Presence of currents 
IKur and IK,ACh
- Response to atrial-
selective ion channel 
blockers

hPSC

BMP4 25 ng/mL
FGF2 6 ng/mL

D1 D2

ACT-A 
100 ng/mL

D5 D8

RA 1 μM 
DKK1 200 ng/mL

ACMs

D4D3 D7

ACT-A 20–30 ng/mL
BMP4 20–30 ng/mL

CHIR 1.5 μM
SCF 40 ng/mL

VEGF 30 ng/mL
hPSC

EB RA
1 μM 

D14

D4

Noggin 
250 ng/mL

D6

DKK1 
200 ng/mL

D11

ACMs
D15

D10

Lee et al. 2017

- Atrial-like action 
potential properties
- Higher IK,ACh
current densities

D20
85% 

TNNT2+/MLC2V-

D5D3 D7

ACT-A 2 ng/mL
BMP4 3 ng/mL
FGF2 5 ng/mL

hPSC

VEGF 
5 ng/mL

D20

D12

Retinol 2 μM
IWP2 1 μM 

VEGF 10 ng/mL
VEGF 

5 ng/mL ACMs

low oxygen (5% O2, 5 % CO2, 90% N2)

RALDH2+ PDGFRα+

MESP1+

D20
87% TNNT2+

- Atrial-like action 
potential properties 
and Ca2+ transients

Cyganek et al. 2018

D6D3

CHIR 
4 μM

hiPSC

D20
ACMsRA 1 μM

T+

D2

IWP2 5 μM
(for 48 hrs)

EB
D1

EB
aggregation

Figure 3. Summary of differentiation protocols for the generation of atrial cardiomyocytes from hPSCs
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with CYP26A1 (enzyme that degrades RA)-expressing

mesoderm, which is better suited for differentiation toward

ventricular lineage (Lee et al., 2017). Even though exoge-

nous RA induced >90% TNNT2+ cells from CYP26A1+

mesoderm, expression of atrial genes was lower than in

RALDH2+ mesoderm treated with RA. Furthermore,

RALDH2+ mesodermal cells treated with 2 mM retinol

generated 85% TNNT2+ cells, suggesting that they effi-

ciently produce RA required for differentiation toward the

atrial lineage. Nevertheless, reduction in the expression

of the ventricular gene MYL2 and increase in expression

of the atrial geneKCNJ3weremore pronounced upon treat-

ment with RA itself.

Due to applications in drug screening and disease

modeling for atrial fibrillation, there has been a lot of inter-

est in hPSC-derived atrial cells. To fully utilize the potential

of these cells, further refinement of their phenotype is

required. For example, hPSC-atrial cells exhibit relatively

faster beating rates (about 1–1.2 Hz), comparable with
hPSC-derived SANCMs, reflecting their immaturity (De-

valla et al., 2015; Lee et al., 2017; Protze et al., 2017).

Strategies to promote maturation of hPSC-atrial cells are

thus important. Moreover, the right versus left atrial iden-

tity of these cells has not been evaluated. Right and left

atrial cardiomyocytes display differences in gene expres-

sion as well as propensity for atrial fibrillation (Van Ouwer-

kerk et al., 2020). Directed approaches to generate right

versus left atrial cells will open avenues for application of

these cells in better understanding the etiology of atrial

fibrillation.
RA IN SINOATRIAL NODE DEVELOPMENT

The sinoatrial node (SAN) is referred to as the pacemaker of

the heart, as it generates electrical impulses that set the rate

and rhythm of cardiac contractions. At E7.5 in mice and

16- to 23-somite stage in zebrafish, a distinct progenitor
Stem Cell Reports j Vol. 16 j 2589–2606 j November 9, 2021 2593



Sinoatrial node differentiation protocols
Efficiency/ 

Heterogeneity Functional readout

Protze et al. 2017

D20
28-55% 

TNNT2+/NKX2-5-

4-5% 
TNNT2+/NKX2-5+

- Response to 
neurohumoral and 
muscarinic stimulation
- Ectopic beats 
originating from the 
transplantation site 
upon AV block in rat

Ren et al. 2019

D15
25% 

TNNT2+/NKX2-5-

25% 
TNNT2+/NKX2-5+

- SANCMs can pace 
in vitro bioprinted
mini-heart models

hPSC

EB
aggregation

BMP4 2.5 ng/mL
RA 0.25 μM
SB 5.4 μM

IWP2 0.5 μM
VEGF 10 ng/mL
PD 480-960 nM

EB
D1 D3

ACT-A 2 ng/mL
BMP4 3 ng/mL
FGF2 5 ng/mL

D6 D12

VEGF
5 ng/mL SANCMs

D5D3 D7
CHIR
12 μM D1

IWP2 
5 μM hPSC

CHIR 
3 μM 

D20

SANCMs
D15

NKX2-5+

MESP1+

PDGFRα+

KDR+

low oxygen (5% O2, 5 % CO2, 90% N2)

Figure 4. Summary of differentiation protocols for the generation of sinoatrial nodal cardiomyocytes from hPSCs
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population at the lateralmost edge of the pSHF downregu-

latesNkx2-5 and initiates Tbx18 expression (Mommersteeg

et al., 2010; Ren et al., 2019). These progenitors also express

Isl1 and are subsequently integrated into the differenti-

ating sinus venosus myocardium at the inflow tract of the

expanding heart tube (Christoffels et al., 2006; Mommer-

steeg et al., 2010). Following looping and remodeling of

the linear heart tube, the SAN is established at the entrance

of the superior caval vein in the right atrium and takes over

as the primary pacemaker at E12.5 in mouse (Yi et al.,

2012). The SAN is a structurally and functionally complex

tissue, which can be broadly divided into three regions: the

head region marked by both Tbx18 and Tbx3 and conspic-

uous by the absence of Nkx2–5; the tail region marked by

the presence of Tbx3 and Nkx2–5 but devoid of Tbx18

(Wiese et al., 2009; Goodyer et al., 2019; Li et al., 2019);

and a transition zone with a molecular and functional

phenotype intermediate to that of SAN and the adjacent

atrial tissue (Boyett et al., 2000; Goodyer et al., 2019; Li

et al., 2019).

As discussed above, RA signaling is important for the

development of atria and sinus venosus. In line with this,

RA has also been implicated in the in vitro differentiation

of hPSCs to SANCMs (Protze et al., 2017). Treatment of

MESP1+ cardiac mesoderm with BMP4 and RA (hereafter

BMP4 + RA) resulted in cardiomyocytes with SAN-like mo-

lecular and functional profile (Figure 4). The early require-

ment for BMP and RA signaling in the differentiation of

inflow tract myocardium is evidenced by several studies.

BMP ligands are involved in the recruitment of pSHF
2594 Stem Cell Reports j Vol. 16 j 2589–2606 j November 9, 2021
toward the myocardial lineage (Kruithof et al., 2006;

Schlueter et al., 2006; vanWijk et al., 2009). Similarly, atrial

and SAN progenitors in the pSHF are progressively exposed

to RA. The Raldh2-expressing field is initially in close prox-

imity to the pSHF progenitors followed by the expression of

Raldh2 in the cardiac progenitor cells themselves (Hoch-

greb et al., 2003).While it is conceivable that the pSHF pro-

genitors first receive RA via a paracrine action, RARE-lacZ

data at these early stages is not available. Nevertheless,

pharmacological inhibition of RA signaling in chicken em-

bryos, using an RAR antagonist, revealed an early require-

ment for RA signaling in the pSHF, even before the onset

of Raldh2 expression (Hochgreb et al., 2003).

Although application of BMP4 alone at the cardiacmeso-

derm stage was sufficient to generate the majority of

NKX2–5� SAN cardiomyocyte population, addition of RA

was crucial to enhance the expression of SAN associated

genes such as TBX5 (Protze et al., 2017). This is in accor-

dancewith in vivo findings that have demonstrated an asso-

ciation between RA and Tbx5 (Liberatore et al., 2000; De

Bono et al., 2018). During embryonic development, Raldh2

is co-expressed with Tbx5 in a subset of pSHF progenitors

(Hochgreb et al., 2003; Ryckebusch et al., 2008; De Bono

et al., 2018), and Raldh2 knockouts display reduced Tbx5

expression (Niederreither et al., 2001; Sirbu et al., 2008).

Furthermore, a recent study revealed that Tbx5 promotes

pSHF identity through a positive feedback loopwith Raldh2

(Rankin et al., 2021). Importantly, Tbx5 regulates the

expression of a key pacemaker gene, Shox2 (Puskaric

et al., 2010), which is in turn implicated in regulating other
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important SAN genes such as Bmp4 and Isl1 (Puskaric et al.,

2010; Hoffmann et al., 2013). These findings suggest that

RA promotes pacemaker identity by establishing an SAN

gene-regulatory network via TBX5.

Interestingly, both in limb and lung development, where

Tbx5 plays an important role, the transcription factor inter-

acts with canonicalWNTsignaling.Whereas in limb devel-

opment canonical WNT signaling is upstream of Tbx5, in

lung development Tbx5 activates the expression of Wnt2

in cardiopulmonary progenitors (Ng et al., 2002; Nishi-

moto et al., 2015; Steimle et al., 2018; Rankin et al.,

2021). WNT signaling has also been identified as a critical

cue for pacemaker development (Bressan et al., 2013; Ren

et al., 2019). An alternative approach described for the dif-

ferentiation of hPSCs to SAN cardiomyocytes showed that

the activation of canonical WNT signaling is sufficient to

enforce pacemaker identity (Ren et al., 2019) (Figure 4).

One of the key differences between the BMP4 + RA and

the WNT protocols is the timing of signaling modulation.

While BMP4 + RA is applied at the cardiac mesoderm stage

(MESP1+), activation of canonical WNT signaling is per-

formed at the cardiac progenitor stage (NKX2–5+). It is

also noteworthy that BMP4 + RA treatment is performed

in conjunction with inhibition of WNT signaling using

small-molecule inhibitors such as IWP2. During early

stages of cardiogenesis, a biphasic antagonistic role for

WNT signaling has been identified (Naito et al., 2006;

Ueno et al., 2007). These processes are simulated in cardiac

differentiation protocols, whereWNT signaling is first acti-

vated in hPSCs and subsequently inhibited upon cardiac

mesoderm induction to promote cardiomyocyte forma-

tion. Following the inhibition of WNT signaling at cardiac

mesoderm stage, which results inNKX2–5+ cardiac progen-

itors, canonical WNT signaling was activated to direct cells

toward the SAN lineage.

Similar to the BMP4 + RA protocol for SANCM differenti-

ation (Protze et al., 2017), the WNT protocol also resulted

in cardiomyocytes expressing key SAN genes such as

SHOX2, ISL1, and BMP4 (Ren et al., 2019). Bmp4, as well

as Isl1, have been identified as downstream targets of ca-

nonical WNT signaling in cardiac progenitors (Klaus

et al., 2007; Lin et al., 2007), which likely mediate the dif-

ferentiation toward pacemaker cells along with Tbx5, as

discussed above. Interestingly, Tbx5 and Bmp4 are also

crucial for the specification of the proepicardium (Liu and

Stainier, 2010). Previous studies have shown that the proe-

picardial cells and the myocardial cells of the inflow tract

diversify from a common progenitor population (van

Wijk et al., 2009; Mommersteeg et al., 2010). Comparably,

the non-cardiomyocyte population obtained from both

the BMP4 + RA and the WNT differentiation protocols is

of epicardial identity (Ren et al., 2019; A.W., and H.D.D.,

unpublished observations). Further research is needed to
evaluate the crosstalk between BMP, RA, and WNT

signaling in SANCM and epicardial differentiation.

As the SAN is composed of several subpopulations, it re-

mains to be evaluated whether both BMP4 + RA and WNT

differentiation protocols generate the same cellular sub-

types of the SAN. It has recently been demonstrated that

a subpopulation of the SAN expressing Shox2 and Nkx2–5

(‘‘SAN junction cells’’ of the transitional zone) plays a

crucial role in atrial activation (Li et al., 2019). Both differ-

entiation approaches generate around 55% of TNNT2+ car-

diomyocytes (CMs). However, only about half of the

TNNT2+ cells are NKX2–5� in the WNT-based protocol

(Ren et al., 2019), a gene expression pattern found in SAN

head cells in vivo (Wiese et al., 2009; Goodyer et al.,

2019). Whether the remaining NKX2–5+ cardiomyocyte

fraction corresponds to SAN transitional zone populations

is not known (Ren et al., 2019). On the other hand, the

BMP4 + RA-based protocol results in 55% NKX2–5� CMs

and only 5%NKX2–5+ CMs (Protze et al., 2017), indicating

preferential differentiation toward SAN head. The outcome

of the two protocols might, however, be influenced not

only by the different signaling modulators used but also

by different culture conditions (two-dimensional [2D]

versus three-dimensional [3D]).

All in all, a better understanding of the signaling path-

ways underlying SAN development including the associa-

tion between BMP, RA, and WNT signaling would provide

opportunities for improving differentiation efficiencies

and obtain desired cellular fractions from hPSCs. Impor-

tantly, methods to differentiate cells to specific subpopula-

tions of the SAN, such as the head, tail, and transition zone,

will enable the creation of advanced cellular models rele-

vant for disease modeling and drug screenings as well as in-

forming the application of these cell types for therapeutic

purposes.
RA IN EPICARDIAL DEVELOPMENT

The epicardium develops from a transient structure called

the proepicardium, located at the venous pole of the devel-

oping heart. The proepicardium is characterized by the

ubiquitous expression of Tbx18, Tcf21, and Wt1 among

other genes (Lupu et al., 2020). The precise origins of the

proepicardium are poorly understood, and recent insights

reveal that it receives contributions from multiple progen-

itor populations (Mommersteeg et al., 2010; Tyser et al.,

2021; Zhang et al., 2021). It has been identified that a pop-

ulation anterior to the FHF has the potential to form

myocardial components such as left ventricle, atrioventric-

ular canal, and proepicardium (Tyser et al., 2021; Zhang

et al., 2021). Similarly, tetramethylindocarbocyanine (DiI)

labeling in chick and mouse embryos has shown that a
Stem Cell Reports j Vol. 16 j 2589–2606 j November 9, 2021 2595



Stem Cell Reports
Review
Tbx18+ population lateral in the pSHF contributes to both

the proepicardium and the sinus venosus myocardium

(van Wijk et al., 2009; Mommersteeg et al., 2010).

Although RA signaling in the pSHF is necessary for the dif-

ferentiation of atrial and sinus venosus myocardium, its

requirement for the formation of the proepicardium is

not known. As depicted in Figure 2, Raldh2 expression

begins in the proepicardium and is also found in the epicar-

dium at E12.5. Loss of Raldh2 does not impair the forma-

tion of proepicardium itself. However, ventricular growth

and formation of coronary vasculature were severely

affected in Raldh2-deficient mice (Niederreither et al.,

2001; Lin et al., 2010).

RA signaling in the epicardium is regulated by WT1

through direct activation of Raldh2 (Guadix et al., 2011).

Raldh2 is expressed in a spatiotemporal pattern similar to

that of Wt1, and structural defects in mice lacking either

gene were found to be similar (Perez-Pomares et al., 2002;

Guadix et al., 2011; von Gise et al., 2011). Raldh2 levels

in Wt1 knockout mice were more severely reduced in

ventricular epicardium compared with atrial epicardium

(Guadix et al., 2011). Besides Wt1, another important pro-

epicardial and epicardial gene, Tcf21, is also associated with

RA signaling. Tcf21 is induced by RA treatment, which pro-

motes fibroblast differentiation at the expense of smooth

muscle cells (Acharya et al., 2012; Braitsch et al., 2012).

Similarly, in Dhrs3�/� hearts with increased RA synthesis,

an increase in fibroblasts was observed (Xiao et al., 2018).

In vivo findings thus suggest that RA may not be required

for proepicardial specification itself but that it has a critical

role in the subsequent development of the epicardium and

further differentiation toward fibroblasts.

In contrast to in vivo findings, in vitro studies show that

treatment with RA steers proepicardial differentiation of

hPSCs (Iyer et al., 2015; Guadix et al., 2017; Zhao et al.,

2017; Tan et al., 2021). Manipulation of BMP, WNT, RA

signaling pathways, or a combination of these allowed

the generation of epicardial-like cells from hPSCs (Figure 5)

(Witty et al., 2014; Iyer et al., 2015; Bao et al., 2016; Guadix

et al., 2017; Zhao et al., 2017). In a more recent protocol,

BMP4 + RA + vascular endothelial growth factor (VEGF)

was used to generate proepicardial cells; however, the

added advantage of including VEGF as opposed to using

BMP4 + RA alone was not investigated (Tan et al., 2021).

Like RA, WNT signaling is also only implicated in later

stages of epicardial development, epicardial EMT, and for-

mation of coronary vessels in vivo (Zamora et al., 2007;

von Gise et al., 2011). However, there is overwhelming ev-

idence implicating Bmp4 in proepicardial development as

well as epicardial migration (Schlueter et al., 2006; Ishii

et al., 2010; Liu and Stainier, 2010). As discussed above,

RA, BMP, and WNT pathways are also implicated in SAN

differentiation, reflecting shared ontogeny with proepicar-
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dial cells (van Wijk et al., 2009; Mommersteeg et al., 2010)

(Figure 6). Interestingly, the common link between RA,

WNT, and BMP pathways appears to be TBX5. Besides its

role in the pSHF, Tbx5 is also implicated in proepicardial

development and epicardial migration (Liu and Stainier,

2010; Diman et al., 2014). Proepicardial cells generated

from hPSCs in vitro using BMP4 + RA also express Tbx5

(Tan et al., 2021). Moreover, microarray analysis of Tbx5-

induced genes identifiedWt1 as a possible target (Plageman

and Yutzey, 2006).

Timing of application and/or concentration of signaling

modulators appears to delineate SAN versus epicardial dif-

ferentiation. In about half of the epicardial differentiation

protocols, signaling modulators are introduced at the car-

diac progenitor stage marked by NKX2–5 and ISL1 expres-

sion (Iyer et al., 2015; Bao et al., 2016; Zhao et al., 2017).

This is in accordance with in vivo findings that revealed

the contribution of NKX2–5+/ISL1+ cardiac progenitors to

the proepicardium (Zhou et al., 2008). In other protocols,

an earlier population at the cardiac mesoderm stage

marked by PDGFRa was steered toward the epicardial line-

age (Witty et al., 2014; Guadix et al., 2017; Tan et al., 2021),

implying that there are multiple differentiation routes

toward epicardial cells. Whether these correspond to the

different progenitor populations as shown in vivo is yet to

be evaluated (Mommersteeg et al., 2010; Tyser et al.,

2021; Zhang et al., 2021).

Activation either of canonical WNT signaling alone

(Bao et al., 2016) or in combination with BMP4 (Witty

et al., 2014) or RA (Zhao et al., 2017) or both BMP4 and

RA (Iyer et al., 2015; Tan et al., 2021) was used in these

methods (Figure 5). Inhibition of canonical WNT

signaling resulted in a decrease in WT1, indicating that

at least endogenous WNT signaling is required for epicar-

dial differentiation (Witty et al., 2014; Iyer et al., 2015).

The differences in the choice of signaling molecules and

the timing of application likely explains the variations

in efficiency and heterogeneity observed in the resulting

epicardial populations (Figure 5). The percentage of

WT1+ cells was greater (>90%) in protocols that used

either WNT activation alone (Bao et al., 2016) or WNT +

RA (Zhao et al., 2017). In the WNT + BMP4 + RA protocol

(Iyer et al., 2015), only 20% of the end population was

positive for both WT1 and TCF21. On the contrary, com-

bined treatment of WNT + RA yielded 80% of cells

positive for both WT1 and TBX18 (Zhao et al., 2017).

Similarly, treatment with BMP4 + RA + VEGF yielded a

high percentage of proepicardial cells that co-expressed

WT1 and ZO1 (Tan et al., 2021). As shown in a recent

study in the mouse heart, typical epicardial markers are

co-expressed in the proepicardium and epicardium until

E13.5, as opposed to the septum transversum, where a

more heterogeneous expression of the same markers is
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Figure 5. Summary of differentiation protocols for the generation of (pro)epicardial cells from hPSCs
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Figure 6. Transcriptional networks involved
in epicardial (EPI) and sinoatrial node (SAN)
development
RA, WNT, and BMP signaling are implicated in
EPI (blue) and SAN (orange) specification. Both
TBX18 and TBX5 are expressed in EPI and SAN
progenitors where they regulate a number of
cell-type-specific target genes.
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found (Lupu et al., 2020). This finding suggests that better

characterization is needed in order to determine the iden-

tity of WT1+ cells in vitro.

An important criterion for assessing the functionality of

hPSC-derived epicardial cells is their ability to generate

epicardial-derived cell populations (EPDCs). Epicardial-

derived progenitor cells undergo EMT and give rise to

EPDCs such as fibroblasts and smooth muscle cells (Qui-

jada et al., 2020). These cell types are valuable for disease

modeling and tissue engineering applications aimed at re-

constructing the microenvironment of the heart. Epicar-

dial cells generated from most protocols in vitro undergo

EMT and further differentiate to smooth muscle cells and

fibroblasts uponmanipulation of transforming growth fac-

tor beta (TGFB) and fibroblast growth factor (FGF) path-

ways, respectively (Witty et al., 2014; Iyer et al., 2015;

Zhao et al., 2017; Tan et al., 2021). Furthermore, epicardial

cells and cardiac fibroblasts generated from such two-step

protocols are being implemented in disease modeling, in

maturation of hPSC CMs, and even in augmenting heart

regeneration after myocardial infarction (Bargehr et al.,

2019; Giacomelli et al., 2020; Tan et al., 2021). Collectively,

data from the various differentiation approaches suggest

that there are multiple strategies to obtain epicardial cells

from hPSCs, which induce a transcriptional cascade

involvingWT1, RALDH2, and TBX18. However, additional

insight into the heterogeneity in the resulting populations,

as well as a uniform set of markers and parameters used for

evaluation of epicardial and EPDC phenotypes, must still

be established.
RA IN VENTRICULAR SPECIFICATION AND

MATURATION

TheFHFand the aSHFgive rise to the left and right ventricles,

respectively (Zaffran et al., 2004; Verzi et al., 2005). The ma-
2598 Stem Cell Reports j Vol. 16 j 2589–2606 j November 9, 2021
jorityofventricular cardiomyocytes arederived fromMesp1+

cardiac progenitors (Saga et al., 1999). More recently, it has

been found that derivatives of two temporally distinct

Foxa2+ progenitor populations also contribute to 30%–50%

of ventricular cardiomyocytes (Bardot et al., 2017; Ivano-

vitch et al., 2021). Whether these Foxa2+ cells constitute a

subfraction ofMesp1+ progenitors or an altogether indepen-

dent population remains to be determined. In the absence of

RA signaling in mice, development of FHF-derived left

ventricle proceeds normally (Ryckebusch et al., 2008). In ze-

brafish, however, RA-deficient embryos present significant

expansion of a differentiating FHF population accompanied

by a reduction in aSHF progenitors (Duong et al., 2021). In

the SHF, RA maintains the border between aSHF and pSHF

progenitors. Right ventricular progenitors located in the

aSHF are demarcated by the expression of Tbx1. Tbx1 posi-

tively regulates Cyp26a1–c1 genes involved in RA degrada-

tion, thereby antagonizing RA (Roberts et al., 2006). Expect-

edly, the treatment of pregnant mice at E7.75–E8.25 with a

pan-RAR antagonist did not affect the right ventricle of the

examined embryos (De Bono et al., 2018). Moreover, exoge-

nous RA resulted in a hypoplastic ventricle by impairing

aSHF differentiation toward the ventricular lineage (Bardot

et al., 2017; Gonzalez et al., 2021). Similarly, in zebrafish,

RA-induced nr2f genes were responsible for restricting ven-

tricular CM numbers while promoting pharyngeal muscle

development (Duonget al., 2018). Altogether, these findings

suggest that RA is not required and is even detrimental for

ventricular specification. In contrast, strong evidence has

underscored the requirement of RA in later stages of ventric-

ular development and maturation.

At E9.5 of mouse development, the ventricular wall

comprises a very thin layer of myocardium. Growth of

the ventricles, which involves trabeculation and subse-

quent thickening of the compact layer, requires prolifera-

tive and other morphogenic signals that are initiated

around E9.5–E10.5. A majority of the paracrine signals
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that drive ventricular compact wall expansion are thought

to be derived from the epicardium (Sucov et al., 2009).

Epicardial migration begins at E9.5 and entirely covers

the outer surface of the heart by E10.5 (Viragh and Chal-

lice, 1981), coinciding with ventricular expansion. In

Raldh2 knockout mouse embryos, abnormal looping re-

sults in a single ventricle, which lacks trabeculae (Nieder-

reither et al., 1999). Ventricular hypoplasia was also

observed in vitamin A-deficient rat progeny (Wilson and

Warkany, 1949; Niederreither et al., 2001). Subsequent

studies showed that the effect of RA on the ventricles is

mediated by RXRa receptors in the epicardium (Merki

et al., 2005). Moreover, ventricular defects observed in

germline Rxra knockout and Raldh2 knockout embryos

resemble the ventricular phenotype caused by defective

epicardium (Takahashi et al., 2014).

In the majority of hPSC differentiation studies, obtained

cardiomyocytes are a heterogeneous mix of various cardiac

subtypes, with ventricular cardiomyocytes being the pre-

dominant group (Blazeski et al., 2012; Cyganek et al.,

2018; Friedman et al., 2018). It is worth noting that in

the absence of RA or other posterior fate-inducing signals,

the default differentiation path of MESP1+ cardiac meso-

derm cells in vitro is toward the ventricular lineage in the

majority of cell lines and existing differentiation protocols.

The RA-degrading enzymeCYP26A1 is expressed at day 3 of

differentiation, coinciding with peak MESP1 expression,

and is more suited for differentiation toward ventricular

cardiomyocytes (Lee et al., 2017; Calderon et al., 2021;

H.D.D., unpublished observations). Furthermore, treat-

ment with an RA antagonist during differentiation, pre-

sumably at the cardiac mesoderm stage (day 3) or cardiac

progenitor stage (day 5), steered cells toward a ventricular

fate (Zhang et al., 2011; Tan et al., 2021).

It is well known that PSC-derived cardiomyocytes exhibit

immature structural, metabolic, and electrophysiological

properties, corresponding to fetal rather than adult cardio-

myocytes. The effect of RA on maturation of PSC-derived

cardiomyocytes has not yet been assessed. Nevertheless,

as the effect of RA is mediated by paracrine factors from

the epicardium such as insulin-like growth factor (IGF)

and FGF, approaches that recapitulate epicardial-myocar-

dial interactions have been probed. Co-culture of hPSC-

derived epicardial cells with cardiomyocytes in 2D cultures

as well as 3D constructs enhanced contractility and cal-

cium handling properties of the cardiomyocytes. It was

shown that the proliferative effect of proepicardial cells

on co-cultured ventricular cardiomyocytes was mediated

at least in part by RA-dependent IGF2 signaling (Tan

et al., 2021). IGF2 has also been utilized for the maturation

of compact ventricular cells derived from hPSCs (Funa-

koshi et al., 2021). IGF2 was strongly decreased in both

Raldh2�/� and Rxramutants and is implicated in ventricu-
lar wall proliferation (Brade et al., 2011; Li et al., 2011).

Furthermore, several studies have shown that IGF1 in com-

bination with thyroid hormone T3 and dexamethasone or

neuregulin promotes maturation of hPSC-derived cardio-

myocytes in 2D and 3D cultures (Birket et al., 2015; Rupert

and Coulombe, 2017; Huang et al., 2020). A head-to-head

comparison of the direct effects of secreted epicardial fac-

tors versus co-culture with epicardial cells or epicardial-

derived fibroblasts on hPSC-derived cardiomyocytes is

warranted for identification of the best strategies to pro-

mote maturation in vitro.
CONCLUDING PERSPECTIVES

Cardiac development is a complex process that relies on co-

ordinated spatiotemporal interactions of signaling path-

ways, transcriptional regulators, and epigenetic modifiers.

As presented in this review, RA signaling is indispensable

in cardiogenesis for the development of atria and sinus

venosus during early embryogenesis and for ventricular

growth and expansion at later stages. In vitro, RA is utilized

in the differentiation of multiple cardiac cell types from

hPSCs (Figure 7). Addition of RA to atrial and sinoatrial

differentiations from hPSCs mimics the earliest stages of

heart development synonymous with the expression

of Raldh2 in pSHF progenitors. Timing and concentration

of signaling modulators are crucial for successful

differentiation of the desired cardiac cell type. Whereas

SANCM differentiation uses lower concentrations of BMP4

(2.5 ng/mL) and RA (0.25 mM), epicardial cell specification

is induced by higher concentrations of BMP4 (10–50 ng/

mL) and RA (1–4 mM). It is worth noting that the important

difference in the SAN and epicardial differentiation proto-

cols, which use canonical WNT signaling alone, is the

timing of application (Bao et al., 2016; Ren et al., 2019). In

SAN differentiation, WNT signaling is activated at day 5

upon the expression of NKX2–5. In epicardial differentia-

tion, on the other hand, cells are replated and cultured for

48 h prior toWNTactivation. For the differentiation of atrial

cells from hPSCs, activation of RA signaling is the only

known strategy thus far. Themajority of the studies demon-

strate that application of RA (0.5–1 mM) shortly after meso-

derm induction directs hPSCs toward an atrial fate.

Furthermore, aforementioned in vitro studies point to a

concertedactionofRA,BMP, andWNTpathways in the spec-

ification of SANCMs and epicardial cells. Interestingly, BMP

and WNT signaling co-operatively induce Hox gene expres-

sion required for the specification of hematopoietic cells

from ventral mesoderm (Lengerke et al., 2008). Similarly,

WNT-dependent activation of Hox genes has been reported

in the early embryo (Neijts et al., 2016). Whether a similar

mechanism could explain the findings in the context of
Stem Cell Reports j Vol. 16 j 2589–2606 j November 9, 2021 2599



Figure 7. Schematic overview of the differentiation of various cardiac cell types from hPSCs
Signaling pathways implicated in each step are indicated in green (activation) or red (inhibition). Genes that are typically used as markers
for each cell type are also mentioned. The majority of the protocols rely on modulation of signaling pathways at the cardiac mesoderm
stage, marked by MESP1, PDGFRa, or KDR. Inhibition of RA signaling in combination with inhibition of WNT or inhibition of WNT alone
gives rise to VCM. Activation of RA signaling (using intermediate concentrations of 0.5–1 mM RA) in conjunction with inhibition of WNT
signaling generates ACM. Activation of RA (using lower concentrations of 0.25 mM RA) along with activation of BMP signaling and in-
hibition of WNT signaling yields SANCM. SANCM can also be generated by activating WNT signaling at the cardiac progenitor stage, marked
by ISL1 and NKX2–5. Replating ISL1+/NKX2–5+ cardiac progenitors and subsequent activation of WNT signaling results in (pro)epicardial
cells. Alternatively, activation of RA signaling (using higher concentration of 1–4 mM RA) alongside activation of BMP and WNT/VEGF
signaling also gives rise to (pro)epicardial cells. ACM, atrial-like cardiomyocytes; CPC, cardiovascular progenitor cells; EPI, proepicardial/
epicardial cells; hPSCs, human pluripotent stem cells; KDR, kinase insert domain receptor; Meso, mesoderm; SANCM, sinoatrial nodal-like
cardiomyocytes; VCM, ventricular-like cardiomyocytes.
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cardiac differentiations, inwhich BMP and/orWNTare used

in lieuofRA, isyet tobedetermined.Moving forward, studies

to better define thehierarchy and interaction betweenHOX,

TALE family members such as MEIS1/2, NR2F transcription

factors, and TBX5 will shed light on the molecular mecha-

nisms underlying RA-driven cardiac cell specification. In

particular, tissue-specific co-factors and targets of TBX5,

which discern epicardial, atrial, or sinoatrial lineage identity,

are to be investigated. Directed differentiation of hPSCs to

cardiac cell types will serve as an excellent model in this

context. Sampling of cells at various time points during dif-

ferentiation and comprehensive analysis of the genetic and

epigenetic changes will unravel cell-type-specific gene-regu-

latory networks. Such insights will in turn inform further

improvement of in vitro differentiation protocols and even

trigger thedevelopmentof systemsandsyntheticbiologyap-

proaches to precisely modulate cell fate in a dish.
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