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Abstract: Radar waveform design is of great importance for radar system performances and
has drawn considerable attention recently. Constant modulus is an important waveform design
consideration, both from the point of view of hardware realization and to allow for full utilization of
the transmitter’s power. In this paper, we consider the problem of constant-modulus waveform design
for extended target detection with prior information about the extended target and clutter. At first,
we propose an arbitrary-phase unimodular waveform design method via joint transmitter-receiver
optimization. We exploit a semi-definite relaxation technique to transform an intractable non-convex
problem into a convex problem, which can then be efficiently solved. Furthermore, quadrature phase
shift keying waveform is designed, which is easier to implement than arbitrary-phase waveforms.
Numerical results demonstrate the effectiveness of the proposed methods.

Keywords: radar waveform design; constant-modulus waveform; extended target detection; clutter;
waveform optimization

1. Introduction

It has been widely acknowledged that waveform design is critically important for radar
performance in areas such as target detection, clutter suppression, and target identification, especially
when in the presence of channel noise and clutter [1,2]. However, optimal radar waveform is highly
task-dependent and is also affected by the model of the target and surrounding environments. In
the 1960s, some early research on radar waveform optimization was conducted [1–5]. All the early
works assumed a point target model. However, as radar bandwidth and range resolution improve, the
illuminated target usually exceeds one resolution cell. Thus, the point target assumption does not hold
and should be replaced by an extended target model [6]. Therefore, the paper considers waveform
design for extended targets.

Generally, radar waveform design methods can be broken into four categories: (1) information
theory based design [7–14]; (2) ambiguity-function based design [15–17]; (3) detection-probability based
design [18–20]; and (4) signal-to-clutter-plus-noise ratio (SCNR) based design [21–27]. Information
theoretic methods were inspired by the very essence of radar—acquiring target related information [7].
Mutual information (MI) criteria between the target return and the target impulse response (TIR) was
later used for radar parameter estimation and target identification [8–14]. The relationship between
minimum mean squared error and MI metrics was discussed in [9,11], and the case of multiple extended
targets was considered in [12]. Ambiguity-function based methods [15–17] design the transmitted
waveform by reshaping its ambiguity function—suppressing the Doppler-range (angle-Doppler-range,
in the MIMO radar case) region where targets might emerge. These methods require prior information
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about the range and Doppler distribution of clutter and/or jamming—which is more than the statistical
characteristics that would be needed in the detection-probability and SCNR based methods. However,
the methods based on ambiguity functions deal mainly with point targets, which is somewhat off the
topic of this paper.

The basic idea of detection-probability based methods is to optimize the transmitted waveform
to maximize detection probability for a given false alarm rate. It has been shown that a simple
single-tone signal is optimal if the target’s Doppler is unknown and is uniformly distributed over the
Doppler bandwidth [18]. Steven Kay [19] obtained an analytical solution of the optimal waveform
for Gaussian-distributed point target using the Neyman-Pearson criterion. The results in [19] were
heuristically extended to the multistatic radar case [20]. However, detection probability based methods
encounters difficulties with extended targets and waveform-dependent clutter, because in these cases
the explicit probability density function of the radar return is hard to obtain, and further analysis
becomes very difficult. Fortunately, we can resort to SCNR based methods, whose optimization
criterion is to maximize the output SCNR. Bell derived an eigen-waveform solution for a clutter-free
environment with energy constraints, for the first time [8]. However, in practice, radar returns are
usually contaminated by clutter coupled with the transmitted waveform. This coupling poses a big
challenge for optimal waveform design. To overcome the problem, Pillai [22,23] proposed an iterative
algorithm—which is also called the eigen-iterative algorithm in some literature—to determine the
optimal transmit pulse and receiver impulse response. This iterative technique was later extended to
the discrete time domain [24] and the multiple-input multi-output (MIMO) radar case [26]. However,
the technique in [22–24] is flawed, in that it cannot guarantee a non-decreasing SCNR at each iteration
step. Chen et al. [26] solved this problem under a total energy constraint through alternate optimization,
improving the SCNR at each iteration, and thus guaranteeing its convergence.

However, much existing work [8,10–14,16–20,22–27] is based on the assumption that radar
transmitted signals can be modulus-arbitrary—something which is still difficult to implement in
present radar systems—limited by the linear range of the radio frequency (RF) power amplifier
and the capabilities of present RF antennas [5,21,28,29]. Accordingly, the design of radar waveform
with limited dynamic range was considered in [5,28], and constant-modulus waveform design was
discussed in [21,29]. Note that constant-modulus waveform is important for power efficient radars,
such as airborne and spaceborne radars. In [21], an adaptive phase-coded waveform design was
proposed, but it did not take the clutter into account, which hampered its practicability. Reference [29]
optimizes a phase-modulated waveform by approaching the optimal energy spectral density in the
mean-square sense, but the method requires prior knowledge of the power spectral density of channel
noise and clutter. In this paper, we further extend the design of constant-modulus waveforms in
discrete time domain in the presence of clutter.

As is well known, the TIR is highly range and orientation sensitive [6]. Small variations in target
range or orientation relative to the radar might lead to significant TIR changes. Therefore, we think
that a deterministic and precisely known TIR is not realistic. Instead, we consider the TIR in a statistical
way. This assumption has also been made in [8–14,18–20,26,29,30]. Note that, as will be demonstrated
later, our methods are suitable for the deterministic target model as well. In addition, we concentrate
on single-input single-output (SISO) radar in this paper: the extension of our methods to the MIMO
radar case is straightforward.

The main contributions of this paper are summarized as follows. We propose two iterative
constant-modulus waveform design methods, both using alternate optimization of the transmitted
waveform and the receiving filter. One of these methods yields arbitrary-phase waveforms, while
the other yields quadrature phase shift keying (QPSK) waveforms. We also discuss the relationship
between a non-convex optimization problem and the corresponding convex problem that results after
semi-definite relaxation (SDR), which could be instructive to similar optimization problems in signal
processing fields.
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The rest of the paper is organized as follows. Section 2 presents the radar signal model and
formulates the signal design problem. In Section 3, two iterative constant-modulus waveform design
methods are proposed. Detailed performance analysis of our methods is provided in Section 4. In
Section 5, we show the results of numerical simulations and demonstrate the effectiveness of our
proposed algorithms. Finally, conclusions are presented in Section 6.

Notations: Vectors and matrices are denoted by boldface lowercase and uppercase letters,
respectively. Superscript T, *, and H denote transpose, conjugation and Hermitian transpose of a
vector/matrix, respectively. In is the nˆ n unity matrix, whereas 0mˆn and 1mˆn (0n and 1n) indicate
mˆ n (nˆ 1) matrices whose elements are all 0 and 1, respectively. The subscript may be omitted
if it does not cause confusion in the matrix/vector size. Amn represents the element of matrix A
located at the mth row and nth column. zn or z pnq represents the nth component of vector z. z pi : jq
denotes the segment of z from the ith element to jth element. E p¨ q denotes the expected value of a
random variable. We write Re p¨ q, Im p¨ q, and |¨| for the real part, imaginary part and modulus of a
complex scalar/matrix, respectively. λi pAq denotes the ith largest eigenvalue of A and vi pAq denotes
the corresponding eigenvector. A ě 0 (A ą 0) means that matrix A is Hermitian positive semi-definite
(positive definite). A ě B means that A´ B ě 0. j is the imaginary unit. CN and N designate the
complex and real normal distributions, respectively.

2. Signal Model and Problem Formulation

In this paper, we use the discrete baseband signal model illustrated in Figure 1. In this figure,
s P CNsˆ1denotes the transmitted waveform; ht P CNtˆ1 and hc P CNcˆ1 are the impulse response
of target and clutter, respectively; n P CNnˆ1 denotes the sum of noise and interference/jamming
with covariance matrix Rn; x denotes the returns from target and ambient clutter, while w denotes the
receiving filter vector. In a practical radar system, s is converted to an analog waveform, modulated to
RF, and transmitted. Inversely, the returns are received, demodulated and down-sampled to a discrete
vector signal. In this paper, we focus on the discrete baseband signal in the time domain and do not
discuss continuous signals or the frequency domain further.
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Figure 1. Illustration of the radar’s discrete baseband signal model.

As shown in Figure 1, we model the clutter return c as the output of a random linear time
invariant (LTI) filter whose impulse response hc can be regarded as a wide sense stationary (WSS)
random vector with covariance matrix Rc. As mentioned in Section 1, we consider ht in a statistical
way [8–14,18–20,26,29,30] and its covariance matrix is denoted as Rt. We have assumed that the
target is static (or equivalently, that the Doppler shift has been precisely measured and compensated),
which is also implied in Figure 1. The assumption of the zero-Doppler target has also been made
in [8–14,19,22–27,29]. According to [19], if we obtain the optimal waveform with this model, improved
performance will result with the optimized waveform in the moving target case as well. We will
explore the moving target case in the future.

According to our model, the returns can be formulated as:

x “ ht ˚ s` c` n (1)
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where ˚ denotes the convolution operator. The matrix form of Equation (1) is:

x “ Hts`Hcs` n (2)

where Ht and Hc are the target and clutter convolution matrices, and are shown in Equations (3)
and (4), respectively. Note that the differences between Equations (3) and (4) come from the ubiquity of
the clutter, because anything in the illuminated area of the radar that does not interest us can be viewed

as clutter [26]. From Equation (3), we obtain Ht “
“

ξ0 ¨ ¨ ¨ ξNs´1
‰

, where ξ i “
”

0T
i , hT

t , 0T
Nt´i´1

ıT
. We

use function Ht “ f pht, Nsq to represent the relationship between Ht and ht.

Ht “

»

—

—

—

—

—

—

—

—

—

—

—

–

ht p1q 0 ¨ ¨ ¨ 0

...
ht pNtq

0

ht p1q
...

ht pNtq

. . .

. . .

. . .

...
0

ht p1q

...
. . . . . .

...
0 ¨ ¨ ¨ 0 ht pNtq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(3)

Hc “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

hc p0q hc p´1q ¨ ¨ ¨ hc p´Ns ` 1q

hc p1q
...
...

hc p0q
hc p1q

. . .

. . .

. . .

. . .

...

...
hc p0q

...

...

. . .

. . .

. . .

. . .

hc p1q
...

hc pNt ` Ns ´ 2q ¨ ¨ ¨ ¨ ¨ ¨ hc pNt ´ 1q

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(4)

From Equation (4), we define vector hc as:

hc “
”

hc p´Ns ` 1q ¨ ¨ ¨ hc p0q ¨ ¨ ¨ hc pNt ` Ns ´ 2q
ıT

(5)

It is apparent that Ns, Nt, Nn and Nc, which are the length of s, ht, n and hc, respectively, satisfy the
following identities:

Nc “ Nt ` 2Ns ´ 2, Nn “ Nt ` Ns ´ 1 (6)

Using Equation (2), the receiver output can be expressed as:

y “ wHx “ wHHts
loomoon

signal

`wH pHcs` nq
looooooomooooooon

clutter and noise

(7)

where the target return is wHHts, and the sum of the clutter return and channel noise is wH pHts` nq.
Considering the statistical property of the clutter and target, it is necessary to take the expectation
value of the clutter return and target return. Thus, the SCNR of the output signal can be written as:

SCNR “

E
”

ˇ

ˇwHHts
ˇ

ˇ

2
ı

E
”

ˇ

ˇwH pHcs` nq
ˇ

ˇ

2
ı fi

wHRtsw
wH pRcs `Rnqw

fi
sHRtws

sH
´

Rcw `
wHRnw

Ns
¨ I
¯

s
(8)
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where, for notational simplicity, we let

#

Rts fi E
“

HtssHHH
t
‰

, Rcs fi E
“

HcssHHH
c
‰

Rtw fi E
“

HH
t wwHHt

‰

, Rcw fi E
“

Hc
HwwHHc

‰ (9)

Define S1 fi f ps, Ntq, S2 fi f ps, Ncq, and rH fi f phc, Nsq. With the fact that Hts “ S1ht, we have

Rts “ E
”

HtssHHH
t

ı

“ E
”

S1htht
HSH

1

ı

“ S1RtSH
1 (10)

Letting Q fi

”

0NnˆpNs´1q INnˆNn 0NnˆpNs´1q

ı

, Hc can then be written as Hc “ QrH. It follows that

Rcs “ E
”

HcssHHH
c

ı

“ QE
”

rHssH
rH

Hı
QH “ QE

”

S2hchc
HSH

2

ı

QH “ QS2RcSH
2 QH (11)

Moreover, the definition of

W fi

”

ı1 ı2 ¨ ¨ ¨ ıNs

ıT
, ıi fi w pi : Nt ` i´ 1q (12)

produces HH
t w “ Wh˚t , and

Rtw “ E
”

HH
t wwHHt

ı

“ E
”

Wht
˚ht

TWH
ı

“ WRt
˚WH (13)

Use W “ g pw, Ntq to represent the relationship between W and w in Equation (12). Define

rw fi

”

0T
Ns´1 wT 0T

Ns´1

ıT
, and ĂW fi g prw, Ncq, then we have HH

c rw “ rH
H
c rw “ĂWh˚t , and

Rcw “ E
”

Hc
HwwHHc

ı

“ E
”

rH
H
c rwrwH

rHc

ı

“ E
„

ĂWh˚c hc
T
ĂW

H


“ĂWR˚c ĂW
H

(14)

It should be noted that, even though Equations (8) and (10)–(14) are obtained based on the
statistical target assumption, they also hold for the deterministic extended target. The only difference is
that the rank of Rt in the deterministic case will be 1. Equations (10)–(14) provide an easy analytical way
to compute matrices Rts, Rcs, Rtw, and Rcw, whereas the randomization method presented in [26] to
compute these matrices suffers from inaccuracy and heavy computation. On the basis of Equations (8)
and (10)–(14), our next goal is to optimize s under the constant-modulus constraint, to maximize SCNR.

3. Constant-Modulus Waveform Design Methods

In this section, two iterative constant-modulus signal design algorithms are proposed, whose key
idea is to alternately optimize the transmitted waveform s and the receiving filter w to improve SCNR
at each iteration step. We adopt the following strategy: first, we optimize w for fixed transmitted
waveform s; then, we optimize s under the constant modulus constraint, for the fixed receiving filter
w previously found. Even though the alternate optimization strategy may become trapped by local
optima, it could at least achieve the optimum separately along the w dimension and s dimension at
the “trapping” point [26,31].

3.1. Algorithm 1—Arbitrary-Phase Waveform Design

First, when s is fixed, the optimization problem becomes:

max
w

wHRtsw
wH pRcs `Rnqw

(15)
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This is the well-known Rayleigh quotient problem. The optimal solution for Equation (15) is:

wopt “ v1

´

pRcs `Rnq
´1Rts

¯

(16)

and the maximum is λ1

´

pRcs `Rnq
´1 Rts

¯

. Substitution of Equation (16) back into Equation (15)
yields an expression of SCNR as a function of s. However, determining the s that maximizes the SCNR
using that expression is not simple. This is also why we take an alternate optimization strategy here.

When w is fixed, without the constant modulus constraint, the optimization problem turns out
to be:

max
s

sHRtws

sH
´

Rcw `
wHRnw

Ns
¨ I
¯

s
(17)

Similarly, the optimal solution is:

sopt “ v1

˜

ˆ

Rcw `
wHRnw

Ns
¨ I
˙´1

Rtw

¸

(18)

with the maximum SCNR λ1

ˆ

´

Rcw `
wHRnw

Ns
¨ I
¯´1

Rtw

˙

.

However, things become complicated if s is required to be constant-modulus. Recognizing that, in
this case, the amplitude of s is simply a scale factor with no effect on SCNR, we henceforth assume s to
be unimodular. To simplify the notation, we let Rtw fi Ω1, and Rcw`

wHRnw
Ns

¨ I fi Ω2. The optimization
problem Equation (17) can then be expressed as:

max
s

sHΩ1s
sHΩ2s

s.t. |s pkq| “ 1, k “ 1, ¨ ¨ ¨ , Ns (19)

Unfortunately, the optimization problem Equation (19) is nonconvex, and needs to be converted
to a problem that can be efficiently solved. Letting X fi ssH , we can rewrite Equation (19) as:

max
X

trpΩ1Xq
trpΩ2Xq

s.t. diag pXq “ 1Ns , rank pXq “ 1, X ě 0
(20)

where tr p¨ q denote the trace of a matrix. As long as it does not lead to confusion, we henceforth omit
the subscript Ns of 1Ns in Equation (20). However, Equation (20) still is a nonconvex problem owing to
the non-convexity of both the objective function and the constraint condition rank pXq “ 1. Fortunately,
the semi-definite relaxation (SDR) technique can remove the non-convexity of constraint rank pXq “ 1
by relaxing it into X ě 0. The SDR technique and the following randomization approach are commonly
used for optimization problems in the signal processing research area (e.g., [32], for recent literature).
Applying SDR, Equation (20) then becomes:

max
X

trpΩ1Xq
trpΩ2Xq

s.t. diag pXq “ 1, X ě 0
(21)

Lemma 1 then converts Equation (21) into an equivalent convex problem.

Lemma 1. If Xopt and topt solve the convex optimization problem

min
X,t

tr pΩ2Xq

s.t. tr pΩ1Xq “ 1, diag pXq “ t ¨ 1, X ě 0
(22)

then X† fi Xopt{topt solves Equation (21).
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Proof. According to the definition of Xopt and topt, we have

X† “ Xopt{topt ě 0, diag
´

X†
¯

“ diag
`

Xopt
˘

{topt “ 1 (23)

Hence, X† is within the feasible region of Equation (21).
For any matrix X P CNsˆNs which satisfies diag pXq “ 1, X ě 0, we define tr pΩ1Xq fi a, X1 fi X{a.

We then have tr
`

Ω1X1
˘

fi 1, and
tr
`

Ω2X1
˘

ě tr
`

Ω2Xopt
˘

(24)

which derives from the fact that Xopt is the optimal solution of Equation (22). It follows that

trpΩ1X†q

trpΩ2X†q
“

trpΩ1Xoptq{topt

trpΩ2Xoptq{topt

“
trpΩ1Xoptq

trpΩ2Xoptq
“ 1

trpΩ2Xoptq

ě 1
trpΩ2X1q “

trpΩ1Xq
trpΩ2Xq

(25)

which completes the proof.
Solving the convex problem Equation (22) with the existing toolboxes (e.g., CVX toolbox [33]) is

much easier than solving Equation (21). However, it should be noted that the optimal value of the
objective function in Equation (22) is lower than that of Equation (19). The approximation bound for
the two optima will be discussed in the next section. To obtain the optimal signal sopt with the optimal
solution X† of Equation (21), we propose a customized randomization approach, shown in Table 1.

Table 1. Customized randomization approach procedure.

If rank
`

Xopt
˘

“ 1

sopt is the first row of matrix X†;

Otherwise

Step 1: Obtain X† “ UΣUH from the eigenvalue decomposition of X†.
Step 2: Generate K independent random vectors vpkq, k “ 1, 2, ¨ ¨ ¨ , K, from complex-valued Gaussian

distribution CN p0, Iq.
Step 3: Compute spkq “ UΣ1{2vpkq, k “ 1, 2, ¨ ¨ ¨ , K so that the covariance matrix of spkq is X†.

Step 4: Normalize the modulus of sk: spcan,kq “ exp
´

´j¨ ang
´

spkq
¯¯

, k “ 1, 2, ¨ ¨ ¨ , K. (spcan,kq is a
candidate vector for sopt.)

Step 5: Choose the candidate vector that maximizes the SCNR, i.e.,

sopt “ arg max
spcan,kq

sH
pcan,kq Ω1 spcan,kq

sH
pcan,kq Ω2 spcan,kq

, k “ 1, ¨ ¨ ¨ , K.

One can notice that we use spcan,kq “ exp
´

´j¨ ang
´

spkq
¯¯

, other than spcan,kq “ exp
´

j¨ ang
´

spkq
¯¯

,
to normalize sk in step 4 of Table 1. The reason is that, even though they perform similarly according
to our numerical experiments, the former facilitates further analysis of the SDR technique in the next
section. Please note that both forms perform well in our simulations. The procedure of the iterative
arbitrary-phase waveform design method (i.e., Algorithm 1) is presented in Table 2.
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Table 2. Algorithm 1 full procedure.

Step 0: Initialize the transmitted signal sp0q with linear frequency modulation (LFM) signal or a random
phase-coded signal.

Step 1: Compute Rts with Equation (10), and obtain the receiving filter w using Equation (16)
Step 2: Compute Rtw with Equation (13), and obtain the optimal solution X† of Equation (21). Use the

preceding randomization approach in Table 1 to get sopt.
Step 3: Go back to Step 1 unless the SCNR improvement becomes insignificant or iterative number

becomes large enough.

3.2. Algorithm 2—QPSK Waveform Design

In this subsection, we discuss the waveform design method using a QPSK waveform instead
of an arbitrary-phase waveform. The main difference between these two methods lies in the way
candidate vectors are generated. In [34], we showed that QPSK signal could approximate a given
covariance matrix quite closely. The method in [34] is based on the change of correlation properties
arising from memoryless nonlinear transformation of Gaussian process [35], and could be applied
here. Consider two Gaussian variables xm, xn with zero mean, unit variance, and covariance ρ. Then,
the covariance γ of sgn pxmq and sgn pxnq, where sgn pxq takes the value +1, ´1 when x is positive and
negative, respectively, satisfies [35]

ρ “ sin
´π

2
γ
¯

(26)

This equation is the foundation of our QPSK waveform design. The candidate QPSK vector design
procedure using matrix X†, the optimal solution of Equation (21), is presented in Table 3. Further
details can be found in [34].

Table 3. Candidate quadrature phase-shift keying (QPSK) signal vectors design procedure.

Step 1: Denote the real part and the imaginary part of X† by XR and XI , respectively.
Step 2: Generate matrix rX using

rX “
„

A BT

B A



, A “ sin
´π

2
XR

¯

, B “ sin
´π

2
XI

¯

(27)

where the sine function operates element-wise: sin pAq “ rsin pAmnqsNsˆNs
.

Step 3: Make a forced positive definite Cholesky decomposition rX`D “ ΓΓT , where D is a diagonal
matrix with nonnegative elements.

Step 4: Let β “ Γθ, where θ „ CN p0, Iq, i.e., θ is normally distributed with zero mean. The QPSK signal
can then be generated by s “ sgn pβ p1 : Nsqq ` j¨ sgn pβ pNs ` 1 : 2Nsqq.

Note that, in Step 3, we use a forced positive Cholesky decomposition because rX cannot be
guaranteed to be semi-positive definite. We refer the interested readers to [34], where we presented
one equivalent condition and two sufficient conditions in different forms for rX ě 0. We could now
obtain QPSK candidate vectors sQPSK

can,k , k “ 1, 2, ¨ ¨ ¨ , K and choose the one that maximizes the SCNR in
Equation (19). We consider this subsection to be important work, because the QPSK signal generation
technique is easy and mature, compared with arbitrary-phase or non-constant modulus signals.

Both our proposed iterative constant-modulus waveform design methods are summarized in
Figure 2. We can see that the arbitrary-phase and QPSK waveform design methods share the same
overall procedure, the only difference being the way in which candidate vectors are generated.
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4. Algorithm Performance Analysis

This section is composed of two parts: we first discuss further the performance loss caused by the
used semi-definite relaxation; this discussion throws new insights into similar optimization problems;
we then present an upper bound analysis of the SCNR increment at each iteration, an analysis that, in
our opinion, is necessary for an iterative algorithm.

4.1. Semi-Definite Relaxation and Loss of Performance

In this subsection, we focus on the relationship between the original optimization problem
Equation (19) and its corresponding SDR problem Equation (21). To ensure consistency with Section 3,
X† still designates here the optimal solution to Equation (21) and could be obtained via the optimal
solutions of Equation (22), Xopt and topt. We denote the optimal solution of Equation (19) by sopt,

and the corresponding optimal SCNR by uorg, i.e., uorg “
´

sH
optΩ1sopt

¯

{

´

sH
optΩ2sopt

¯

. For the sake of
simplicity, we define

usdp fi
trpΩ1X†q

trpΩ2X†q

u prdq fi max
sH

can,k Ω1 scan,k

sH
can,k Ω2 scan,k

, k “ 1, ¨ ¨ ¨ , K

u pepq fi E
ˆ

sH
can,k Ω1 scan,k

sH
can,k Ω2 scan,k

˙

where u prdq andu pepq represent the optimal and expected value of the SCNRs obtained from the
candidate vectors, respectively. Based on our definitions, it is easily verified that

uorg ě u prdq ě u pepq (28)

We will later further discuss the relationship of uorg, usdp, u prdq and u pepq. The following

lemma addresses the effect of modulus normalization spcan,kq “ exp
´

´j¨ ang
´

spkq
¯¯

on the signal
covariance matrix.
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Lemma 2. Assume that X P CNˆN is a Hermitian matrix satisfying X ě 0 or X ą 0, diag pXq “ 1
and

ˇ

ˇXpq
ˇ

ˇď 1 for all 1 ď p ă q ď N. ŝ denotes the unimodular random vector obtained from X with the
randomization procedure of Table 1. Then we have

E
´

ŝŝH
¯

“ F pXq (29)

where F p¨ q is a component-wise matrix function

F pXq “
“

F
`

Xpq
˘‰

NˆN

and

F pxq “
1

4π

ż 2π

0
ejθ parccos p´γcos pθ ´ αqqq2dθ (30)

where x P C with 0 ď γ “ |x| ď 1 and α “ arg pxq.
The proof of this Lemma is given in Appendix A. Lemma 2 provides the change of covariance

matrix of the random vectors after modulus normalization. With the help of Lemma 2, we introduce
the following theorem.

Theorem 3. For optimization problem Equations (19) and (21), it holds that

uorg ě u prdq ě u pepq ě
πu1

4umax
¨ uorg (31)

where u1 “ tr
`

Ω2X†˘, umax “ sup
k“0,1,2¨¨¨

tr
´

Ω2

´

ˇ

ˇX†
ˇ

ˇ

p2kq
˝X†

¯¯

, ˝ is the Hadamard product operator, and

the superscript pkq means
Apkq “ A ˝A ˝ ¨ ¨ ¨ ˝A

looooooomooooooon

k

We define Ap0q fi 1NˆN to make
´

|X|p2kq
˝X

¯

equal X when k “ 0.

The proof of Theorem 3 can be found in Appendix B. Particularly, if

umax “ tr
ˆ

Ω2 lim
kÑ8

´

ˇ

ˇX†
ˇ

ˇ

p2kq
˝X†

¯

˙

, and X† is a matrix satisfying
ˇ

ˇX†
pq
ˇ

ˇ ă 1 f or 1 ď p ‰ q ď Ns, it

follows that lim
kÑ8

´

ˇ

ˇX†
ˇ

ˇ

p2kq
˝X†

¯

“ I and umax “ tr pΩ2q. Therefore, we have

u prdq ě
πu1

4tr pΩ2q
¨ uorg

From the proof in Appendix B, we can see that the performance loss of Equation (21) relative to
Equation (19), is directly related to the approximation to X† of the normalized unimodular vectors or
QPSK vectors covariance matrix. The closer the approximation, the smaller the performance loss will
be. As shown in [34], our QPSK signal design scheme could approximate the original matrix X† quite
closely. We will not talk further about the QPSK signal case. However, it is still interesting to note that,
according to [36], there will not be any performance loss between the optimization problem

max
s

sHΩ1s
sHΩ2s

s.t. |s pkq| P t1, j, ´1, ´ju , k “ 1, ¨ ¨ ¨ , Ns (32)

and the corresponding problem Equation (21) after relaxation followed by the discrete randomization
approach presented in Equation (A2) with m “ 4.

4.2. Upper Bound Analysis of the SCNR Increment at Each Iteration

The alternate optimization scheme along the w and s dimensions guarantees that SCNR will not
decrease as iterations progress. In this subsection, we present a preliminary upper bound analysis of
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the SCNR increment at each iteration (A loose lower bound can be taken to be 0.). Noticing that, at
every iteration, we solve Equation (15) and obtain the optimal SCNR λ1

´

pRcs `Rnq
´1 Rts

¯

, we just

need to concentrate on λ1

´

pRcs `Rnq
´1 Rts

¯

and analyze its increment. To that end, we first introduce
the following lemma.

Lemma 4. Suppose that A P CNˆN “ QΛQ´1 is diagonalizable and Q is an invertible matrix, Λ is
diagonal, and ∆A, B P CNˆN satisfy ∆A “ B´A. Then for any µ P tλi pBq , i “ 1, ¨ ¨ ¨ , Nu, there exists
χ P tλi pAq , i “ 1, ¨ ¨ ¨ , Nu such that

|χ´ µ| ď inf
pě1

“

cond pQ, pq||∆A||p
‰

(33)

where ‖ ¨ ‖p, p ě 1 represents the p-norm of a matrix, and cond pQ, pq “‖ Q´1 ‖p ‖ Q ‖p is generally called
the condition number.

The proof of Lemma 4 is similar with that of Theorem 3 in [37], except for extending to arbitrary
p-norm (p ě 1). Thus, Lemma 4 can be viewed as a straightforward extension of Theorem 3 in [37]. One
can refer to [37] for the proof details. From Lemma 4, we can see that the upper bound of the change of
the largest eigenvalue of matrix A due to the perturbation ∆A, i.e., |λ1 pA` ∆Aq ´ λ1 pAq|, depends on
the norm of ∆A and the condition number of matrix Q, whose columns are the eigenvectors of A.

For simplicity, we assume that Rts is full rank. The situation when Rts is rank deficient would
not be much different. Given that Rts ą 0, there must exist an invertible matrix M P CNˆN such that
Rts “ MMH . Considering that MH pRcs `Rnq

´1 Rts
`

MH˘´1
“ MH pRcs `Rnq

´1 M, pRcs `Rnq
´1 Rts

has the same eigenvalues as matrix MH pRcs `Rnq
´1 M, which is Hermitian and positive definite.

Note that MH pRcs `Rnq
´1 M is unitary similar to a diagonal matrix, i.e.,

MH pRcs `Rnq
´1 M “ PΛP´1 (34)

where P is a unitary matrix, and Λ is diagonal with positive diagonal elements. One simple fact is that
the unitary matrix P satisfies ‖ P´1 ‖2 ‖ P ‖2 “ 1. To simplify the exposition, we denote Equation (34)
by Θ psq. Therefore, if one iteration transforms the transmitted waveform from s to s` ∆s, the upper
bound of the SCNR increment in this iteration is ‖ Θ ps` ∆sq ´Θpsq ‖2, i.e.,

|λ1 pΘ ps` ∆sqq ´ λ1 pΘ psqq| ď ||Θ ps` ∆sq ´Θ psq||2 (35)

Note that Θ psq is a continuous function of s. Therefore, as ∆s Ñ 0 , the variation of Θ psq also
tends to 0, ‖ Θ ps` ∆sq ´Θpsq ‖2 Ñ 0 , and finally |λ1 pΘ ps` ∆sqq ´ λ1 pΘ psqq| Ñ 0 . This is sensible,
and gives some insights into the rationality of Equation (35).

Also note that it is reasonable to state that the waveform design methods developed herein could
be instrumental for improving the performance of the ultra-wide band cognitive radio [38] and sensor
radar networks [39,40], considering that they share common issues such as clutter suppression, and
extended target feature extraction. The adaption of the proposed technique to these scenarios is
currently being investigated.

5. Results

In this section, we demonstrate the effectiveness of the proposed methods. The simulation
parameters are as follows. The length of ht is Nt “ 20, while the phase coding length of the transmitted
waveform is Ns “ 50. Without any loss of generality, we let the noise covariance matrix be Rn “ σ2

nI,
with σ2

n “ 0.01. The sample number in the randomization approach is K = 10,000. As in [26], we use a
random phase-coded signal as the initial transmitted waveform. Rc is modeled as being the covariance
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matrix of the output of a linear time invariant (LTI) filter with impulse response h, whose input signal
is complex Gaussian white noise with unit variance. h is assumed to be:

h pnq “

#

1, n “ 0, 1, ¨ ¨ ¨ , 14
0, otherwise

The element values of Rc are illustrated graphically in Figure 3a. We denote the matrix in Figure 3a
by Rp1qc and further let Rc = σ2

c Rp1qc , where σ2
c can be considered to be the clutter power. Thereby, we

define the clutter-to-noise ratio (CNR) as σ2
c {σ

2
n . Without specific statements, CNR is set to 10 dB. The

iteration number starts at 1 and increases every time we compute Equation (16).
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Figure 3. Illustration of (a) matrix Rc, the covariance matrix of the clutter impulse response, hc; (b) Rt,
the covariance matrix of target impulse response ht, used in Section 5.1.

We will now test and verify the performances of the proposed Algorithms 1 and 2 in two cases:
the statistical target case and the deterministic target case.

5.1. Statistical Target Case

In this subsection, we consider a statistical ht. To guarantee positive semi-definiteness, we
generate Rt using

Rt “ AAH

where A is a matrix whose elements are generated as independent and identically distributed (i.i.d.)
circular complex Gaussian random variables with unit variance, except for the diagonal elements,
which are shown in Figure 4. Note that this approach to generate Rt is similar to the one in [26]. The
considered target has five significant reflection centers and is similar to the SR-71 aircraft model [25].
Figure 3b illustrates the elements in Rt. The diagonal elements of A (and Rt) can naturally be chosen
differently. The parameters chosen here are simply a common example.

Sensors 2016, 16, 889 12 of 22 

 

being the covariance matrix of the output of a linear time invariant (LTI) filter with impulse response ܐ, whose input signal is complex Gaussian white noise with unit variance. ܐ is assumed to be: 

 
1, 0, 1, , 14
0,
n

h n
otherwise


 



  

The element values of ܀௖	are illustrated graphically in Figure 3a. We denote the matrix in  
Figure 3a by ܀௖(ଵ) and further let ܀௖	= ߪ௖ଶ܀௖(ଵ), where ߪ௖ଶ can be considered to be the clutter power. 
Thereby, we define the clutter-to-noise ratio (CNR) as ߪ௖ଶ/ߪ௡ଶ. Without specific statements, CNR is set 
to 10 dB. The iteration number starts at 1 and increases every time we compute Equation (16). 

 
(a) (b)

Figure 3. Illustration of (a) matrix ܀௖ , the covariance matrix of the clutter impulse response, ܐ௖ ;  
(b) ܀௧, the covariance matrix of target impulse response ܐ௧, used in Section 5.1. 

We will now test and verify the performances of the proposed Algorithms 1 and 2 in two cases: 
the statistical target case and the deterministic target case. 

5.1. Statistical Target Case 

In this subsection, we consider a statistical ܐ௧ . To guarantee positive semi-definiteness, we 
generate ܀௧ using 

H
t R AA   

where ۯ is a matrix whose elements are generated as independent and identically distributed (i.i.d.) 
circular complex Gaussian random variables with unit variance, except for the diagonal elements, 
which are shown in Figure 4. Note that this approach to generate ܀௧ is similar to the one in [26]. The 
considered target has five significant reflection centers and is similar to the SR-71 aircraft model [25]. 
Figure 3b illustrates the elements in ܀௧ . The diagonal elements of ۯ (and ܀௧ ) can naturally be 
chosen differently. The parameters chosen here are simply a common example. 

 

Figure 4. Illustration of the diagonal elements of matrix A. 

As a contrast, we also present the waveform design technique with the total energy constraint 
proposed in [26]—which also cyclically optimizes the transceiver pair, but uses Equation (18) to 
compute s in terms of w—instead of solving the complicated optimization problems posed by 
Equation (19) or (21). Consequently, it cannot guarantee the constant modulus property, which 
hampers the practicability of the designed waveforms. Nevertheless, the absence of the constant 

 

 

20 40 60 80 100

20

40

60

80

100 0.2

0.4

0.6

0.8

 

 

5 10 15 20

5

10

15

20

0.1

0.2

0.3

0 5 10 15 20
0

1

2

3

Length

A
's 

D
ia

go
na

l E
le

m
en

ts

Figure 4. Illustration of the diagonal elements of matrix A.

As a contrast, we also present the waveform design technique with the total energy constraint
proposed in [26]—which also cyclically optimizes the transceiver pair, but uses Equation (18) to
compute s in terms of w—instead of solving the complicated optimization problems posed by
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Equation (19) or (21). Consequently, it cannot guarantee the constant modulus property, which
hampers the practicability of the designed waveforms. Nevertheless, the absence of the constant
modulus constraint leads to a better SCNR performance with extra degrees of freedom. Additionally,
to highlight the advantages of our optimization technique, we define the following discrete LFM signal:

sLFM pnq “ exp

˜

j ¨ kπ

ˆ

n´ 1
Nt

˙2
¸

, n “ 1, 2, ¨ ¨ ¨ , Ns (36)

We take k “ 20 in our simulation. Correspondingly, we set the vector w obtained with
Equation (16) as the matched filter for sLFM.

Figure 5 shows the SCNR performances as a function of the number of iterations. The method
in [26], as was expected, converges to the best SCNR among these methods, benefiting from the
additional degree of freedom offered by the envelope flexibility. Note that Algorithm 1 also converges
fast and has only a 0.28 dB SCNR performance loss compared with the method in [26] after convergence.
Generally speaking, with the benefit of the constant modulus property, the SCNR loss of 0.28 dB is
tolerable. Compared with the method in [26], Algorithm 2 shows a 0.61 dB SCNR loss, with improved
implementation. The Unimodular Signal 3, which uses the phases of the results of method in [26],
requires fewer computations, without any convex optimization problems to solve. However, its
performance cannot be trusted, even though it performs moderately in this example. As Figure 5 shows,
it might end up with a worse result than Algorithm 2. Nevertheless, it also implies that a unimodular
signal with the phases of the first iteration’s result using the method in [26] is a reasonable initial
waveform for Algorithm 1. Figure 6 verifies this notion. Among the four initially used waveforms,
the one with the preliminary optimized result of the method in [26]—plotted with the red dashed
line—converges the fastest. The LFM signal represented in Equation (36) has the worst initial SCNR
and converges the slowest in this example, revealing that the LFM signal is not as advantageous for
extended targets as it is for point targets.
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Figure 5. SCNR performances as a function of the number of iterations for different methods. The initial
waveforms are identical for all methods. Algorithms 1 and 2 are the arbitrary-phase and QPSK signal
design methods proposed in Section 3, respectively. Unimodular Signal 3 denotes the unimodular
signal with the phase that results from the method in [26], i.e., a modulus normalized version of the
waveform obtained under the total energy constraint. The upper bound is the limiting value of the
SCNR obtained using the method in [26]. The SCNR of the LFM signal does not vary with the iterations,
because this signal is fixed.
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Figure 6. SCNR performances vs. the number of iterations for different initial waveforms.

Figure 7 presents the real and imaginary parts of the optimized signals obtained by different
methods. One can clearly see that the method in [26]—marked by red diamonds—cannot guarantee
the constant modulus property of the designed signal. In contrast, the results of Algorithm 1 are
unimodular and lie on the unit circle, whereas the results of Algorithm 2 are fixed to four phase points,
which validates our constraints for the constant-modulus signal and QPSK signal.
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Figure 7. Real and imaginary parts of different methods’ results.

Figure 8 shows the SCNR performances of different methods, as a function of CNR. It is intuitive
that, as the CNR increases, the SCNR performance worsens correspondingly. One can see that
Algorithms 1 and 2 can closely approximate the upper bound over a large range of CNRs. Compared
with the LFM signal in Figure 8, our optimization technique could achieve approximately a 5 dB
SCNR gain.
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Figure 8. (a) Comparison of the SCNR of different methods vs. CNR. The upper bound is the SCNR
obtained with 100 iterations of the method in [26], while the blue line marked with circles is obtained
with 30 iterations of the same method; (b) Zoomed version of the boxed region in (a).

5.2. Deterministic Target Case

In this subsection, we assume that the TIR ht is deterministic and known. For demonstration,
ht is set as the sequence shown in Figure 4. In this case, Rt “ htht

H is a rank-one matrix. The other
parameters remain the same as in Section 5.1. We now briefly introduce a discrete-time version of
the eigen-iterative algorithm in [22]. This algorithm was not discussed in Section 5.1, because it is not
easily extended to a statistical target case. In this case of a deterministic and known TIR, the SCNR
expression is reduced from Equation (8) to

SCNR “

ˇ

ˇwHTs
ˇ

ˇ

2

wH pRcs `Rnqw
, T “ f pht, Nsq (37)

where function f p¨ q is defined in Section 2. Similar with Equation (15), the optimal receiving filter in
terms of s is

wopt “ pRcs `Rnq
´1 Ts (38)

Substituting Equation (38) into Equation (37) yields:

SCNR
s

“ sHTH pRcs `Rnq
´1 Ts (39)

To maximize the new objective function in Equation (39), it seems that we just need to take s as:

v1

´

TH pRcs `Rnq
´1 T

¯

(40)

However, the matrix in Equation (40) is also a function of s. The authors in [22] proposed to
cyclically update s to approach the optimally transmitted waveform using Equation (40). However,
as pointed out in [26], the method in [22] cannot ensure performance improvements as iterations
go on. Also note that the method cannot achieve the largest eigenvalue of TH pRcs `Rcsq

´1 T as its
output SCNR, because the signal s obtained with Equation (40), which would be the waveform for the
next cycle, is not the s in Equation (39). Figure 9 shows the SCNR performances as a function of the
iteration index in the deterministic target case. One can see that Algorithms 1 and 2 are well suited
for the deterministic target case. The optimized QPSK signal performed better than both the method
in [22] and LFM signal, even though it can only choose from four phase points. Compared with other
methods, the method in [22] suffers from performance degradation and fluctuations. As mentioned
earlier, the LFM signal in Equation (36) does not perform well in the deterministic extended target,
and performed even worse than the initial random-phase signal in this example.
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Figure 9. SCNR performances as a function of the number of iterations for the deterministic target case.
The initial waveforms are identical for all methods.

Figure 10 shows the SCNR performances as functions of CNR in the range 0–40 dB. We do not
include the method in [22] in this example, because it did not converge. It can be seen that Algorithms
1 and 2 can closely approximate the method in [26] for a large range of CNRs, even though they are
restricted to constant modulus—once again demonstrating the effectiveness of the proposed methods.
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Figure 10. (a) SCNR performances vs. CNR for the deterministic target case. The upper bound is the
SCNR obtained with 100 iterations of the method in [26], while the blue line marked with circles is
obtained with 30 iterations of the same method; (b) Zoomed version of the box highlighted in (a).

6. Conclusions

In this paper, we proposed two iterative constant-modulus waveform design algorithms for the
detection of extended targets, with prior information of the target and waveform-dependent clutter.
To deal with the intractable problem brought by the constant modulus constraint, we made use of a
semi-definite relaxation approach and developed a customized randomization method. Moreover,
combining this with our previous work, we further advanced the design of QPSK waveforms. We then
discussed the relationship between the nonconvex problem and its corresponding convex form after
SDR, and analyzed an upper bound on the SCNR increment at each iteration. Even though our methods
were established based on a statistical target model, they can be applied to the deterministic target
case as well. The obtained numerical results show that the proposed algorithms have satisfied SCNR
performances in both the statistical and deterministic target cases. However, as mentioned earlier,
the alternate optimization technique cannot guarantee the convergence to the global optimum. The
probability of this technique getting trapped in a local optimum and the search for a better optimization
strategy are open for further study. Additionally, we assumed that the statistical characteristics of the
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target and clutter are known. The effective estimation of these prior information from radar returns is
therefore well worth exploring. We also note that the final waveforms obtained with the proposed
methods may not have good performance concerning range resolution. Waveform design taking range
resolution into account will also be investigated in the future.
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Appendix A

Proof of Lemma 2. Firstly, we consider the discrete situation by defining

Fm pzq fi
m
`

2´ω´1 ´ω
˘

8π2

m´1
ÿ

n“0

ωn `arccos
`

´Re
`

ω´nz
˘˘˘2 (A1)

and assigning

ẑk fi σ pskq “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

1, i f arg pskq P
“

0, 2π
m
˘

...

ωl , i f arg pskq P
”

l
m 2π, l`1

m 2π
¯

...

ωm´1, i f arg pskq P
”

m´1
m 2π, 2π

¯

(A2)

where s „ CN p0, Xq, m ě 2 is a given positive integer, and ω “ exp
`

j 2π
m
˘

. Supposing that
Xpq “ γejα, 1 ď p, q ď N, we have

Pr
´

ẑpẑ˚q “ ωn
¯

“
m´1
ř

l“0
Pr

´

ẑp “ ωl`n, ẑq “ ωl
¯

“
m´1
ř

l“0
Pr

´

arg
`

sp
˘

P

”

l`n
m 2π, l`n`1

m 2π
¯

, arg
`

sq
˘

P

”

l
m 2π, l`1

m 2π
¯¯

“
m´1
ř

l“0

»

—

–

1
m2 `

1
8π2

¨

˚

˝

2arccos
`

´γcos
` n

m 2π` α
˘˘2
´ arccos

´

´γcos
´

n´1
m 2π` α

¯¯2

´arccos
´

´γcos
´

n`1
m 2π` α

¯¯2

˛

‹

‚

fi

ffi

fl

“ 1
m `

m
8π2

¨

˚

˝

2arccos
`

´γcos
` n

m 2π` α
˘˘2
´ arccos

´

´γcos
´

n´1
m 2π` α

¯¯2

´arccos
´

´γcos
´

n`1
m 2π` α

¯¯2

˛

‹

‚

(A3)
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where Pr pAq denotes the probability that A holds, and the third equality utilizes Theorem 2.5 in [36],
concerning complex bivariate normal distributions. Furthermore, we have

E
”

ẑpẑ˚q
ı

“
m´1
ř

n“0
ωnPr

´

ẑpẑ˚q “ ωn
¯

“ m
8π2

m´1
ř

n“0
ωn

¨

˚

˝

2arccos
`

´γcos
` n

m 2π` α
˘˘2
´ arccos

´

´γcos
´

n´1
m 2π` α

¯¯2

´arccos
´

´γcos
´

n`1
m 2π` α

¯¯2

˛

‹

‚

“ m
8π2

m´1
ř

n“0

`

2ωn ´ωn´1 ´ωn`1˘ arccos
`

´γcos
` n

m 2π` α
˘˘2

“
mp2´ω´1´ωq

8π2

m´1
ř

n“0
ωnarccos

`

´γcos
` n

m 2π` α
˘˘2

“
mp2´ω´1´ωq

8π2

m´1
ř

n“0
ωnarccos

`

´Re
`

ωnXpq
˘˘2

(A4)

Notice that the conjugation of Fm
`

Xpq
˘

satisfies

F˚m
`

Xpq
˘

“
mp2´ω´1´ωq

8π2

m´1
ř

n“0
ω´n `arccos

`

´γcos
`

´ n
m 2π` α

˘˘˘2

“
mp2´ω´1´ωq

8π2

m´1
ř

n“0
ωm´n `arccos

`

´γcos
`m´n

m 2π` α
˘˘˘2

“
mp2´ω´1´ωq

8π2

m´1
ř

n“0
ωn `arccos

`

´γcos
` n

m 2π` α
˘˘˘2

“ E
”

ẑpẑ˚q
ı

(A5)

In accordance with Table 1, the kth element of ŝ satisfies ŝk “ pẑkq
˚ , k “ 1, ¨ ¨ ¨ , N. Thus, we

have that
E
”

ŝpŝ˚q
ı

“

´

E
”

ẑpẑ˚q
ı¯˚

“ Fm
`

Xpq
˘

(A6)

For the discrete case, the covariance matrix of the random vector ŝ is

E
”

ŝŝH
ı

“ E
”

ẑẑH
ı˚

“ F pXq (A7)

which holds for any integer m ě 2. For a given z “ γejα P C with 0 ď γ ď 1, it holds that

Fm pzq

“
mp2´ω´1´ωq

8π2

m´1
ř

n“0
ωn `arccos

`

´Re
`

ω´nz
˘˘˘2

“ m2

8π3

`

1´ cos
` 2π

m
˘˘

¨
m´1
ř

n“0

”

ωn `arccos
`

´γcos
` n

m 2π´ α
˘˘˘2

¨ 2π
m

ı

(A8)

Taking the limit m Ñ8 , we get

F pzq “ lim
mÑ8

Fm pzq “
1

4π

ż 2π

0
ejθ parccos p´γcos pθ ´ αqqq2dθ (A9)

where the equation

lim
mÑ8

m2
ˆ

1´ cos
ˆ

2π

m

˙˙

“ 2π2 (A10)

is used. This completes the proof.
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Appendix B

Proof of Theorem 3. Define X̂ “ soptsH
opt. X̂ is easily verified to be a feasible solution of Equation (21).

Because of the optimality of X†, we have

usdp “
tr
`

Ω1X†˘

tr
`

Ω2X†
˘ ě

tr
`

Ω1X̂
˘

tr
`

Ω2X̂
˘ “ uorg (B1)

For notational simplicity, we use Z to indicate X† in the following proof procedure. One can easily
check that Z satisfies the restrictions of Lemma 2. Suppose that the randomization approach with Z
yields a candidate vector ŝ. Then we have

E
´

ŝŝH
¯

“ F pZq (B2)

We now consider the relationship between Z and F pZq. For z “ γejα P C with 0 ď γ ď 1, we have

F pzq “ 1
4π

ş2π
0 ejθ parccos p´γcos pθ ´ αqqq2dθ

“ 1
4π ejα

”

şπ
0 ejθ parccos p´γcosθqq2dθ ´

şπ
0 ejθ parccos pγcosθqq2dθ

ı

“ 1
2 ejαşπ

0 ejθarcsin pγcosθqdθ

“ 1
2 ejαşπ

0 ejθ
ˆ

γcosθ `
8
ř

k“1

p2kq!
4kpk!q2p2k`1q

pγcosθq2k`1
˙

dθ

“ π
4 γejα ` π

2

8
ř

k“1

pp2kq!q2

24k`1pk!q4pk`1q
γ2k`1ejα

“ π
4 z` π

2

8
ř

k“1

pp2kq!q2

24k`1pk!q4pk`1q
|z|2kz

(B3)

where the third equality exploits that arccos p´γcosθq “ π ´ arccos pγcosθq, the next to last equality
results from the two following identities:

ż π

0
sinθ pcosθq2k`1dθ “ 0,

ż π

0
pcosθq2k`2dθ “

p2kq! p2k` 1q

22k`1 pk!q2 pk` 1q
π

Thus,

F pZq “
π

4
Z`

π

2

8
ÿ

k“1

pp2kq!q2

24k`1 pk!q4 pk` 1q
|Z|p2k`1q

˝Z (B4)

Subsequently, we introduce one simple fact about the Hadamard product [41]—for two positive
semi-definite matrices A, B, A ˝B remains positive semi-definite. Considering that

|Z|p2kq
“

´

Z ˝ZT
¯

˝ ¨ ¨ ¨ ˝

´

Z ˝ZT
¯

looooooooooooooomooooooooooooooon

k

We have |Z|p2kq
˝Z ě 0, further yielding F pZq ě π

4 Z, and

tr pΩ1F pZqq ě
π

4
¨ tr pΩ1Zq (B5)

Because
ˇ

ˇZpq
ˇ

ˇ ď 1 for 1 ď p, q ď Ns, the limit of lim
kÑ8

|Z|p2kq
˝Z exists and is denoted as Z, which

is a matrix whose diagonal elements are all 1 and all other elements have either 0 or 1 modulus. Hence,
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lim
kÑ8

tr
´

Ω2

´

|Z|p2kq
˝Z

¯¯

“ tr
`

Ω2Z
˘

. A supremum for sequence tr
´

Ω2

´

|Z|p2kq
˝Z

¯¯

, k “ 0, 1, ¨ ¨ ¨

must exist; let us denote it by umax; therefore,

tr
´

Ω2

´

|Z|p2k`1q
˝Z

¯¯

ď umax, f or k “ 0, 1, ¨ ¨ ¨ (B6)

Note that both the diagonal elements of F pXq and of the covariance matrix of the unimodular
vector ŝ are 1. Therefore, Equation (29) in Lemma 2 implies that F p1q “ 1, i.e.,

π

4
`

π

2

8
ÿ

k“1

pp2kq!q2

24k`1 pk!q4 pk` 1q
“ 1

Hence, it holds that

tr pΩ2F pZqq

“ π
4 tr pΩ2Zq ` π

2

8
ř

k“1

pp2kq!q2

24k`1pk!q4pk`1q
tr
´

Ω2

´

|Z|p2k`1q
˝Z

¯¯

ď

ˆ

π
4 `

π
2

8
ř

k“1

pp2kq!q2

24k`1pk!q4pk`1q

˙

umax “ umax

(B7)

Therefore,
tr pΩ2F pZqq ď

umax

u1
tr pΩ2Zq (B8)

Combining Equations (B5) and (B8) yields

tr pΩ1F pZqq
tr pΩ2F pZqq

ě
πu1

4umax
¨

tr pΩ1Zq
tr pΩ2Zq

(B9)

Using Equation (B2), one can easily get

u pepq “ E

˜

tr
`

ŝHΩ1ŝ
˘

tr
`

ŝHΩ2ŝ
˘

¸

“
tr
`

Ω1E
`

ŝŝH˘˘

tr
`

Ω2E
`

ŝŝH
˘˘ “

tr pΩ1F pZqq
tr pΩ2F pZqq

(B10)

The maximum value of the random variable
trpŝHΩ1ŝq
trpŝHΩ2ŝq

, u prdq, must be larger than its expected

value, u pepq, when K is large enough, i.e.,

u prdq ě u pepq (B11)

Simultaneous consideration of Equations (28) and (B9)–(B11) produces Equation (31). This then
concludes the proof.
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