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Abstract: Parkinson’s disease (PD), which is a slowly progressing neurodegenerative disorder,
negatively affects people’s daily lives. Early diagnosis is of great importance to minimize the effects
of PD. One of the most important symptoms in the early diagnosis of PD disease is the monotony and
distortion of speech. Artificial intelligence-based approaches can help specialists and physicians to
automatically detect these disorders. In this study, a new and powerful approach based on multi-level
feature selection was proposed to detect PD from features containing voice recordings of already-
diagnosed cases. At the first level, feature selection was performed with the Chi-square and L1-Norm
SVM algorithms (CLS). Then, the features that were extracted from these algorithms were combined
to increase the representation power of the samples. At the last level, those samples that were highly
distinctive from the combined feature set were selected with feature importance weights using the
ReliefF algorithm. In the classification stage, popular classifiers such as KNN, SVM, and DT were
used for machine learning, and the best performance was achieved with the KNN classifier. Moreover,
the hyperparameters of the KNN classifier were selected with the Bayesian optimization algorithm,
and the performance of the proposed approach was further improved. The proposed approach was
evaluated using a 10-fold cross-validation technique on a dataset containing PD and normal classes,
and a classification accuracy of 95.4% was achieved.

Keywords: Parkinson’s disease; multi-level feature selection; optimized KNN

1. Introduction

Parkinson’s disease (PD) is defined as a kind of progressive and neurological disorder
that causes permanent cessation of brain cells and that is generally diagnosed at ages of
above 60 years [1]. If PD is diagnosed at an early stage, the progress of the disease is signifi-
cantly slowed down with appropriate treatment methods. PD has motor and non-motor
symptoms, such as vocal disorders, tremors, slowness, visceral/musculoskeletal pain, stiff-
ness, sadness, increased anxiety, pessimism, and loss of pleasure at early stages [2]. Since
the vocal disorders in PD are the most significant symptom for early diagnosis, specialists
have focused on abnormalities in voice characteristics, such as loss of freshness, color, and
strength of volume [3,4]. The diagnosis of PD generally includes experiments, invasive
methods, and empirical tests that have reliability problems. Moreover, these methods are
neither cost-effective nor practical due to the use of mixed equipment structures. Addi-
tionally, specialists may make a wrong decision due to absent-mindedness or workload
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as a result of so many transactions [5]. For these reasons, the detection of early stage PD
using machine learning methods from voice signals is a turning point to prevent redun-
dant visitations to clinics, decrease the caseload of doctors, and increase the possibility of
controlling the illness to achieve recovery and treatment. Moreover, these approaches are
cost-effective, simple, and more accurate [6].

The use of machine learning techniques for the automated detection of PD consists
of certain general stages. First, to obtain clinically helpful data, different pre-processing
algorithms are applied to speech signals. Second, the features are extracted and conveyed
to different classification algorithms. Therefore, the selection of classification algorithms
and feature extraction processes substantially affects the certainty and dependableness of
the proposed system [7].

In this study, a new and effective approach based on multi-level feature selection called
CLS was proposed to automatically detect PD using voice-based features that had been
extracted from voice records of PD cases. CLS feature selection increased the performance
of the proposed method. The optimized KNN was used in the classification process. The
contribution of the proposed method can be expressed as follows:

− Compared to popular deep learning models, the computational cost of the proposed
approach is very low. Therefore, the proposed approach can be applied in clinical
practice with low-capacity hardware.

− By using CLS feature selection, higher performance was achieved with fewer features.
− Due to the small number of iterations, the hyperparameters that achieved the best

performance in the KNN classifier were found with the Bayesian algorithm.

2. Literature Work

When the related literature was investigated, it was seen that the research could be
divided into two parts, namely feature-based PD detection methods and classifier-based
PD detection methods.

For instance, Sakar et al. [8] used the machine learning-based classification approach
for samples of voices containing words, sustained vowels, and sentences obtained from
speaking samples of PD cases. They concluded that sustained vowels gave more discrimina-
tive and effective results in comparison to short sentences and words. The s-LOO validation
methods and Leave-One-Subject-Out (LOSO) were used to evaluate the achievement of
the KNN and Lib-SVM classifiers. Vásquez-Correa et al. [9] studied voice recordings
of three languages, Spanish, German, and Czech. To distinguish voiced segments from
unvoiced ones, speech signals were classified using articulation. Then, speech signals
with time-frequency components in transition were analyzed and reached an accuracy
rate up to 89% in the patient and healthy case classification problem that was presented
in the study. Goberman [10] investigated the relationship between different movement
and speech features to determine cases of PD by examining the motor performance with
the Unified Parkinson’s Disease Rating Scale and speech through the acoustic analysis of
prosody, articulation, and phonation. It was concluded that movement features (posture,
facial expression, gait, postural stability, rest tremor, and postural tremor) were significantly
related to 7 acoustic measures of 16 speech features. Little et al. [11] proposed two different
tools, fractal and recurrence scaling, for speech analysis. These scaling types, which pro-
vided a diagram of dysphonia by considering two symptoms of disease, eliminated the
range constraints of other tools. Thus, these two characteristics were used to differentiate
healthy subjects from others. The classification performance achieved score of 95.4% with
a 2.0% error margin and 91.5% with a 2.3% error margin, respectively (%95 confidence).
Rusz et al. [12] evaluated the detection of speech disorders at early stages through vocal
deformations for the classification of PD patients and healthy people. They proposed that
distinctions occurring in the fundamental frequency were the main reasons that 78% of
the PD cases at early phases had vocal deformations. Tsanas et al. [13] utilized an updated
dataset comprising 43 subjects 263 speech samples. While 23.3% of the dataset comprised
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samples from healthy subjects, the rest comprised samples from PD patients. The study
achieved approximately 99% classification accuracy by utilizing 10 hoarseness attributes.

Gök [14] conducted an ensemble of k-nearest neighbor (k-NN) algorithms to improve
classification performance. The model of a chosen feature subset was conducted to differ-
ent classifiers to detect illness, and a 98.46% accuracy rate was obtained. Bayestehtashk
et al. [15] studied speech signals in order to grade and detect PD severity through the use
of sustained phonations, a system with regression analysis, to estimate PD severity. Taha
et al. [16] investigated how to categorize speech signals using the SVM classifier and the
10-fold cross-validation method. The 20 healthy and 60 patient subjects were examined,
their 240 recorded running voice samples were used to create a dataset. The unified Parkin-
son’s score scale motor exam of speech (UPDRS-S) was used to clinically rate these speech
samples. Wen et al. [17] studied an effective classification and feature selection approach
based on RBF-SVM and a Haar-like feature selection method. Cantürk and Karabibe [18]
extracted features by using the MRMR, RELİEF, LLBS, and LASSO algorithms from speech
signals. SVM, Naïve Bayes (NB), Multilayer Perceptron (MLP), k-NN, and Ada boost
classifiers were utilized to separate PD patients from healthy people. Cai et al. [19] utilized
an algorithm containing relief feature selection and SVM classifiers for detecting PD. They
utilized BFO, bacterial foraging optimization, to improve classification performance. S.
Ashour et al. [20] presented a method based on two-level feature selection for PD detection.
At the first level, two feature sets were constituted with the eigenvector centrality feature
selection (ECFS) and the principal component analysis (PCA) algorithms. At the second
level, weighted feature selection was used because the ECFS method provided better per-
formance than PCA. In the classification stage, the SVM classifier reached a classification
accuracy of 94%. Haq et al. [21] used L1-Norm SVM feature selection to obtain distinctive
features from voice signals from PD voice samples. The selected features were classified
with the SVM algorithm. The 10-fold cross-validation technique was utilized to evaluate
the proposed system.

3. Dataset

Audio signals obtained from 252 cases (188 PD and 64 healthy) in a group of vol-
unteers were used to create the dataset [22]. Audio signals were collected three times
from all cases, and the dataset was increased to 756 samples containing 564 PD classes
and 192 Healthy classes. The vocal features of softening, monotonous, brittle, and rapid
expression were constituted with these samples. To determine a speech disorder in the PD
cases, the voice-based features were extracted from each of the samples in the dataset. A
total of 21 features were extracted from baseline methods and contained harmonicity and
fundamental frequency parameters. Wavelet transform (WT), time-frequency (TF), tunable
Q-factor wavelet transform (TQWT), Mel frequency Cepstral coefficients (MFCCs), and
vocal fold (VF) algorithms were used to extract the other 732 features.

4. Methodology and Machine Learning Techniques
4.1. Methodology

The illustration of the proposed approach based on multi-level feature selection, called
CLS, is given in Figure 1. The dataset that was used was composed of the voice-based
features that had been extracted from sounds taken from the PD cases. The proposed
method was composed of a 3-level feature selection process for improving the classification
performance. At the first level, two feature sets were constituted with the Chi-square
algorithm and the L1-Norm SVM. In the Chi-square algorithm, the number of features to
be selected was adaptively determined according to the classification error. In the L1-Norm
SVM algorithm, the number of features to be selected was determined based on punishment
parameter C. Two feature sets were concatenated at the second level. At the third level,
the distinctive features were selected using a feature importance weights-based approach
using the ReliefF algorithm from the concatenated feature set. The steps of the CLS feature
selection approach are as follows.
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Figure 1. The illustration of the proposed approach.

Step 1: Load features.
Step 2: Adaptively create the first feature set according to classification error with the
Chi-square algorithm.
Step 3: Constitute the second feature set according to the punishment parameter (C) with
the L1-Norm SVM algorithm.
Step 4: Concatenate each two feature sets.
Step 5: Compute the feature importance weights using the ReliefF algorithm.
Step 6: Remove negative weights in the calculated weights from the concatenated feature set.

The KNN classifier was used in the classification stage since it provided higher classifi-
cation performance compared to other popular classifiers such as SVM, Decision Tree (DT),
and Naïve Bayes (NB). Moreover, the hyperparameters of the KNN were optimized with
the Bayesian algorithm for increasing the success rate of the proposed approach. Accuracy,
which was the main criterion, sensitivity, specificity, precision, and F-score metrics were
used to evaluate the performance of the proposed approach.

4.2. Multi-Level Feature Selection

The reason for using a multi-level feature selection approach is that no single algorithm
can achieve the best performance in feature selection. For example, when there is an outlier
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in the attribute data, thresholding-based feature selection algorithms remove features that
are important for classification. Correlation-based feature selection algorithms are good
at finding outliers, but features with the same local characteristics can be removed [23,24].
Therefore, using both types of feature algorithms can improve classification performance.
In this study, the L1-norm SVM algorithm was used for the statistical and threshold-based
feature selection algorithm since it provided high classification performance in many exist-
ing methods [25–27]. The Chi-square is the most used correlation-based feature selection
algorithm [28–33]. The features that were obtained from both algorithms were stacked in a
vector. To further reduce the computational cost without sacrificing performance, the fea-
tures in this vector were selected by the ReliefF algorithm according to their weight values.

4.3. L1-Norm SVM Algorithm

The number of features was determined according to the cost parameter for the
feature selection-based L1-Norm SVM [21]. The dataset with n samples is expressed in the
equation below:

S = {(xi, yi)|xi ∈ Rn, yi ∈ {−1, 1}}k
i=1 (1)

where xi is the ith sample which has n features and a class label (yi).
The SVM in the classification problem with two classes (Equation (3)) learns the

separating hyper-plane that makes margin size maximum.

yi(wxi − b) ≥ 1, i = 1, . . . , k (2)

where the bias term and weight vector are w and b, respectively. The optimization prob-
lem that was determined in Equation (4) based on the problem in Equation (3) needs to
be solved.

min
1
2
‖w‖2 (3)

The formulation determined in Equation (3) can be re-arranged as Equation (4) to
correct classification errors resulting from the distance from the margin.

yi(wxi − b) ≥ 1− δ, δi ≥ 0, i = 1, . . . , k (4)

Bradley and Mangasarian [34] used Equation (3) by accepting Equation (5) as a con-
straint for the feature selection-based L1-Norm SVM as a result of sparse solutions.

min‖w‖1 + C
k

∑
i=1

max
(

0.1− yi

(
αTxi + b

))2
(5)

where α, the Lagrange [35] is the weight vector obtained from the optimization multiplier.
Moreover, the value of the C parameter used in Equation (5) determines the size of the
feature set.

4.4. Chi-Square Algorithm

In the chi-square algorithm, a feature set ti is chosen according to its correlation with a
Cj class, and the discriminating ability of feature ti following Cj class is calculated as below:

x2(ti, Cj
)
=

N×
(
aijdij − bijcij

)2(
aij + bij

)
×
(
aij + cij

)
×
(
bij + cij

)
×
(
cij + dij

) (6)

where N is the number of total samples. aij is the number of samples containing feature ti in
the Cj class, and bij is the number of samples not containing feature ti in the Cj class [36]. cij
is the number of samples with feature ti that is not in the Cj class. Lastly, dij is the number
of samples with neither feature ti nor the Cj class.
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4.5. ReliefF Algorithm

The ReliefF algorithm computes the predictor weights if the target classes are multi-
class categorical values. The predictors giving different scores to neighbors in the same
class are penalized, while the predictors giving the same scores to neighbors in the same
class are rewarded [37]. In the ReliefF algorithm, all predictor weights (Wj) are first set to 0.
Then, the ReliefF algorithm recurrently chooses a random prediction (xs), calculates the
k-nearest predictions to xs in each class, and updates according to each nearest neighbor
(xt) [38,39]. If the classes of xs and xt are the same, then all of the weights for the predictors
(Pi) are as follows:

W j
i = W j−1

i − ∆i(xs, xt)

n
dst (7)

If the classes of xs and xt are different, then all the weights for the predictors (Pi) are
as follows:

W j
i = W j−1

i −
pys

1− pyt

·∆i(xs, xt)

n
dst (8)

where W j
i denotes the weight of the Pi for the jth iteration, pys represents the previous

possibility of the class to which xs belongs, pyt represents the previous possibility of the
class to which xq belongs, n is the number of iterations tuned by updates, and ∆i(xs, xt) is the
difference in the score of the predictor Pj between observations xs and xt. For discreteness,
the Pi, ∆i(xs, xt) can be expressed as follows:

∆i(xs, xt) =

{
0, xs(i) = xq(i)

1 xs(i) 6= xq(i)
(9)

the distance function (dst) and the distance function (d∼st ) are stated as follows:

dst =
d∼st

∑L
l=1 d∼sl

(10)

d∼st = e−(rank(s,t)/sigma)2
(11)

where rank(s,t) is the location of the tth observation between the nearest neighbors of the
sth observation, which is ranked by distance. L is the number of nearest neighbors, which
is represented by L.

4.6. KNN Classifier

In addition to the use of the k-Nearest Neighbors (KNN) algorithm for both classifier
and regression problems in the supervised learning category, it is also preferred to solve
classifying problems for application-based practice [40]. Cover and Hart [41] proposed a
dataset comprising predetermined labels in the KNN algorithm. According to the nearest
neighbors, the new data to be classified in the KNN algorithm are categorized from a
labeled dataset. The distance and data in the labeled dataset are used to determine the
class of new data [42]. These distances are computed with a distance metric such as the
Euclidian, Minkowski, Chebychev, and Manhattan metrics.

4.7. Bayesian Optimization

The achievement of methods is substantially related to the hyperparameters that are
chosen automatically or manually in machine learning algorithms. Manual selections
of the hyperparameters need experts and also have the possibility of failing to obtain
optimal conclusions on the first try. Moreover, running the algorithms several times may
be required for the fine adjustment of the hyperparameters [43]. Although the grid search
and random search-based optimization algorithms are usually applied to obtain optimum
hyperparameters, the solution of the optimization problem using these algorithms needs a
timewasting operation in deep learning models with big data. The Bayesian optimization
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algorithm is an effective method that can be used to figure out functions with better
computational costs [44]. The optimization target to reach the global maximum value in a
black-box function is calculated in Equation (12):

x− = argmaxx∈S f (x) (12)

where S is the searching in x. For evidence data D in the Bayesian theorem, the posterior
probability P(E|D) of pattern E is computed in Equation (13):

P(E|D ) = P(D|E)P(E) (13)

where P(E) is the former probability, and P(D|E) is the possibility of the learning data
D. The Bayesian optimization algorithm provides the combination of the foregoing distri-
bution of the function f (x) with the instances of the previous information to obtain the
posteriors. The maximization value of the f (x) is described by the posteriors computing the
validation, and the utility function (p) is the maximization term. The phases of the Bayesian
optimization algorithm, including the training data (T) and the observation numbers (n),
are stated below:

− Find xn by optimizing the utility function p with a specific iteration→
xn = argmax p(x|T1:n−1)

x
− Examine the objective function→ yn = f (xn)
− Put new values and update the data→ T1:n = {T1:n−1, (yn, xn)}

5. Experimental Studies

In this study, the coding processes were performed with MATLAB 2019a and Python
3.6 programs installed on hardware that had an Intel® Core™ i7-5500U CPU with a 2.4 GHz
graphics card with 2GB random access memory with 8GB DDR3, and a Windows 10
operating system. In the Chi-square algorithm, the number of features, which was set to 300,
was adaptively selected with regard to the minimum classification error. In the L1-Norm
SVM algorithm, the punishment parameter C was set to 0.01, and 41 distinctive features
were selected by this parameter. A total of 341 features was achieved by concatenating two
feature sets. Using the ReliefF algorithm, 341 features were reduced to 220 features, and
features with positive importance weights were calculated as the predictors. In Figure 2,
positive and negative feature importance weights are given according to the feature rank.
As seen in Figure 2, after 220 features, the feature importance weights became negative.
Therefore, the features containing negative importance weights were removed from the
concatenated features set.
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In Figure 3, the 3D representation of 756 features without feature selection operation
and on 220 features with the CLS feature selection are shown for the PD class and the
normal class. As seen in Figure 3, the distinction between the two classes was clear by the
CLS feature selection algorithm, and the computational cost was reduced.
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The DT, Linear Discriminant (LD), NB, SVM, and KNN algorithms were utilized in
the classification stage. For the DT classifier, the best performance was achieved with the
medium DT, where the maximum number of splits and split criterion parameters were
chosen as 20, and the “Gini diversity index”. For the LD classifier, the best performance
was obtained by denoting the covariance structure parameter as being full. The Gaussian
kernel was used for the NB classifier. The linear, polynomial, radial basis function (RBF),
and Gaussian kernels were utilized in the SVM classifier. The best accuracy was achieved
with the SVM with the polynomial kernel. In the KNN classifier, the highest accuracy
was achieved with the Fine KNN classifier, wherein the number of nearest neighbors, the
distance metric, and the distance weight were “1”, “Euclidian”, and “Equal”, respectively.

In Table 1, the classification scores of DT, LD, NB, SVM, and KNN are given for each
of the Chi-square, the L1-Norm SVM, and the ReliefF algorithms. To objectively compare
the results in Table 2, 220 features were selected using each feature selection algorithm. As
seen in Table 1, when each feature selection algorithm was used alone, the classification
performance was improved for almost all classifiers. As seen in Table 1, the best and
worst performances for all of the classifiers were obtained with the ReliefF and Chi-square
algorithms, respectively.
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Table 1. Accuracy performances for the Chi-square, the L1-Norm SVM, and the ReliefF algorithms.

Classifier
Accuracy (%)

Raw Features L1-Norm SVM Chi-Square ReliefF

DT 81.1 82.3 81.2 82.5
LD 72.2 72.7 75.0 74.8
NB 74.6 75.3 74.9 75.6

SVM 85.6 85.8 85.6 86.7
KNN 86.9 87.8 87.7 88.6

Table 2. Accuracy performances for three different situations.

Classifier
Accuracy (%)

752 Features 341 Features 220 Features (Multi-Level)

DT 81.1 81.5 83.7
LD 72.2 81.0 82.0
NB 74.6 77.4 79.6

SVM 85.6 87.5 89.5
KNN 86.9 88.9 91.5

In Table 2, the accuracy performances of DT, LD, NB, SVM, and KNN are given for
three different situations, which included 752 features (no feature selection), 341 features
(the concatenated features with the Chi-square and the L1-Norm SVM algorithms), and
220 features (the CLS feature selection). The evaluation was performed with the 10-fold
cross-validation. For all classifiers, the best accuracies were reached with the CLS feature
selection algorithm, and the worst accuracies were achieved without feature selection
operation. As seen in Table 2, the best accuracy was obtained with the KNN (fine) classifier
for all situations. In the KNN classifier, the accuracy performance was improved by 2%
with the concatenated features and by 4.6% with CLS feature selection. Among all of the
classifiers, the performance of the LD classifier was shown to be the most improved CLS
feature selection was used.

To improve the classification performance of the KNN, the hyperparameters containing
the distance metric, the number of neighbors, and the distance weight were optimized with
the Bayesian algorithm. The distance metric, the number of neighbors, and the distance
weight were searched between the options and values given in Table 3.

Table 3. Hyperparameter searching range.

Hyperparameters

Distance Metric Number of Neighbors Distance Weight

Cityblock

1–378
equal

inverse
squared inverse

Chebyshev
Correlation

Cosine
Euclidean
Hamming

Jaccard
Mahalanobis
Minkowski
Spearman

In Figure 4, the minimum classification error values of the KNN are given during
a Bayesian optimization process with 30 iterations. At the end of 30 iterations, the best
minimum classification error was obtained when the Spearman coefficient for the distance
metric was determined to be “1” for the number of neighbors when the inverse coefficient
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for the distance weight and was 0.046. The hyperparameters providing the minimum
classification error value were achieved between the 10th and 15th iterations.
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Figure 4. Change of minimum classification error in the KNN during Bayesian hyperparameter
optimization.

For 3 different cases of the Fine KNN without feature selection, the Fine KNN with
CLS feature selection, and the optimized KNN with CLS feature selection, the confusion
matrices, the other performance metric results, and the ROC curves and AUC values are
given in Figure 5, Table 4, and Figure 6, respectively.
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Figure 5. Confusion matrices for three different cases: (a) The Fine KNN without feature selection;
(b) The Fine KNN with the CLS feature selection; (c) The optimized KNN with the CLS
feature selection.

Table 4. Other performance metric scores.

Classifier Class Sensitivity Specificity Precision F-Score

Fine KNN
Normal 0.64 0.95 0.80 0.71

PD 0.95 0.64 0.89 0.92
Fine KNN and

CLS Feature Selection
Normal 0.82 0.95 0.84 0.83

PD 0.95 0.82 0.94 0.94
Optimized KNN

and CLS Feature Selection
Normal 0.92 0.96 0.90 0.91

PD 0.96 0.92 0.97 0.97
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As seen in Figure 5, the best true positive (TP) and true negative values were achieved
with the optimized KNN using CLS feature selection (Figure 5c). Compared to the Fine
KNN without feature selection, the accuracy score was improved by 4.6% CLS feature
selection was used and by 8.5% with CLS feature selection and the Bayesian hyperparameter
optimization were used.

As seen in Table 4, with the optimized KNN and the CLS feature selection, the best
sensitivity was 0.96 for the PD class, the best specificity was o 0.96 for the normal class, the
best precision was 0.97 for the PD class, and the best F-score was 0.96 for the PD class.

As seen in Figure 6, the AUC value was 0.79 for the Fine KNN without feature selection,
0.88 for the Fine KNN with CLS feature selection, and 0.94 for the optimized KNN with
CLS feature selection. Compared to the Fine KNN without feature selection, the AUC value
was improved by 0.09 with Fine KNN plus CLS feature selection, and a rate of 0.15 was
obtained with the optimized KNN plus CLS feature selection.

In Table 5, the obtained scores for the proposed approach were compared to the existing
methods using the same dataset. In the baseline method [22], the voice-based features
(752 features) were decreased to 50 features with the minimum redundancy-maximum
relevance (mRMR) feature selection method. The selected features were trained with an
SVM classifier with an RBF kernel. The best accuracy and F-score were 86% and 0.84,
respectively. In [20], the two-level feature selection method was applied to the voice-based
features. In the first level, the distinctive features were selected with the ECFS and PCA
algorithms. In the second level, the selected features were reduced by performing the
second application of the ECFS algorithm. An SVM classifier was used to evaluate the
method. The best accuracy, sensitivity, specificity, precision, and F-score values were
93.80%, 0.84, 0.97, 0.915, and 0.875, respectively. The proposed approach outperformed
these two methods with regard to the used metrics, excluding the specificity. In [45], a
novel feature mapping and convolutional LSTM method was used for PD detection. The
authors obtained an accuracy score of 94.27% in their work.

Table 5. Performance comparison of the proposed method with other methods.

Methods Accuracy (%) Sensitivity Specificity Precision F-Score

Baseline method [22] 86.00 - - - 0.840
Ashour et al. [20] 93.80 0.840 0.970 0.915 0.875
Demir et al. [45] 94.27 0.960 0.960 0.910 0.930

Proposed Approach 95.40 0.949 0.930 0.952 0.955
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6. Discussion

We carried out further experiments where only one sample was used from each subject.
Thus, the total number of samples became 252. The evaluation was also performed with
the 10-fold cross-validation. Table 6 shows the obtained results.

Table 6. Performance of the proposed method with only 252 samples from the dataset.

Methods Accuracy (%) Sensitivity Specificity Precision F-Score

Proposed
Approach 91.67 0.87 0.94 0.913 0.918

As seen in Table 6, the calculated accuracy, sensitivity, specificity, precision, and F-score
values were 0.917, 0.87, 0.94, 0.913, and 0.918, respectively. When comparing the results
from Table 6 to the previous results, it was seen that the decrease in the number of samples
yielded a decrease in the performance.

As the dataset was imbalanced, an oversampling method called SMOTE was used
for the performance evaluation [46]. The details of the SMOTE method can be seen in [46].
The number of healthy samples increased to alleviate the class imbalance problem, and the
obtained results are given Table 7. From Table 7, it was observed that after alleviating the
class imbalance problem, the proposed method produced improved results.

Table 7. Performance of the proposed method with oversampling method.

Methods Accuracy (%) Sensitivity Specificity Precision F-score

Proposed
Approach 94.30 0.96 0.96 0.91 0.93

7. Conclusions

Parkinson’s patients suffer from a variety of symptoms in various parts of the body,
including in their speech, which leads to a loss of voice. Many studies based on machine
learning approaches have been conducted to find the relationship between speech disorders
and PD to further improve the detection and classification of PD cases. In this study, a novel
approach based on a multi-level feature selection method called CLS was used to classify
normal and PD cases from voice-based features. The classification performances of all of
the classifiers used were improved with CLS feature selection. The KNN classifier with an
accuracy of 91.5% provided the best classifier performance. Moreover, the hyperparameters
of the KNN were optimized with the Bayesian algorithm. The best accuracy, sensitivity,
specificity, precision, and F-score were 95.4, 0.949, 0.930, 0.952, and 0.955%, respectively.
Compared to the best existing method when using the same dataset, the accuracy, sensitivity,
precision, and F-score metrics were improved by 1.6, 0.109, 0.037, and 0.080%, respectively.
However, the specificity score was worse by approximately 0.04%.

With this approach, a useful and highly accurate machine learning model has been
created for the early diagnosis of PD. Additionally, the proposed approach does not contain
a large number of learnable parameters that are commonly found in deep learning models.
Therefore, the proposed approach can be used in clinical practice with a less powerful
hardware requirements.
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