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Abstract

Background: Observational studies have identified various associations between neuroimaging alterations and
neuropsychiatric disorders. However, whether such associations could truly reflect causal relations remains still
unknown.

Results: Here, we leveraged genome-wide association studies (GWAS) summary statistics for (1) 11 psychiatric
disorders (sample sizes varied from n = 9,725 to 1,331,010); (2) 110 diffusion tensor imaging (DTI) measurement
(sample size n = 17,706); (3) 101 region-of-interest (ROI) volumes, and investigate the causal relationship between
brain structures and neuropsychiatric disorders by two-sample Mendelian randomization. Among all DTI-Disorder
combinations, we observed a significant causal association between the superior longitudinal fasciculus (SLF) and
the risk of Anorexia nervosa (AN) (Odds Ratio [OR] = 0.62, 95 % confidence interval: 0.50 ~ 0.76, P = 6.4 × 10− 6).
Similar significant associations were also observed between the body of the corpus callosum (fractional anisotropy)
and Alzheimer’s disease (OR = 1.07, 95 % CI: 1.03 ~ 1.11, P = 4.1 × 10− 5). By combining all observations, we found
that the overall p-value for DTI − Disorder associations was significantly elevated compared to the null distribution
(Kolmogorov-Smirnov P = 0.009, inflation factor λ = 1.37), especially for DTI − Bipolar disorder (BP) (λ = 2.64) and DTI
− AN (λ = 1.82). In contrast, for ROI-Disorder combinations, we only found a significant association between the
brain region of pars triangularis and Schizophrenia (OR = 0.48, 95 % CI: 0.34 ~ 0.69, P = 5.9 × 10− 5) and no overall p-
value elevation for ROI-Disorder analysis compared to the null expectation.

Conclusions: As a whole, we show that SLF degeneration may be a risk factor for AN, while DTI variations could be
causally related to some neuropsychiatric disorders, such as BP and AN. Also, the white matter structure might have
a larger impact on neuropsychiatric disorders than subregion volumes.
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Background
Neuroimaging study is the most widely used procedure
for studying brain disorders [1]. Many neuroimaging
studies in the past quarter-century have revealed brain
abnormalities in neuropsychiatric disorders [1, 2], which
have served as the basis for biomarker discovery, clinical
guidance, and investigations into the mechanisms of
neuropsychiatric disorders [2, 3]. However, it is unclear
whether such associations reflect disease causality [4].
One concern is that the spurious correlations [5] could
emerge from indirect correlations with confounders such
as medication, circadian and dietary changes, or false-
positive events. Another issue is the direction of causal-
ity: the neurotoxicity hypothesis [6] suggests that psychi-
atric illnesses have toxic effects on the central nervous
system, which leads to structural alterations following
disease onset [7]. This theory gained support from sev-
eral observations in which neuroimaging abnormalities
exhibited dynamic progression during the neuropsychi-
atric disorder course [6, 7]. Under such theories, these
associations should be utilized as clinical biomarkers ra-
ther than mechanism identifiers.
Several case-control studies with large sample sizes

[8, 9] have found a significant correlation between
neuroimaging alteration and neuropsychiatric disorder,
yet still unable to distinguish the causality from the
correlation. Longitudinal analyses have partially over-
come the limitations of cross-sectional observational
studies [10] for investigating the disease causality,
such as detecting neuroimaging alterations in partici-
pants with the so-called high-risk status along with
their progression [11, 12]. However, these studies are
still limited by our current definition of high-risk co-
horts. For example, the onset of neuropsychiatric dis-
orders may be far earlier than a clinically
recognizable high-risk status, such that the associated
abnormalities may include changes that occurred after
the primary pathology.
Despite the longitudinal analysis focusing on the high-

risk status, an alternative method for addressing the
challenge of causality is Mendelian Randomization (MR)
[13]. MR has been used to derive the relationships be-
tween peripheral inflammatory markers and schizophre-
nia [14] and between physical activity and depression
[15] with great successes. By selecting genetic locus that
is strongly associated with exposure, so-called instru-
ments, MR separates subjects into high and low lifetime
exposure groups according to their genotypes on the in-
struments [16], then compares the prevalence of out-
comes between the high and low exposure groups. Such
grouping is considered unbiased as genotypes are ran-
domly determined during meiosis. Furthermore, a two-
sample Mendelian Randomization (MR) estimates
instrument-exposure and instrument–outcome

relationships in different cohorts to infer the exposure-
outcome relationship, without the need for information
on individuals [16]. The explosive growth of genome-
wide association studies (GWAS) offers opportunities
for applying MR to solve the debate of causality in dif-
ferent clinical medicine fields. Recently, two GWAS
from UK-Biobank (UKBB) [17, 18] revealed the genetic
basis of brain structural measurements, providing an op-
portunity to address clinical neuroimaging studies’ caus-
ality. In the present study, with the summary-statistics
GWAS data of Magnetic resonance imaging (MRI) (N =
17,706 and 19,629) and twelve neuropsychiatric disor-
ders (N = 9,725 to 1,331,010), we implemented a two-
sample MR approach to detect the causal relationship
between white matter (WM) structures (diffusion tensor
imaging [DTI]), brain subregion volumes (region of
interest [ROI]), and neuropsychiatric disorders. An over-
view of the study design is illustrated in Fig. 1.

Results
Causal associations between DTI and neuropsychiatric
Disorder
After data harmonization, 1253/1320 (110*12) DTI-
Disorder pairs and 973/1212 (101*12) ROI-Disorder
pairs had at least one strong instrument (SNP with P <
5 × 10− 8 in DTI GWAS [17], Additional file 1) and were
analyzed by MR (Additional file 2 and 3). We started by
evaluating the DTI-Disorder association. In the inverse
variance–weighted (IVW) analysis (outer layer of Fig. 2a),
which required at least two instruments, one DTI-
Disorder pair achieved study-wide significance (SW, P <
0.05/1320): superior longitudinal fasciculus Axial Diffu-
sivity (SLF.AxD) – the risk of Anorexia nervosa (AN)
(Fig. 2b; Table 1, odds ratio [OR] = 0.62, 95 % confidence
interval [CI], 0.50 to 0.76, P = 6.4 × 10− 6). Another DTI-
Disorder pair, body of corpus callosum Fractional An-
isotropy (BCC.FA) −Alzheimer disease (AD), was close
to reaching SW significance (Fig. 1c and Table 1, OR =
1.07, 95 % CI, 1.03 to 1.11, P = 4.1 × 10− 5). Both associa-
tions had relatively consistent results across instruments
(Fig. 2b, c), in accordance with the fact that no outlier
was detected (Additional file 2). Five other DTI-Disorder
pairs also reached single-disease significance (P < 0.05/
110) (Table 1). No significant result was found for the
Wald ratio (second layer of Fig. 1a) applied to DTI-
Disorder pairs with only one instrument.
A basic assumption of MR is that MR genetic instru-

ments should only impact the outcome via the exposure
and not any other pathway (horizontal pleiotropy) [16].
The existence of heterogeneity, which is introduced by
outlier instruments, can also bias the MR estimation
[19]. By applying various sensitivity tests, we confirmed
that our results were not impacted by horizontal
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pleiotropy (Egger intercept P > 0.05; the third layer of
Fig. 1a and Additional file 2) or heterogeneity (modified
Cochran’s Q test P > 0.05; Table 1), or bidirectional ef-
fects (reverse MR P > 0.05; Additional file 2). They also
showed consistent trends across different MR methods,
which are robust against pleiotropy and measurement
error (see Method for detail) (except for Fornix.FA − bi-
polar disorder [BP]; Table 1). They also showed little
directional pleiotropy, as indicated by funnel plots (Add-
itional file 4). Neither MR-PRESSO nor leave-one-out
tests found the impact of outliers on these DTI-Disorder
pairs (Additional files 2 and 4). Taken together, these re-
sults confirmed the casual relation between SLF.AxD-
AN, and suggested potential relations of other five DTI-
Disorder pairs.

Overall contribution of DTI on neuropsychiatric disorders
Despite separate DTI-Disorder pairs that reached the
significance threshold, we were also interested in

whether DTI as a whole made a causal contribution
to the diseases. To answer this question, we pooled
the IVW P value for all DTI-Disorder pairs and com-
pared them to the null uniform distribution (Fig. 3a
and Additional file 2). The distribution of IVW P was
significantly inflated (KS P = 0.009, λ = 1.37); this re-
sult persisted after removing heterogeneous DTI-
Disorder pairs (those with Cochran’s P < 0.05) (KS
P = 0.002, λ = 1.48) or outlier instruments (SNPs with
MR-PRESSO P < 0.05) (KS P = 8.0 × 10− 5, λ = 1.49).
When we analyzed each disease separately (“Original”
in Fig. 3b), BP (Fig. 3c) and AN showed the most sig-
nificant inflation (Table 2). These results were also
relatively stable against heterogeneity and outlier re-
moval (Fig. 3b and Additional file 4). The permuta-
tion test confirmed that the results for BP
(permutation P value [pp] for KS test: 0.012; pp for λ:
0.002) and AN (pp for λ: 0.012) were not due to the
bias inherent in the data or method. Additionally,

Fig. 1 Flowchart of the study. Integrative analysis: p value distribution of MR result
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heterogeneous DTI-Disorder pairs generally had non-
significant MR results and did not contribute to infla-
tion (Fig. 3d and Additional file 2). Thus, we con-
cluded that DTI polymorphisms made an overall
causal contribution to neuropsychiatric disorders, es-
pecially BP and AN.

Causal associations between brain volume and
neuropsychiatric Disorders
Similar to the DTI-Disorder analysis, we also assessed
the ROI-Disorder association. 973/1212 (101*12) RD
pairs had at least one strong instrument (SNP with P <
5 × 10− 8) and were analyzed by MR. In the IVW analysis,

Fig. 2 MR results for DTI-Disease associations. a: Each radius represents one DTI measures (110 in total: 22 white matter tracts × 5 DTI
parameters). From outer to inner layer: -log10(p) for MR-IVW; -log10(p) for MR-Wald Ratio; -log10(p) for intercepts (int.) of MR-Egger regression;
heritability of each DTI measures. The dotted grey line indicated the nominal p threshold (0.05); solid grey line indicated study-wide significance
p threshold (0.05/1253). CST: Corticospinal tract. b&c: Forest plots showing MR effect of Superior longitudinal fasciculus (axial diusivities) on
Anorexia nervosa (SLF.AxD-AN) and body of corpus callosum (fractional anisotropy) on Alzheimer Disease (BDD.FA-AD). Each line showed the
single SNP MR effects (95 % confidence interval) estimated by Wald Ratio, and the last line showed the meta-analysis results calculated by IVW.
Vertical dashed line indicated the Egger estimation of MR effect
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we found no SW significant results (outer layer of Fig. 3a
and Additional file 3). The Wald ratio revealed a mar-
ginal SW result for pars triangularis (PT)-SCZ (OR =
0.48, P = 5.93 × 10− 5) (second layer of Fig. 4a), which
was driven by a single SNP (rs2279829). The only trait
associated with rs2279829 in PhenoScanner [20] was
daytime dozing or sleeping (P = 2.02 × 10− 6). The SMR-
HEIDI test detected a significant MR effect in the same
direction (OR = 0.48, P = 7.57 × 10− 4) with no evidence
of colocalization pleiotropy (HEIDI P = 0.84). We esti-
mated that per 1-SD increment in normalized PT vol-
ume, the risk of SCZ decreased by 52 % (OR = 0.48). In
conclusion, these results suggested a potential causal re-
lationship between PT and SCZ. However, the validation
of this relationship requires more work on potential
pleiotropy.
The overall distribution of the IVW p-value did not

significantly differ from the null distribution (Fig. 4b),
even after removing heterogeneity (KS P = 0.12) and
outliers (KS P = 0.07). However, IVW p-value for SCZ
showed significant inflation (λ = 1.90, KS P = 0.001),
and the result was significantly impacted by hetero-
geneity (Fig. 4c). Additionally, 10 % (6/58) of the
nominally significant RD pairs showed heterogeneity,
and 3 contained outlier SNPs (Additional files 3 and
4). In conclusion, there was no evidence that ROI
polymorphisms had a universal contribution to neuro-
psychiatric disorders.

Discussion
The issue of causality has long beleaguered clinical neu-
roimaging studies [4]. Confirmation of a causal change
can provide insights into disease mechanisms at the cir-
cuit and region levels and may reveal useful biomarkers
for predicting prognosis. Many current neuroimaging
studies cannot directly draw this conclusion [1, 4], which
partly limits the translation of their findings to clinical
practice. In this study, we conducted hypothesis-free,
data-driven MR analyses to assess the causal relationship
between neuroimaging polymorphisms and neuropsychi-
atric disorders in an unbiased manner.

Our results showed that, in general, WM connectivity
was more closely associated with the risk of neuro-
psychiatric disorders than gray matter volume (GMV)
(Fig. 3a and 4b). Among neuropsychiatric disorders, BP
showed the most significant association with genetically
determined connectivity polymorphisms (Fig. 3b,c).
These results support the dysconnectivity theory [21] of
psychiatry, positing that major psychiatric disorders such
as SCZ and BP have common WM abnormalities in
their pathology [22]. According to this hypothesis, ana-
tomic and neurodevelopmental changes that arise from
neurotoxicity [6] are a consequence rather than a cause
of the illness. Indirect evidence from a functional study
of neuromodulation and myelination [21] and a case-
control study of the high-risk state [12] supports the
dysconnectivity theory. Research interest has now shifted
from the region-of-origin to a connectome’s concept
[22], in which connections between brain regions rather
than the regions themselves cause BP and other mental
illnesses. Our finding that DTI is more closely associated
with the onset of neuropsychiatric disorders than ROI
provides supportive evidence for this paradigm shift.
Our study’s top MR result was a novel risk factor for

AN—namely, decreased SLF.AxD. A few studies have re-
ported a decreased SLF integrity in AN patients [23, 24],
but the results were inconsistent with the marginal effect
size. As neuroimaging findings in AN patients are influ-
enced by dietary and metabolic alterations [25], a causal
change may not be manifested as a visible signal. None-
theless, the SLF may contribute to body image distortion
in the pathology of AN [24], probably through its con-
nection to areas responsible for body image perception
(prefrontal and parietal networks) and self-perception
(inferior parietal lobe) [26]. Although abnormalities in
both GMV [26] and WM connectivity [23, 24] have been
observed, our results suggest that the latter is a primary
cause. In contrast, the former is a consequence of neuro-
modulator mechanisms such as activity-dependent prun-
ing [21].
The roles of BCC in AD and PT in SCZ—2 marginally

significant results from our MR analysis—have received

Table 1 All DTI-Disorder pairs reaching Single Disease significant threshold (p < 0.05 after correction)

disease DTI IVW Egger Wtd.median CochranQ intercept

AN SLF.AxD -0.48(6.4 × 10− 6) -0.02(0.97) -0.41(0.002) 3.22(0.36) -0.04(0.52)

AD BCC.FA 0.07(4.1 × 10− 5) 0.18(0.31) 0.08(3.6 × 10− 4) 2.20(0.70) -0.007(0.50)

BP PTR.FA -0.31(0.0002) -0.22(0.53) -0.27(0.008) 2.70(0.44) -0.010(0.76)

BP FX.FA -0.31(0.0003) 0.60(0.30) -0.27(0.01) 6.60(0.47) -0.06(0.13)

BP CGH.MD 0.31(0.0003) 0.11(0.70) 0.29(0.004) 3.13(0.37) 0.02(0.48)

BP RLIC.RD 0.26(0.0004) 0.11(0.67) 0.22(0.01) 6.92(0.33) 0.01(0.55)

ADHD ALIC.FA -0.44(0.0004) -1.33(0.41) -0.48(0.001) 2.62(0.27) 0.08(0.53)

Results were shown as estimate (P value). IVW Inverse Variance Weighted sum of Wald Ratio, Wtd.median MR effects estimated by weighted median,
Intercept intercept of egger regression, intercept Egger intercept. The definition of DTI acronym are provided in the Method section
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Fig. 3 General contribution of DTI polymorphism to neuropsychiatric disorders. a: Quantile-Quantile (QQ) plot showing the distribution of all MR
p values for the DTI-Disease (DD) association. b: Disease-specific inflation factor (λ). Solid points showed λ with no adjustment and were
corresponded to λ in Table 2. Triangular points showed λ after removal of all DTI-Disorder pairs with significant heterogeneity. Cross points
showed λ of p values which were calculated after removing all outlier SNPs (detected by MR-PRESSO) for each DTI-Disorder pair. Vertical error
bars indicated a 95 % confidence interval. c: QQ plot for DTI-BP associations. d: Rank-Rank overlaps between MR effect and heterogeneity. The
color of each grid corresponded to the proportion of each MR effect rank (each row summed up to 1). The number in each grid showed the
exact number of DTI-Disorder pairs. NS: non-significant. Nominal: p < 0.05. SD: Single Disease level significance, p < 0.05/110. SW: Study-Wide
significance, p < 0.05/1253
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more attention in the literature than SLF in AN. How-
ever, both MR results should be interpreted with cau-
tion. BCC atrophy is widely observed in AD patients
even at an early stage and reflects Wallerian degener-
ation and myelin breakdown [27]. However, our MR
analysis revealed a reverse association: the FA of BCC
was positively associated with AD risk (β = 0.07). One
possible explanation for this discrepancy is that an en-
larged BCC in early life is a risk factor for AD develop-
ment at an older age, causing BCC atrophy after disease
onset. Confirmation of such a complex theory requires
more robust evidence from large-scale longitudinal stud-
ies. As for the PT-SCZ association, although it was vali-
dated by several additional analyses such as SMR-HEIDI
and reverse MR, a single SNP-driven MR result is by na-
ture suspect due to the unexplored pleiotropy [16, 28].
Because the volume reduction of PT has been demon-
strated in high-risk psychosis and first-episode SCZ pa-
tients [29], we suggest that the inferred causality
between PT and SCZ is plausible.
There were some limitations to this study. Firstly, clas-

sic MR methods largely depend on high heritability and
strong exposure instruments [16, 28]. However, both
heritability and number of instruments [17, 18] vary
across the tested neuroimaging parameters, such that
the power of MR is inconsistent across all DTI-Disorder
and RD pairs. In fact, 67 DTI-Disorder and 239 RD pairs
were discarded at the beginning of our analysis due to
the absence of instruments. Even if there were causal
links among them, they would not have been detected in
our study. Thus, negative results for DD/RD pairs with
limited instruments are not as convincing as positive re-
sults for those with adequate instruments. For the posi-
tive results, it should also be noticed that only the

genetically regulated proportion of polymorphisms are
associated with the disorders. Secondly, the original
GWAS sample sizes may have impacted the MR results
since estimation accuracy (i.e., standard error for effect
size) for the instrument–outcome relationship is directly
linked to the confidence interval of the MR effect esti-
mate [16, 28]. Since GWAS OCD and TS recruited
fewer than 10,000 cases, their MR results were under-
powered. In fact, several DD/RD pairs for OCD and TS
had a large MR effect, but their wide CI range resulted
in non-significant P values. Future GWAS with a larger
sample size, both for neuroimaging polymorphism and
neuropsychiatric disorders, will provide a better chance
to improve our understanding in this field.

Conclusions
In conclusion, our analysis results demonstrate that, in
general, WM structures make a more significant contri-
bution to the etiology of neuropsychiatric disorders—es-
pecially BP and AN—than brain subregion volumes.
SLF.AxD was causally related to AN; marginally signifi-
cant relationships were also found between BCC.FA and
AD and between PT and SCZ.

Methods
We obtained publicly available GWAS summary statis-
tics for DTI, ROI, and neuropsychiatric without collect-
ing any individual information. Ethics approval was
obtained in each of the original studies; therefore, no
further ethics approval was needed for the current study.

Data collection and preprocessing
The genetic instruments for DTI measurements have
been previously described [17]. Briefly, the ENIGMA-
DTI pipeline [30] was used to analyze UKBB diffusion
MRI data for 17,706 European participants and generate
110 DTI parameters—namely, fractional anisotropy
(FA), axial diffusivity (AxD), mean diffusivity, mode of
anisotropy, and radial diffusivity, of 21 WM tracts as
well as their mean values. The genetic instrument for
ROI volumes was also obtained from UKBB GWAS [18],
which included 19,629 European participants and used
the standard OASIS-30 Atropos template for registration
and Mindboggle-101 atlas for labeling [31].
We collected GWAS summary statistics from the fol-

lowing neuropsychiatric studies on European cohorts:
(1) Alzheimer disease (AD) [32]; (2) Attention-deficit/
hyperactivity disorder (ADHD) [33]; (3) Anorexia Ner-
vosa (AN) [34]; (4) anxiety disorders (Categorical pheno-
type) [35]; (5) autism spectrum disorder (ASD) [36];
6)bipolar disorder (BP) [37]; 7) insomnia [38] 8) major
depression disorders (MD) [39]; 9) obsessive-compulsory
disorder (OCD) [40]; 10) posttraumatic stress disorder
(PTSD) [41]; 11) schizophrenia (SCZ) [42]; 12) Tourette

Table 2 Disease-specific p value distribution

disease Subregion volume (ROI) White matter structure (DTI)

lambda p_ks lambda p_ks

AD 1.15(1.07~1.23) 0.92 1.50(1.42~1.58) 0.57

ADHD 1.79(1.74~1.86) 0.21 1.38(1.35~1.41) 0.13

AN 1.20(1.12~1.30) 0.72 1.82(1.73~1.90) 0.14

anxiety 1.04(1.01~1.09) 0.35 0.41(0.40~0.43) 0.0090

ASD 1.08(1.05~1.11) 0.36 1.27(1.23~1.32) 0.021

BP 1.10(1.07~1.15) 0.49 2.64(2.52~2.75) 3.1×10-5

Insomnia 1.42(1.38~1.47) 0.29 0.61(0.59~0.63) 0.061

MD 1.10(1.05~1.16) 0.49 0.60(0.58~0.62) 6.6×10-4

OCD 0.95(0.91~0.99) 0.09 0.68(0.67~0.70) 0.15

PTSD 0.81(0.75~0.89) 0.49 1.51(1.38~1.63) 7.8×10-8

SCZ 1.94(1.90~2) 0.0011 1.21(1.16~1.27) 0.0075

TS 1.02(1.00~1.05) 0.78 1.12(1.08~1.17) 9.3×10-4

Inflation factor (lambda) shown as estimate (95 % confidence interval). p_ks: p
value for Komogorov-Smirov test for uniform distribution
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disorder (TD) [43] (Fig. 1). For GWAS from Psychiatric
Genetic Consortium (PGC), there were few samples
from UKB. For AD GWAS, the UKBB participants were
not included in the case-control analysis. For other
GWAS, we could not quantify the extent of sample over-
lap due to the lack of individual information. Since all
GWAS used in the current study were conducted in
European ancestry, we did not further adjust for the im-
pact of population stratification.

For each DTI and ROI measurement, we retained sin-
gle nucleotide polymorphisms (SNPs) with P < 5 × 10− 8

as strong instruments for MR; measurements without a
strong instrument were discarded. We removed SNPs
with linkage disequilibrium (LD) r2 ≥ 0.001 for each
measurement using reference LD data from the 1000
Genomes Project [44]. Data harmonization was applied
independently for each DTI-disease (DD) and ROI-
disease (RD) pair with the TwoSampleMR R package

Fig. 4 MR results for ROI-Disease associations. a: Circos plot for ROI-Disease (RD) relations, similar to Fig. 1a. Arrow indicated result for pars
triangularis-schizophrenia association, which was described in detail in the main text. b: QQ plot for all IVW p values of RD pairs, similar to Fig. 2a.
c: Disease-specific inflation factor (λ), similar to Fig. 2b
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[45]. Since many of the GWAS summary statistics ana-
lyzed in this study did not provide allele frequency infor-
mation, we did not exclude SNPs based on ambiguous
strand error. For all binary phenotypes, we log-
transformed the odds ratio to generate the β value.

Power calculation
We calculated the variance in phenotype explained by
each instrument by

R2 ¼ 2 � EAF � 1� EAFð Þ � β2
2 � EAF � 1� EAFð Þ � β2 þ 2 � EAF � 1� EAFð Þ � N � seðβÞ2

Where EAF was the effect allele frequency, β was the
effect size, N was the sample size, and se(β) was the
standard error of effect size. The F statistic was then de-
noted as

F ¼ R2 � ðN � 2Þ
1� R2

R2 and F were used to evaluate power for each instru-
ment. For each RD and DTI-Disorder pair, we calculated
the overall MR power using mRnd tool [46], assuming
OR = 1.3 and type I error = 0.05. The assumption of OR
was based on the actual MR effects passing the signifi-
cance threshold. We took this assumption because there
is limited observational estimation of OR that is cur-
rently available. MR power and the number of valid in-
struments for each pair are recorded in Additional
files 2 and 3. Details for all instruments are shown in
Additional file 1.

Calculation of MR effects
For DD/RD pairs with at least two instruments, we per-
formed a meta-analysis of each instrument’s MR effect
using the inverse variance–weighted (IVW) method. The
results were considered preliminary results and were
used for downstream analyses. For the top IVW findings,
we additionally applied weighted mode [47], weighted
median [13], and MR-Egger regression [48] ap-
proaches—which are relatively robust against horizontal
pleiotropy [15]—to further confirm the validity of the
MR effect. For DD/RD pairs with only one instrument,
estimates based on the Wald ratio were considered pre-
liminary results. For the top Wald ratio finding, we used
summary data-based MR (SMR) [49] to confirm the ex-
istence of the MR effect and heterogeneity in dependent
instruments (HEIDI) [49] to rule out the probability that
the MR effect was driven by colocalization of the instru-
ment with the effective locus.
Since both IVW and Wald ratio results were taken

into account, the p-value was adjusted by the Bonferroni
method by numbers of all DTI-Disorder pairs (1320) or
ROI-Disorder pairs (1212).

Sensitivity analysis
The intercept of the Egger regression was used as an in-
dicator of potential horizontal pleiotropy, while modified
Cochran’s Q for IVW and Rucker’s Q for Egger regres-
sion [50] were used as an indicator of heterogeneity. We
used MR pleiotropy residual sum and outlier (MR-PRES
SO) [19] with the number of permutations = 2500 to de-
tect potential outlier SNPs for each DD/RD pair and
generate an overall p-value for heterogeneity; those with
outlier(s) were reanalyzed by IVW after removing the
outlier(s). We also applied leave-one-out tests for all top
findings to further evaluate the effects of unknown
outliers.
For all MR results, we tested the reverse MR effect

(i.e., neuropsychiatric disorders as exposure and DTI/
ROI as outcome) by selecting SNPs with P < 5 × 10− 8 for
each neuropsychiatric disorder as instruments. The ab-
sence of a reverse MR effect (IVW P > 0.05) was consid-
ered as evidence for the validity of directionality.

Analysis of the general causal contribution
To assess the general contribution of DTI (ROI) poly-
morphisms to neuropsychiatric disorder, we pooled the
IVW P values for all DTI-Disorder (RD) pairs and com-
pared them to the null uniform distribution using
quantile-quantile plots. A positive bias (inflation) from
uniform distribution was considered as evidence for a
general contribution. The significance of inflation was
evaluated with the Kolmogorov–Smirnov (KS) test, while
the extent of inflation was assessed with the inflation
factor λ, which was calculated by chi-square regression
using the GenABEL R package [51]. Since the inflation
factor might be overestimated due to the small number
of P values, we shuffled SNP labels for BP and AN 1,000
times to carry out a permutation test. Permutation P <
0.05 was considered evidence for significant inflation.
These tests were also separately applied to each disease
and repeated after removing heterogeneous results
(those with Cochran’s P < 0.05) or outlier SNPs (those
with MR-PRESSO P < 0.05).
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