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Stem rust resistance in wheat is suppressed
by a subunit of the mediator complex
Colin W. Hiebert1,11✉, Matthew J. Moscou 2,11✉, Tim Hewitt3,4, Burkhard Steuernagel5,

Inma Hernández-Pinzón2, Phon Green2, Vincent Pujol6, Peng Zhang 3, Matthew N. Rouse7, Yue Jin 7,

Robert A. McIntosh3, Narayana Upadhyaya 4, Jianping Zhang 4, Sridhar Bhavani8, Jan Vrána9,

Miroslava Karafiátová 9, Li Huang10, Tom Fetch1, Jaroslav Doležel 9, Brande B.H. Wulff 5,

Evans Lagudah 4✉ & Wolfgang Spielmeyer4✉

Stem rust is an important disease of wheat that can be controlled using resistance genes. The

gene SuSr-D1 identified in cultivar ‘Canthatch’ suppresses stem rust resistance. SuSr-D1

mutants are resistant to several races of stem rust that are virulent on wild-type plants. Here

we identify SuSr-D1 by sequencing flow-sorted chromosomes, mutagenesis, and map-based

cloning. The gene encodes Med15, a subunit of the Mediator Complex, a conserved protein

complex in eukaryotes that regulates expression of protein-coding genes. Nonsense muta-

tions in Med15b.D result in expression of stem rust resistance. Time-course RNAseq analysis

show a significant reduction or complete loss of differential gene expression at 24 h post

inoculation in med15b.D mutants, suggesting that transcriptional reprogramming at this time

point is not required for immunity to stem rust. Suppression is a common phenomenon and

this study provides novel insight into suppression of rust resistance in wheat.
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Wheat (Triticum aestivum) is one of three major cereal
crops that supply the majority of calories worldwide,
with over 600 million tonnes harvested annually1.

Wheat is an allopolyploid that includes genomes from three
different grass species. A series of sequential hybridization events
occurred, with the first at ~0.8 Mya between diploid T. urartu (A
genome) and an unknown diploid species related to Aegilops
speltoides (B genome) to form the progenitor of wild allote-
traploid emmer wheat (T. turgidum subsp. dicoccoides; A and B
genomes), and the second between emmer wheat and diploid
goatgrass (Ae. tauschii; D genome) approximately 8000 ya to
generate the allohexaploid progenitor of modern common wheat
(T. aestivum; A, B, and D genomes)2–4. Importantly, the three
genomes of common wheat (A, B, and D) originate from species
that evolved independently from one another for 2–3 million
years5.

Crop diseases are a major limitation to food production.
Developing cultivars carrying effective disease resistance genes is
a sustainable and environmentally responsible approach to dis-
ease management. However, pathogens can evolve virulence to
resistance genes emphasizing the need to identify and utilize new
resistance genes that are found within a crop and related species.
Wheat stem rust (caused by Puccinia graminis Pers. f. sp. tritici
Eriksson & Henning; Pgt) is a devastating fungal disease of
wheat6 that has re-emerged as a worldwide threat to wheat pro-
duction with the evolution of highly virulent races of Pgt in
Africa, including the Ug99 race group7–9. Races of Pgt are defined
by the combination of host resistance genes for which a given Pgt
isolate displays either virulence or avirulence10.

Interaction between the genomes in allopolyploid wheat is
associated with the reduction or loss (suppression) of resistance to
fungal plant pathogens causing stem rust11–13, leaf rust11,14,15,
stripe rust16, and powdery mildew17,18. One constraint in wheat
breeding is the suppression of stem rust resistance (Sr) genes when
transferred from diploid and tetraploid ancestors to hexaploid
wheat11–15,19–22. Suppression of stem rust resistance was first
reported in 1980 when it was discovered that the loss of the D
genome chromosomes activated resistance to several Pgt races
that were virulent to the hexaploid wheat cultivar “Canthatch”
(CTH)23. Initially the D-genome chromosomes were removed
from CTH leaving behind the tetraploid (A and B genomes)
component, called Tetra CTH24. This tetraploid was resistant
to several races of Pgt that were virulent to hexaploid CTH.
Reintroduction of the D-genome by crossing Tetra CTH with
Ae. tauschii to create a synthetic hexaploid (A, B, and D genomes)
resulted in a loss of resistance that was the same as CTH23. This
example is analogous to instances of Sr genes from tetraploid
wheat being suppressed when transferred to hexaploid wheat11–13.
Further analysis of CTH nullisomic and ditelosomic stocks and
EMS-derived mutants showed that the suppression of stem rust
resistance was conditioned by SuSr-D1 (Suppressor of Stem rust
resistance1, D-genome), a single dominant gene on wheat chro-
mosome arm 7DL23,25,26.

We have a limited understanding of the genes underlying
suppression or the resistance genes that are being suppressed.
Here, we establish, through genetic mapping, sequenced flow-
sorted chromosomes, and mutational analysis that SuSr-D1
encodes Med15b.D, a subunit of the conserved Mediator com-
plex that regulates transcription of protein-coding genes in
eukaryotic organisms. Our findings reinforce the complexity of
wheat, in particular, the interaction of the sub-genomes and its
contribution to unique regulatory processes that impact tran-
scription. As suppression of disease resistance is frequent, the
isolation of SuSr-D1 and understanding its mechanistic role will
contribute to developing approaches to understand how the sub-
genomes of wheat interact, and how this contributes to

suppressing immunity. Based on this knowledge, future efforts
may unlock additional reservoirs of resistance genes for the
promotion of sustainable agriculture and food security.

Results
Phenotypes of wild-type and mutant stocks. The key genetic
stocks used in these experiments included Canthatch (CTH),
Thatcher (TC), CTH mutant lines NS1 and NS225, and CTH
mutant lines W01, W02, W03, W06, W07, W10, W11, and W1226,
where all ten mutant lines lost SuSr-D1 activity through EMS
mutagenesis. Seedlings of TC, CTH, and NS1 and NS2 showed
clear phenotypic differences when inoculated with Pgt race QTHJC
(C25), with the resistant response of the mutant lines showing no
sporulation whereas the wildtype CTH showed a susceptible
response with large sporulating pustules at the seedling stage
(Fig. 1a). Inoculation of an extended panel of mutants (CTH-W
series) with race QTHJC also displayed strong levels of resistance
(Supplementary Fig. 1). Inoculating with Pgt races from the Ug99
group allowed some rust pustules to develop on mutants, whereas
Pgt race TRTTF-elicited a susceptible response on CTH, NS1, and
NS2 indicating that the resistance expressed in SuSr-D1 mutant
lines was race-specific (Fig. 1b; Supplementary Table 1). Field tests
in Kenya on adult plants confirmed seedling test results by showing
increased resistance against Pgt race TTKSK (Ug99) in all CTH
mutants when compared with wild type CTH (Supplementary
Table 2).

Mapping and isolating SuSr-D1 using enriched DNA sequen-
cing. Two parallel approaches were used to isolate SuSr-D1. In
the first approach, chromosome 7D was isolated using flow
cytometric sorting from CTH and mutants NS1 and NS2 and
sequenced to identify EMS-induced single nucleotide variations
(SNVs) (Supplementary Figs. 2–4; Supplementary Table 3)27,28.
Several SNVs were converted into DNA markers and genetically
mapped to identify a minimum physical interval of 1079 kb on
chromosome 7D in the Chinese Spring wheat reference sequence
that corresponded to the region encompassing SuSr-D1 (Fig. 2a–c

NS1 NS2CTHTCLC NS1 NS2CTH

a b

Fig. 1 Mutation in SuSr-D1 activates wheat stem rust resistance. a Pgt
race QTHJC (C25) showed a qualitative differential response on susr-d1-
NS1 and susr-d1-NS2 compared to wild-type (Canthatch; CTH) and
Thatcher (TC) which showed susceptible responses characterized by large
uredinia. Little Club (LC) is the susceptible control. b Pgt race TTKSK
(Ug99) shows differential infection responses with large uredinia on CTH
and low to intermediate infection types on susr-d1-NS1 and susr-d1-NS2. All
images were taken 14 days post inoculation.
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and Supplementary Figs. 5, 6; Supplementary Tables 4–7)29,30.
Only one gene within the interval carried point mutations in both
NS1 and NS2, generating nonsense mutations in Med15b.D, a
gene encoding Mediator15, a subunit of the Mediator complex
(Supplementary Fig. 7). In the second approach, de novo
assembly of flow-sorted chromosomes from eight mutants iden-
tified two mutants with large chromosome deletions and six
mutants with nonsense mutations in Med15b.D (Fig. 2d, Sup-
plementary Figs. 7, 8). The nonsense mutations in the predicted
protein were at several positions from amino acid 33 (W06) to
820 (W10 and W11) (Supplementary Figs. 7, 9). A common
mutation in W10 and W11 suggests that the two mutants are sib
lines as both possess common SNVs across many contigs26. The
gene structure of Med15b.D spans 10.6 kb with 10 exons that
encode a protein of 1301 amino acid residues (Fig. 2d, e). Taken
together, independent mutations confirm that inactivation of
Med15b.D was responsible for the activation of suppressed stem
rust resistance.

Med15 duplication and expression in wheat. A duplication of
Med15 present on the short (Med15a) and long (Med15b) arms of
group 7 chromosomes in wheat and chromosome 7H in barley
(Hordeum vulgare) occurred after its divergence from the
ancestor of rice (Oryza sativa) and Brachypodium distachyon
(Fig. 3a and Supplementary Fig. 10; Supplementary Table 8).
While B. distachyon has a single copy of Med15, rice has two
copies31. We identified six Med15 wheat homologs encompassing
two families, Med15a and Med15b, with three homeologs each30.

Homeolog-specific RNAseq analysis showed that all six wheat
Med15 homologs are expressed in the first leaf (Fig. 3b and
Supplementary Fig. 11); therefore, all six Med15 proteins could
participate in forming the multi-protein Mediator complex. This
recent duplication may form the basis of neo-functionalization of
Med15 in Triticeae species. We performed branch-specific tests
for variable levels of selective pressure for the Med15, Med15a,
and Med15b clades (Supplementary Fig. 12). Purifying selection
for non-Triticeae species was strongest (ω0= 0.24), whereas both
Med15a and Med15b experienced relaxed purifying selection
(ωa= 0.38, ωb= 0.37; Supplementary Table 9). Although both ωa

and ωb were below 1.0, indicating a lack of recurrent positive
selection, the relaxation in purifying selection may impact a
subset of Med15 codons.

Differential gene expression in wild-type and mutant lines. The
role of Med15 in transcriptional regulation suggests that steady-
state or pathogen responsive transcription might contribute to
suppression of stem rust resistance. To identify putative steady-
state transcriptional targets of Med15b.D, we performed RNAseq
profiling on uninoculated leaves of CTH, NS1, and NS2. A total
of 229 differentially expressed genes were identified using a false
discovery rate of 5% (Fig. 4a and Supplementary Table 10). The
physical distribution of differentially expressed genes was overlaid
on the wheat genome, uncovering two regions located on chro-
mosomes 1A and 1D that were associated with 31 downregulated
genes and 169 upregulated genes, respectively (Fig. 4b). These
regions are homeologous and share approximately half of the
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gene content (242 genes) between these regions in the individual
sub-genomes. Characterization of the physical intervals found
that almost all genes within the region were segmentally cor-
egulated, with the chromosome 1A and 1D regions experiencing
suppression and induction, respectively, whereas the home-
ologous region on chromosome 1B was not modified (Fig. 4c, d
and Supplementary Table 11).

To understand the impact on the transcriptional response in
Med15b.D mutants relative to wild-type in the presence of Pgt, we
performed RNAseq experiments on Pgt-inoculated and mock-
inoculated seedlings of CTH, NS1, and NS2 with samples
collected at 0 and 24 h post-inoculation (hpi). One hundred
and thirty-nine, 19, and 56 genes were differentially expressed
between Pgt and mock inoculated at 0 h post inoculation in
seedlings of CTH, NS1, and NS2, respectively (Fig. 5a). After 24 h
post inoculation, 8389 genes were differentially expressed in
CTH, whereas NS2 had 2199 differentially expressed genes and
NS1 had 55 using a false discovery rate of 5% (Fig. 5a,
Supplementary Table 12). There was considerable overlap in
differentially expressed genes in CTH versus NS2 (1435 genes)
and NS1 (16 genes) (Fig. 5b). This suggests that differential gene
expression at 24 hpi was not required for immunity to Pgt and
that loss of function in Med15b.D severely impacted the
transcriptional response of CTH to Pgt.

Many of the genes within the regions experiencing segmental
co-regulation on chromosomes 1A and 1D in non-inoculated
plants were also identified in both mock and Pgt-inoculated
experiments. In the mock-inoculated experiment, comparison of
CTH and NS1 found 188 of 284 (66%) and CTH and NS2 with
179 of 227 (79%) differentially expressed genes overlapping with
non-inoculated differentially expressed genes on chromosomes
1A and 1D. At 24 hpi, CTH and NS1 had 10,035 differentially
expressed genes after Pgt-inoculation, whereas CTH and NS2
had 668 differentially expressed genes. The high number of
differentially expressed genes between CTH and NS1, and low
number in CTH and NS2 reflected a lack of transcriptional
response in NS1 after Pgt-inoculation. A total of 317 genes were

shared between these two comparisons, with 113 genes (36%) in
the chromosome 1A and 1D regions.

The minor impact on steady-state gene expression levels in
nonsense med15 mutants in wheat parallels the lack of
morphological differences across four of five growth parameters
between the wild-type and mutants (Supplementary Fig. 13). In
contrast, a null allele of atmed15 (nrb4-4) in Arabidopsis thaliana
exhibited pleiotropic morphological defects including chlorosis,
delayed growth, and sterility32. Therefore, Med15b.D exhibits a
homeolog-dominant suppression of immunity that is generally
compensated by homeologs in its role as a co-activator of
transcription. Given the apparent degree of homeologous
compensation in bread wheat, Med15 is a candidate target for
gene editing as means to improve disease resistance with little
morphological consequence.

Discussion
Disease resistance is a major goal of wheat breeding programs
around the world. Keeping pace with pathogen evolution repre-
sents a significant challenge. Close relatives of wheat are reser-
voirs of genes that can be used for wheat improvement including
disease resistance22. However, attempts to transfer disease resis-
tance genes to hexaploid wheat are often unsuccessful because the
resistance genes are suppressed11–19. Despite the many reports of
suppressed resistance genes, there have been only a few reports
describing the genetic basis of suppression. A molecular
mechanism for suppression of disease resistance was previously
described in wheat involving the suppression of powdery mildew
resistance by direct interaction of NLR plant immune receptors
encoded by alleles of Pm3 or Pm8 (a homeolog of Pm3)33.
Interaction of homeologous genes was also implicated in the
suppression of Lr2315.

Suppression of stem rust resistance by SuSr-D1 follows a dif-
ferent mechanism rather than that observed in the Pm3/Pm8
interactions. Med15b.D, encodes a subunit of the Mediator com-
plex, which is a coactivator of transcription through its interaction
with RNA polymerase II and general and specific transcription

b Med15a.A Med15a.B Med15a.D Med15b.A Med15b.B Med15b.D

CTH NS1 NS2 CTH NS1 NS2 CTH NS1 NS2 CTH NS1 NS2 CTH NS1 NS2 CTH NS1 NS2
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Fig. 3 Expansion of the Med15 gene family in the Triticeae. a Rice and Brachypodium distachyon have a single copy of Med15, whereas barley and wheat
have two and six copies of Med15, respectively. Rice contains an additional Med15 gene (Med15c; LOC_Os04g03860) that is highly divergent in protein
identity and not present in B. distachyon, barley, or wheat31. Homeologous Med15a and Med15b gene families exhibit 98 and 97% protein identity, whereas
there was 90% protein identity between the families. b All six copies of Med15 in wheat were expressed in leaf tissue. RNAseq profiling was performed in
triplicate, with individual data points representing a single experiment.
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factors to coordinate transcription in eukaryotes34,35. The complex
in Arabidopsis contains 33 subunits, and mutations within the
gene affect a wide range of developmental processes as well as
biotic stress responses36,37. However, there is no report of acti-
vated expression of race-specific disease resistance caused by
mutations in Mediator subunits. In wheat, we identified sixMed15

homologs encompassing two families, Med15a and Med15b, with
three homeologs each. All copies ofMed15 were expressed in CTH
but only Med15b.D suppressed stem rust resistance providing an
example of homeolog-specific function in wheat.

At the interface of RNA polymerase II, general transcription
factors, and specific transcription factors, the Mediator complex
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plays a central role in coordinating transcriptional regulator
proteins and core promoters38–40. Most of our understanding of
the Mediator complex in plant immunity has come from
Arabidopsis36,37, with subunits AtMED8, AtMED14, AtMED15-1,
AtMED16, AtMED21, and AtMED25 having regulatory roles in
plant immunity41. In addition, AtMED19a interacts with the
nuclear-localized effector HaRxL44 from Hyaloperonospora ara-
bidopsidis (an oomycete pathogen of A. thaliana), leading to
degradation of MED19a in a proteasome-dependent manner42.
High-throughput transcriptome experiments have been per-
formed with several Mediator subunit mutants. Microarray-
based transcriptome analysis on wild-type AtMEDIATOR15-1
(AT1G15780; NON-RECOGNITION-OF-BTH 4; NRB4) and
mutants nrb4-2 (non-synonymous mutant) and nrb4-4 (gene
disruption by T-DNA) found substantial differential gene
expression in nrb4-4 (4416 genes), whereas nrb4-2 had no dif-
ferentially expressed genes relative to wild-type32. The nrb4-4
mutation is a T-DNA insert in an intron immediately after the
start codon, likely causing a significant impact on gene expres-
sion32. nrb4-4 exhibits pleiotropic morphological defects including
chlorosis, delayed growth, and sterility, and impaired salicylic acid
and immune signaling32. Using time course microarray-based
transcriptome analysis on wild-type and atmed14-1 inoculated
with an avirulent isolate of the bacterial pathogen Pseudomonas
syringae pv tomato DC3000/avrRpt2, Zhang and colleagues found
that atmed14-1 responded more slowly at the transcriptional level
to the presence of P. syringae pv tomato DC3000/avrRpt243. The
total number of differentially expressed genes was several thou-
sand over the 0–12 hpi time-course43, unlike the substantially
perturbed/abolished expression observed in med15b.D mutants.
The impact of gene knockouts in Mediator complex subunits on
global transcriptional reprogramming remains unclear for other
subunits, as several studies have only assessed reporter genes, such
as PATHOGENESIS-RELATED GENE1 (PR1)44–46. Similar to
atmed14, atmed15, and atmed16, nonsense mutations in med15b.
D led to reduced (NS2) or lost (NS1) transcriptional response to
Pgt. Unlike atmed14, atmed15, and atmed16, the impaired/abol-
ished transcriptional response at 24 hpi in med15b.D mutants was
associated with immunity. While it remains unclear whether the
transcriptional response is simply delayed or completely abolished

relative to wild-type at other time points, the lack of expression
in med15b.D-NS1 indicates that the transcriptional response at
24 hpi is not required for resistance to Pgt. All med15b.D mutants
carried nonsense mutations in Med15b indicating that resistance
(or suppression of transcriptome reprogramming) requires loss or
truncation of the protein subunit.

The majority of differentially expressed genes in steady-state
expression levels between wild-type and med15b.D mutant plants
were associated with 25.7 Mb and 28.9 Mb intervals on chro-
mosomes 1A and 1D, respectively. While genes in the chromo-
some 1A interval underwent a 50% reduction in expression, genes
in the chromosome 1D interval showed substantial induction in
expression ranging from 2 to >200 fold-change. Five NLR-
encoding genes (the most prevalent cytoplasmic/nuclear immune
receptors in plants) were located within the upregulated interval
on chromosome 1D, and were potential candidate genes con-
tributing to immunity to Pgt. This hypothesis will require addi-
tional genetic mapping to demonstrate that immunity to Pgt
maps to the chromosome 1D interval.

The Mediator complex has a known role in fine-tuning gene-
specific and pathway-specific transcriptional reprogramming47.
In this study, we established a potential novel role in segmental
coregulation, for which there is no known mechanism in eukar-
yotes that regulates genes over a >25Mb interval. In mammals,
spatial partitioning of the genome into topologically associating
domains coordinates gene expression, but these regions range
from 40 kb to 3Mb48. The regulatory processes that contribute to
this coregulation could involve modification of chromatin
architecture such as the formation of chromatin loops or con-
densation of heterochromatin49. While well characterized in yeast
and mammals, little is known about the role of the Mediator
complex in controlling chromatin loops and heterochromatin in
plants. Interestingly, the homeologous chromosome 1B interval
(51 Mb) did not show any modification in gene expression,
suggesting genomic features such as sequence or size could dif-
ferentiate this region from the chromosome 1A and 1D intervals.
Collectively, the identification of a suppressor of immunity in
wheat demonstrates the complexity of interactions between its
sub-genomes, and identifies a novel approach at improving
agriculture through the removal of suppressors that negatively
interact in wheat.

Methods
Plant materials. The wheat accession Canthatch-K (CTH-K) is a selection of
Canthatch (CTH) made by E. R. Kerber (Agriculture and Agri-Food Canada,
retired). CTH-K was previously used in mutagenesis experiments to generate
independent mutant lines, RL5863 (NS1) and RL5864 (NS2), that carry null
mutations for SuSr-D1 on chromosome arm 7DL25. Additional mutants from CTH
designated W01, W02, W03, W06, W07, W10, W11, and W12 were also included
in the study26. Crosses were made between Thatcher and NS1, and between
Thatcher and NS2. Thatcher is the recurrent parent of CTH. The F1 plants from
each cross were used to make doubled haploid (DH) populations referred to as the
NS1 DH and the NS2 DH populations, respectively, for the purpose of mapping
SuSr-D1. DH populations were generated using a maize pollination method50.
Little Club wheat was used as susceptible check for stem rust tests. Lines CTH-K,
Thatcher, NS1, NS2, CTH ditelosomic 7DL (CTH-7DL), and Williams et al.26.
CTH and mutants W01, W02, W06, W07, W10, and W11 were used for chro-
mosome isolation and sequencing experiments (Supplementary Table 3). The
cytogenetic stock, CTH ditelosomic 7DS (CTH-7DS), was used in seedling stem
rust tests.

Assessment of plant development. Assessment of plant developmental para-
meters of CTH-K, NS1, and NS2 was performed through the growth of six to seven
independent plants in three different greenhouses (S52, S55, S59) in Norwich, UK
from 16 April 2018 to 1 August 2018. All plants were sown on the same date and
randomly assigned positions within the greenhouse. Assayed growth parameters
included complete emergence of the flag leaf (Zadoks scale 47), first emergence of
awns (Zadok scale 49), one-quarter spike emergence (Zadoks scale 53), total
number of seeds harvested, and 1000 grain weight (Fig. 5). For 1000 grain weight,
the weight was based on three randomly sampled technical measurements using
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Fig. 5 Mutation in SuSr-D1 severely impacts the transcriptional response
of CTH to Pgt. a Number of differentially expressed genes (DE genes)
between Pgt-inoculated and mock-inoculated wild-type SuSr-D1 (CTH) and
SuSr-D1 mutants (NS1 and NS2) based on FDR of 5%. b, c Venn diagrams
showing overlap of DE genes between wild-type and SuSr-D1 mutants NS1
and NS2, respectively.
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100 seeds. ANOVA was performed in R (3.5.1) aov using the factors genotype,
location, and their interaction. Tests of homogeneity of variance (Levene test) and
normality (Shapiro-Wilk test) were performed on individual traits. Pairwise dif-
ferences were assessed using adjusted p values using Tukey Honest Significant
Differences. All traits passed these tests, except for 1000 grain weight. For 1000
grain weight, the non-parametric Kruskal-Wallis test was used, with pairwise dif-
ferences determined using the Wilcoxon rank sum test, adjusting p values using the
Benjamini-Hochberg approach51.

Seedling and field tests for stem rust resistance. NS1, NS2, CTH-K, Thatcher,
NS1 DH population, and NS2 DH population were tested for stem rust reaction at
the seedling stage. Seedlings where inoculated after the first leaf was fully emerged
using Pgt race QTH (C25) (AAFC-Morden isolate 1347). Classification of Pgt races
is based on a previously described nomenclature system52,53. Urediniospores were
suspended in light mineral oil (Bayol 55, Imperial Oil Canada, Toronto, Canada)
and sprayed onto seedlings. Inoculated seedlings were incubated for 16 h in dew
chambers at 100% relative humidity and then were dried slowly under light to
promote infection. The seedlings were transferred to a greenhouse and grown at
approximately 20 °C with 16 h of light daily including supplementary fluorescent
lights. Seedlings were rated for infection type (IT) 14 days post-inoculation fol-
lowing the 0–4 scale previously described10. ITs 0–2 were classified as resistant and
ITs 3–4 were classified as susceptible. Seedlings of CTH-K, CTH-7DL, CTH-7DS,
NS1, and NS2 were tested with Pgt races QTHJC (C25; isolate 1541), TPLKC (C33;
isolate 1427), TPMKC (C53; isolate 1373), QCCSC (C56; isolate 901), RTHJF (C57;
isolate 1561), SPMMC (C74; isolate 972), RKQQC (C35; isolate 1312), MCCFC
(C17; isolate 1541), QFCSC (isolate 06ND76C), QTHJC (isolate 75ND717C),
TTKSK (isolate 04KEN156/04), TTKST (isolate 06KEN19v3), TTTSK (isolate
07KEN24-4), TRTTF (isolate 06YEM34-1), TPMKC, 21-2,5 (49) and 34-1,2,3,5,6,7
(313) as described above52,54–56. CTH-K, NS1, and NS2 were tested in field trials in
2009, 2010, 2011, 2012, 2016, and CTH-W, W01 at Njoro, Kenya that were
inoculated with Ug99 races of Pgt following previously described procedures57.
Field plots were rated for stem rust severity and infection response using the
modified Cobb scale58.

Chromosome isolation and DNA amplification. Chromosome 7D from CTH,
Thatcher, NS1, NS2, and five CTH mutants (W01, W02, W06, W07, and W10)26

and chromosome arm 7DL from CTH-ditelosomic 7DL (CTH-DT7DL), were
isolated by flow cytometric sorting (Supplementary Figs. 3, 4; Supplementary
Table 3)27. Suspensions of intact mitotic metaphase chromosomes were prepared
from synchronized root tips of young seedlings according to Vrána et al.59. Prior to
chromosome analysis by flow cytometry, fluorescence in situ hybridization in
suspension (FISHIS) was used to label GAA microsatellites by FITC following the
protocol of Giorgi et al.60, with modifications. Briefly, chromosomal DNA was
denatured by adding 10M NaOH to the solution to reach pH 12.8–13.3. Following
incubation at room temperature for 15 min, pH of the solution was changed to
8.5–9.1 using 1M Tris-HCl (pH 7.5) and the sample was incubated on ice for 1
min. Then, (GAA)7-FITC probe was added to the suspension to final concentration
4.6 ng/μL and the sample was incubated in darkness at room temperature for 1 h.
After FISHIS, chromosomal DNA was stained by fluorochrome DAPI (4′,6-dia-
midino-2-phenylindole) at 2 μg/mL final concentration and the suspension was
analyzed by FACSAria SORP II flow sorter (BD Biosciences, San Jose, USA) at rates
of 1000–2000 particles/s.

A total of 1000 particles from the population putatively representing 7D or 7DL
were sorted onto a microscope slide and chromosome identity was checked under a
fluorescence microscope based on the GAA labeling pattern. Once a target
population was confirmed, three independent samples of 1000 chromosomes were
sorted onto microscope slides to estimate the extent of contamination by other
chromosomes using FISH with probes for Afa-family repeat and (GAA)7
microsatellites (Supplementary Table 3)61. Three batches of 33,000 and 66,000
copies of chromosome 7D and the 7DL telosome, respectively, were then sorted
from each sample into PCR tubes containing 40 µL sterile deionized water. The
number of sorted chromosomes was determined so that an equivalent of
approximately 50 ng DNA was obtained per sample. To produce DNA for
sequencing, chromosomal DNA was purified and amplified by Illustra GenomiPhi
V2 DNA Amplification Kit (GE Healthcare, Piscataway, USA) according to
Šimková et al.62. Each sample of sorted chromosomes was amplified separately and
three amplification products from the same chromosome were pooled to reduce
possible amplification bias. DNA amounts thus obtained are listed in
Supplementary Table 3.

Chromosomal DNA sequencing and assembly. PCR-free libraries for Illumina
sequencing were prepared by Novogene (Hong Kong, China) using the NEBNext
Ultra II DNA Library Prep Kit for Illumina (New England BioLabs, Ipswich, USA)
following the manufacturer’s protocols and index codes were added to attribute
sequences to each sample. Sequencing was performed for chromosome 7D isolated
from CTH-K, NS1, NS2, Williams et al.26 wild-type (CTH-W) and mutants W01,
W02, W06, W07, W10, Thatcher, and isolated chromosome arm 7DL from CTH-
DT7DL. Samples were sequenced on an Illumina HiSeqX (Illumina, San Diego,
USA) to generate 150 bp paired-end reads with two samples per lane except for

CTH-K and CTH-W with 250 bp paired-end reads which were each run singly in a
lane (HiSeq2500). Data quality from paired end reads was assessed with FastQC
and reads were removed using Trimmomatic (v0.36) with parameters set at
ILLUMINACLIP:TruSeq3-PE.fa:2:30:10, LEADING:5, TRAILING:5, SLI-
DINGWINDOW:4:15, and MINLEN:15063. These parameters remove all reads
with the adapter sequence, ambiguous bases, or a substantial reduction in read
quality. The de novo assembly of chromosome 7DL was performed using Edena
(v3.131028) with default parameters, use of paired end relationships, and a mini-
mum overlap of 100 bp64,65.

Identification of genes and SNVs in the SuSr-D1 interval. The assembly of
chromosome arm 7DL from CTH-DT7DL was masked for repetitive sequence
using RepeatMasker (version open-4.0.5; repeat library version 20140131)66. A self-
alignment of reads from wild-type CTH, NS1, and NS2 chromosome 7DL was
performed using bwa aln with default parameters (version 0.7.10-r789). Paired end
reads were merged using bwa sampe. Samtools (version 1.9) was used to select only
paired end reads, the removal of duplicate sequences, and generate pileup files for
SNV identification. The VarScan (version 2.3.8) pileup2snp command was used to
identify polymorphisms relative to the reference sequence. Alignments for mutants
NS1 and NS2 were performed using identical parameters67. Python scripts
mutant_flow_sorting_analysis.py and analyze_HQ_SNPs.py were used to identify
SNVs that differed between wild-type and mutants NS1 and NS2. In wild-type and
mutant, a requirement of at least ten reads was used for genotype calls. CTH
mutants NS1 and NS2 were generated using EMS mutagenesis. EMS induces
alkylation of guanine (G), which results in conversion of G to A (adenine) due to
pairing of O6-ethylguanine with thymine (T). After replication, equal numbers of
mutations should be observed as conversions of cytosine (C) to T. For an initial
screen of SNVs, two parameter sets were selected: the strict set using parameters of
95% mutant and 5% wild-type allele frequency and the relaxed set using 70%
mutant and 20% wild-type allele frequencies (Supplementary Table 5).

Tophat (version 2.0.9) was used to perform spliced alignment of RNAseq reads
derived from CTH, NS1, and NS268. Default parameters were used with the
exception of maximum intron length of 20,000. In total, 27,664,945 reads were
used. Approximately 4.0% of reads aligned to the chromosome 7D assembly.
Aligned reads were used to generate gene models using cufflinks (version 2.1.1)
with default parameters69. Transdecoder.LongOrfs (version 2.0.1) was used to
identify open reading frames (ORFs) in protein encoding genes70. BLASTn
(version 2.2.26) was used to align contigs onto the reference wheat genome
(IWGSC RefSeq v1.0) using default parameters with the exception of no filtering of
the query sequence. The Python script link_position_expression.py was generated
to export all ORFs from gene models, independently integrating SNVs in NS1 and
NS2. ORFs were translated and mutations that generated non-synonymous
changes were identified. All mutations shared between NS1 and NS2 relative to the
reference were removed, under the assumption they were due to contamination or
were shared mutations relative to CTH-K. Selection of SNVs for analysis on NS1
and NS2 DH populations was prioritized based on contigs with SNVs in leaf
expressed genes that led to non-synonymous changes that were evenly spread
across chromosome arm 7DL. The complete analytical pipeline and custom scripts
are available on a GitHub repository (https://github.com/matthewmoscou/
Canthatch).

Genetic mapping of SuSr-D1. The populations segregating for wildtype and
mutant SuSr-D1 were fixed for the suppressed Sr genes. SuSr-D1mutant lines25 NS1
and NS2 were crossed with Thatcher, the recurrent parent of CTH, and the hybrids
were used to generate doubled-haploid (DH) populations. The Thatcher × NS1
(N= 159) and Thatcher × NS2 (N= 129) DH populations segregated for reaction to
stem rust race QTHJC, and both populations fitted 1:1 single gene ratios (p= 0.48
and p= 0.06, respectively). A total of 35 Kompetitive Allele Specific PCR (KASP)
markers (LGC, Teddington, UK) based on EMS-induced SNVs28 were assayed on
the two DH populations to localize SuSr-D1 to a 1.3 cM genetic interval flanked by
markers kwh239 and kwh281 (Fig. 2a, b and Supplementary Tables 5, 6)29. Linkage
maps of chromosome arm 7DL were constructed for both DH populations using
MapDisto71. Genetic distances were calculated using the Kosambi mapping func-
tion72. The physical positions of the SNV markers were determined by locating
flanking sequences on the wheat reference genome assembly (IWGSC RefSeq v1.0)
using BLAST. To compare the map positions of the cross-specific SNV markers and
SuSr-D1 with commonly used markers, markers from the wheat 90k iSelect con-
sensus map73 on chromosome arm 7DL were also located on the IWGSC RefSeq
v1.0. Flanking markers were anchored on the International Wheat Genome
Sequencing Consortium reference sequence of Chinese Spring (IWGSC RefSeq
v.1.0) for chromosome 7D30. A minimum physical interval of 1079 kb in Chinese
Spring wheat corresponded to the region in CTH carrying SuSr-D130 (Fig. 2c,
Supplementary Table 7). De novo assembled contigs from CTH, NS1, and NS2 were
aligned to the SuSr-D1 physical region. Chinese Spring and CTH share an isogenic
haplotype for the interval, facilitating the identification of SNVs based on the
Chinese Spring reference annotation. The region carrying SuSr-D1 contained 17
high confidence and 10 low confidence genes (Fig. 2c and Supplementary Table 4).
Only one gene carried mutations in both NS1 and NS2 generating nonsense
mutations in Med15b.D, a member of the Mediator complex (Fig. 2d)37. SNVs
responsible for nonsense mutations in Med15b.D cosegregated with the phenotype
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in both DH populations (Fig. 2b). De novo assembly of flow-sorted chromosomes
from eight mutants identified two mutants with large chromosome deletions and
six mutants with nonsense mutations in Med15b.D (Fig. 2d and Supplementary
Figs. 7, 8)74. The nonsense mutations in the encoded protein ranged from chan-
ges at amino acid positions 33 (W06) to 820 (W10 and W11) (Supplementary
Figs. 7, 9). A common mutation in W10 and W11 suggested they were sib lines
from the mutagenesis experiment26 as both lines possessed common SNVs across
many contigs. Taken together, independent mutations confirmed that inactivation
or deletion of Med15b.D was responsible for the activation of suppressed stem rust
resistance.

Identification of SNVs in additional CTH mutants. De novo assemblies for each
of the wild-type accessions, CTH-W and CTH-K, were created from their quality-
controlled, paired-end sequencing reads using CLC Genomics Workbench (v9)
with a length fraction of 0.95, a similarity fraction of 0.98 and the remaining
parameters as default. Assembly FASTA files consisted of 767,884 contigs spanning
approximately 841 Mbp and 749,802 contigs spanning approximately 806 Mbp for
CTH-W and CTH-K, respectively. Assemblies were masked for repeat sequences
using RepeatMasker (v4.0.6)66 and the custom Triticeae, non-redundant repeat
library trep-db_nr_Rel-16.fasta (release 16) downloaded from the TRansposable
Elements Platform (TREP) (http://botserv2.uzh.ch/kelldata/trep-db/index.html).
Alignment to wild-type assemblies of quality-controlled reads from wild-types
CTH-K and CTH-W, and mutants W01, W02, W06, W07, W10, was performed
using bwa aln followed by bwa sampe to map paired-end reads using default
parameters (bwa v0.7.15). Samtools (v0.1.19) was used for subsequent processing of
alignments to select only paired-end reads, remove duplicates and generate pileup
files for SNV calling. SNV identification was performed using an in-house pipeline.
The program Noisefinder.pyc was used on alignments for the wild-types (CTH-W,
CTH-K) to detect regions with high density noise possibly due to misalignments
and presence of allelic variants. SNVs were logged in all wild-types and mutants
using the program SNPlogger.pyc, with noisy regions detected by Noisefinder.pyc
being masked. Subsequent discovery of candidate sequences was performed using
SNPtracker.pyc to shortlist sequences containing polymorphisms coinciding across
multiple mutants. A threshold of 80% mutant and 20% wild-type allele frequency
was used and variant positions detected in the wild-types were masked from the
analysis. In both wild-type assemblies, a contig of approximately 16 kb was iden-
tified for which all five mutants presented independent SNVs that were canonical
for EMS mutagenesis (C->T/G->A) (Fig. 2 and Supplementary Fig. 7). Custom
programs used in this analysis are available on GitHub (https://github.com/TC-
Hewitt/MuTrigo).

Protein sequence and domain analyses. Amino acid frequency was assessed
using a sliding window of 50 amino acids to identify regions that were rich for
specific amino acids using QKutilities_protein_analysis.py (https://github.com/
matthewmoscou/QKutilities). Motif and structure-based domain analysis was
performed using InterProScan75,76 and Phyre277. Coiled coils predictions were
made using Coils78, Marcoil79, and Pcoils80.

Phylogenetic and molecular evolution analyses. Multiple data sources were used
to identify homologs ofMed15. Rice (O. sativa) and B. distachyon Med15 homologs
were identified using the Department of Energy-Joint Genome Institute Phytozome
database (https://phytozome.jgi.doe.gov), barley (H. vulgare) homologs from the
2017 genome sequence81, and bread wheat (T. aestivum) from the reference gen-
ome sequence (IWGSC RefSeq v1.0). We accessed publicly available leaf RNAseq
data for eight grass species (Supplementary Table 13)82,83, performed de novo
transcriptome assembly using Trinity84 (version r20140717) using the parameters
“--min_kmer_cov 2 --normalize_max_read_cov 20 –trimmomatic”, and identified
Med15 homologs using BLAST. PRANK (v.140603) and RAxML (v8.2.9) were used
for codon-based alignment and phylogenetic tree construction, respectively85–87.
Default parameters were used for PRANK and RAxML parameters include the
GTRCAT model using rice Med15 as an outgroup. A total of 2000 bootstraps were
performed. In addition, pairwise comparisons were made between DNA and
protein alignments (Supplementary Table 14). Molecular evolutionary analyses
were performed with PAML (v4.8)88. A reduced phylogenetic tree based on a
requirement of 90% coverage was used for estimating ω (dN/dS), as several
sequences lacked sufficient coverage of Med15 due to truncated transcript assem-
blies (Supplementary Fig. 12).

RNAseq. Two RNAseq experiments were performed. The first experiment inclu-
ded non-inoculated seedlings of CTH, NS1, and NS2, and the second experiment
included mock-inoculated and Pgt-inoculated seedlings of CTH, NS1, and NS2. For
the non-inoculated seedlings, first and second leaf tissue was harvested at 10 days
after sowing of CTH, NS1, and NS2 grown in the greenhouse. For the second
experiment, mock (mineral oil application) and Pgt isolate QTH inoculation was
performed after the first leaf was fully elongated. Tissue was collected from CTH,
NS1, and NS2 at 0 hpi and 24 hpi. Both experiments were performed using three
independent biological replicates. Tissue was flash frozen in liquid nitrogen and
stored at −80 °C. Tissues were homogenized into fine powder in liquid nitrogen-
chilled pestle and mortars. RNA was extracted, purified, and assessed for quality as

described previously89. RNA libraries were constructed using TruSeq RNA Library
Prep Kit v2 (Illumina). Barcoded libraries were sequenced using a 150 bp paired-
end reads. All library preparation and sequencing was performed at Novogene.
Initial quality was assessed using FastQC and reads were trimmed using Trim-
momatic (v0.36) with parameters ILLUMINACLIP:TruSeq3-PE.fa:2:30:10,
LEADING:5, TRAILING:5, SLIDINGWINDOW:4:15, and MINLEN:36. RNAseq
data quality was assessed with FastQC. Read mapping for expression analysis was
performed using Kallisto (v0.43.1) and BBmap (v37.77). Default parameters were
used for kallisto, whereas subgenome-specific read mapping with BBmap was
carried out using parameters set to require 100% identity (perfectmode= t),
unambiguous mapping (ambiguous= toss), and proper paired reads only (sam-
tools view –f 2). Differential expression (DE) analysis was performed DEseq2
(Bioconductor v3.2) using default parameters90. Multiple hypothesis testing
was controlled using a false discovery rate of 5%. To identify putative homeologs
in wheat, clustering of high and low confidence proteins from the IWGSC
RefSeq 1.0 was performed using CD-HIT, with a requirement of 90% or greater
identity30.

Arabidopsis microarray reanalysis. Data from Canet et al.32 was obtained from
EBI ArrayExpress experiment E-MEXP-3602. This data set includes transcriptome
analysis of A. thaliana wild-type (Col-0) and a nonsynonymous EMS mutant
nrb4-2 (3-week-old plants), and T-DNA mutant nrb4-4 (5-week-old plants) in
replicated experiments (three replicates). Raw CEL files were normalized using
R/BioConductor rma package91. Pairwise comparisons using log2 transformed
expression data between wild-type and mutants were performed using R t-tests
with multiple hypothesis testing controlled using q-value92 at false discovery rate
of 20%.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All high-throughput sequencing data described in this manuscript have been deposited in
the NCBI BioProject “PRJNA401266 [https://www.ncbi.nlm.nih.gov/bioproject/
PRJNA401266]” and European Nucleotide Archive (ENA) “PRJEB23265 [https://www.
ncbi.nlm.nih.gov/bioproject/?term=PRJEB23265]”. Illumina sequencing data for flow-
sorted chromosomes are deposited in sequential NCBI SRR accessions SRR6001708 to
SRR6001719 and ENA ERS1988338 to ERS1988347, de novo assemblies of flow-sorted
chromosomes for CTH-K (NCBI “NTGG00000000 [https://www.ncbi.nlm.nih.gov/
nuccore/NTGG00000000.1/]”, ENA “ERS1988348 [https://www.ebi.ac.uk/ena/data/view/
GCA_900235935.1]”), CTH-W (ENA “ERS1988349 [https://www.ebi.ac.uk/ena/data/
view/GCA_900235945.1]”), NS1 (NCBI “NTGH00000000 [https://www.ncbi.nlm.nih.
gov/nuccore/NTGH00000000.1/]”), and NS2 (NCBI “NTGI00000000 [https://www.ncbi.
nlm.nih.gov/nuccore/NTGI00000000.1/]”). RNAseq sequencing data are deposited in
NCBI SRR accessions SRR6003621 to SRR6003628 and SRR10426855 to SRR10426890.
The source data underlying Figs. 1, 2b, 3b, 4, and 5, and Supplementary Figs. 1, 4, 7, 10–
13, and Supplementary Table 9 have been deposited in a “Figshare project [https://
figshare.com/projects/Stem_rust_resistance_in_wheat_is_suppressed_by_a_subunit_of_
the_Mediator_complex/28056]”.

Code availability
Bioinformatic analyses and scripts can be found on Github https://github.com/
matthewmoscou/Canthatch, https://github.com/matthewmoscou/QKutilities, and
https://github.com/TC-Hewitt/MuTrigo.
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