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Abstract
Dacomitinib is a second-generation, irreversible EGFR tyrosine kinase inhibitor 
for first-line treatment of patients with metastatic non-small cell lung cancer and 
EGFR-activating mutations. A high rate of dose reductions in the pivotal trial 
led to an observed inverse exposure-response (ER) relationship with the primary 
end points. Three ER models were developed to determine if the starting dose 
from the pivotal trial, 45 mg once daily (q.d.) dose, is appropriate: a longitudi-
nal logistic regression model for adverse event-related dose changes, a Claret 
tumor growth inhibition (TGI) model, and a Cox model for progression-free 
survival (PFS) based on the TGI model predictions. This analysis included 266 
patients taking dacomitinib with a starting dose of 45 mg (N  =  250) or 30 mg 
(N  =  16) q.d. The ER relationships with the time-varying exposure metrics, 
most recent maximum plasma concentration (Cmax) and average concentration 
(Cavg) from the first dose, were established for the dose reduction and TGI mod-
els, respectively. The TGI model characterized the tumor inhibition over time 
with constant growth rate (kL  =  0.0012 years−1) and highly variable kill rate 
(kD = 1.002 years−1/[μg/L]θcavg, coefficient of variation [CV] = 89%) and drug re-
sistance (λ = 14.47 years−1, CV = 96%) leading to prolonged tumor shrinkage. The 
ER relationship was characterized using an exposure parameter with a power 
parameterization (θcavg = 0.454, p < 0.0001). The Cox model found that baseline 
tumor size (p = 0.0166) and week 8 tumor shrinkage rate (p = 0.0726) were the 
best predictors of PFS. Simulations of dose reductions and drug interruptions on 
tumor shrinkage over time showed greater and more prolonged tumor shrinkage 
with a starting dose of 45 mg q.d.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Lung cancer is the leading cause of cancer-related deaths in the United States and 
continues to be an area with unmet medical need for patients. Determining an 
appropriate dose recommendation is a primary consideration and one in which 
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INTRODUCTION

The life-threatening nature of cancer creates development 
issues that few other disease areas face. It is rare that more 
than one dose level is studied in the pivotal trial or more 
than one pivotal study is performed to evaluate efficacy. 
During the trial, patients are willing to tolerate more se-
vere adverse events (AEs) as they may benefit from inves-
tigational treatments and usually do not have alternative 
treatment options. Although the gold standard for efficacy 
is overall survival (OS), it takes time for OS data to be ma-
ture, especially if a drug works well, leading to the use of 
surrogate clinical end points, such as progression-free sur-
vival (PFS) and objective response rate (ORR) as primary 
end points in phase II/III trials and for registration.

The standard approach for determining ORR is to 
use the Response Evaluation Criteria in Solid Tumors 
(RECIST) in which tumor size is the key component with 
a confirmed reduction in tumor size of greater than 30% 
considered a response (using the sum of the longest di-
ameters [SLDs] in target lesions).1 Although tumor size 
is the primary driver of determining response or disease 
progression, explicit exposure-response (ER) modeling 
of the tumor size as a measure of efficacy is not typically 
expected with new drug applications. When tumor mod-
eling is performed, it is usually part of a model with PFS 
or OS where the predicted tumor size after a given time 
(e.g., 4, 6, or 8 weeks) is a predictor of the PFS or OS. These 
tumor growth inhibition (TGI)-efficacy models commonly 

are developed as part of designing clinical trials, predict-
ing efficacy, and calculating the probability of success, just 
to name a few applications.2–8

The frequent practice in oncology of proceeding into 
late-stage development studying a single dose can make 
it difficult to establish dose–response or ER relationships, 
particularly when the percentage of dose reductions is 
higher than expected.9–11 When the patients who expe-
rience frequent or permanent dose reductions stay on 
treatment the longest, an inverse relationship between 
exposure and efficacy end points may be observed. One 
approach is to evaluate the first dose exposure, but when 
most patients have the same first dose, it may not be pos-
sible to characterize an ER relationship. The assumption 
of a time-invariant exposure measure having a constant 
effect on the hazard function over time, which is inherent 
to many parametric survival models, is likely to be vio-
lated when the number of dose reductions is high result-
ing in biased estimates of the ER relationship. Whereas 
these models can be extended to incorporate the effect of 
time-varying exposures and non-constant hazard func-
tions, other approaches, such as tumor modeling and 
Cox proportional hazard modeling, are frequently used to 
explicitly account for time effects.12,13

The use of TGI models for justifying a starting dose 
after a pivotal trial has confirmed that efficacy or clini-
cal benefit is uncommon, as regulators expect ER analy-
ses for the primary end points (eg PFS). There are a few 
notable examples where TGI modeling was used rather 

exposure-response (ER) modeling plays a key role. Tumor growth inhibition 
(TGI) models are an established ER methodology that is frequently used to evalu-
ate the efficacy of a new treatment. Because oncology programs typically only 
study a single dose, the use of TGI models can be a key consideration during the 
design of clinical trials, particularly with respect to the dose selection.
WHAT QUESTION DID THIS STUDY ADDRESS?
Absent a direct ER relationship with the primary end point (e.g., progression-free 
survival) in a pivotal phase III study, how can TGI models be used to support the 
dose regimen?
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
When there is an observed inverse ER relationship using a time-invariant ex-
posure metric, TGI models that account for dose interruptions and reductions 
can adequately characterize an ER relationship and provide support for the dose 
recommendations.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, 
AND/OR THERAPEUTICS?
Modeling and simulation based on a direct measure of tumor size over time may 
be an acceptable alternative efficacy end point for establishing an ER relation-
ship. A TGI model using a time-varying exposure metric was a valuable tool in 
characterizing the benefit of a higher starting dose because the tumor shrinkage 
is fastest at the beginning of treatment and the higher initial exposures resulted in 
a greater reduction in tumor size, despite the risk of dose reductions.
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than a primary end point to support dosing recommen-
dations. After establishing efficacy in a phase III trial for 
metastatic renal cell carcinoma, a TGI model was devel-
oped for everolimus to support 10  mg as the preferred 
dose while also confirming antitumor activity for patients 
taking 5 mg daily, which is the recommend dose for pa-
tients needing a dose reduction.14 Motesanib established 
efficacy in a phase II trial for thyroid cancer, but dose-
limiting toxicities (DLTs) required dose interruptions, 
many of which resulted in permanent dose reductions. 
A pharmacokinetic (PK)/TGI model was developed that 
included a dose-modification component (for both dose 
interruptions and dose reductions), which was subse-
quently used to predict PFS/OS for several potential start-
ing doses.15 An additional PK-TGI model for motesanib 
was developed to evaluate dose selection considering the 
dose reductions.16 A TGI model of vismodegib in patients 
with metastatic basal cell carcinoma showed that a dosing 
holiday of up to 8 weeks, after an initial 12 weeks of treat-
ment, did not have a clinically relevant effect on efficacy.17 
Capecitabine is another example where TGI models were 
developed to evaluate dose reductions and efficacy.18 In 
the case of lenvatinib (combined with everolimus), 89% of 
patients required a dose modification during the pivotal 
trial, suggesting that the starting dose was too high.19 The 
US Food and Drug Administration (FDA) recommended a 
longitudinal TGI model with time-varying exposure to as-
sess the ER relationship. Simulations from the TGI model 
suggested that a lower starting dose, with the option for 
upward titrations, would provide comparable efficacy.20 
These examples all show the value of tumor modeling 
for supporting dose recommendations, particularly when 
dose interruptions or reductions were more frequent than 
expected.

Dacomitinib (Vizimpro) is a second-generation, irre-
versible epidermal growth factor receptor (EGFR) tyro-
sine kinase inhibitor for the first-line treatment of patients 
with metastatic non-small cell lung cancer (NSCLC) with 
EGFR-activating mutations.21 In an open-label phase II 
trial, 89 patients were enrolled, including 45 with EGFR-
activating mutations.22 In the randomized, open-label, 
pivotal phase III trial, PFS was significantly improved 
with dacomitinib versus gefitinib. Median PFS was 
14.7  months (95% confidence interval [CI] 11.1–16.6) in 
the dacomitinib group and 9.2 months (95% CI 9.1–11.0) 
in the gefitinib group (hazard ratio 0.59, 95% CI 0.47–0.74; 
p < 0.0001).23,24 Based on these results, dacomitinib was 
approved by the FDA in 2018 with a recommended dose of 
45 mg once daily (q.d.), with dose reductions of 30 mg q.d. 
and then 15 mg q.d. for adverse-reaction management.21,25

A high rate of AE-related dose reductions or interrup-
tions were observed in the phase III trial (66%). The protocol 
allowed for study treatment to be interrupted for grade 3,  

grade 4, or intolerable grade 2 toxicity (using National 
Cancer Institute [NCI] Common Terminology Criteria for 
Adverse Events [CTCAE] version 4.0). Upon recovery to 
grade 2 or baseline, and in the clinical judgment of the 
investigator with the agreement of the patient, treatment 
could be resumed at the same dose level or a new dose 
level. As many of the patients with long periods of sus-
tained response to dacomitinib experienced at least one 
dose reduction, there was a lowering of the average ex-
posure in patients with the best response to treatment 
resulting in an inverse ER relationship with PFS.25 The 
subgroup analysis of the phase III results found that pa-
tients who never reduced the dose from 45 mg q.d. had 
shorter median PFS and OS—similar to the gefitinib con-
trol arm—than patients who reduced the dose at least 
once (PFS 9.1 vs. 16.6 months; OS 22.0 vs. 36.7 months). 
The PK analysis showed that patients who did not reduce 
the dose tended to have lower initial plasma exposures at 
cycle 2, day 1 compared to patients who reduced at least 
once. Discontinuations due to AEs in the dacomitinib arm 
were also low (<10%).26 This suggested there was an ER 
relationship with efficacy, but the time-varying nature of 
the exposure needed to be considered.

The FDA review of dacomitinib also identified the 
inverse relationship with PFS determining that dose in-
terruptions and reductions were the most likely cause. 
Their exploratory analysis considered the first dose expo-
sure and found “a flat/slightly positive ER relationship” 
with PFS.25 To better characterize the ER relationship, 
three additional models were developed: (1) an empiri-
cal model describing the probability of dose-altering AEs 
using the time-varying maximum concentration from 
the most recent dose (maximum plasma concentration 
[Cmax]) calculated on a weekly basis. (2) A TGI model 
considering the timing and duration of the AE-related 
dose reductions, to evaluate the impact of the dose 
reductions on tumor size, using the time-varying average 
exposure from time zero up until the day of each tumor 
assessment (average concentration [Cavg]). (3) A Cox pro-
portional hazards model was developed to evaluate PFS 
with the tumor shrinkage rate predicted from the TGI 
model as a covariate. The models together helped char-
acterize the ER relationship with both safety and efficacy 
over time to support the dosing regimen for dacomitinib 
with a starting dose of 45 mg q.d.

METHODS

Dose-altering AE model

A longitudinal logistic regression model was developed to 
provide an empirical characterization of the occurrence 
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of dose-altering AEs (yes or no within each week). AEs 
leading to either temporary or permanent dose reduction 
were included in the model. The model was fit using the 
glmer() function in R. Within each week, the drug expo-
sure was time-varying and predicted from the population 
PK model using the post hoc estimates for each patient 
and their dosing history. The Cmax in the week prior to the 
dose reduction, the Cavg since the most recent dose prior 
to the day of the AE, and the running Cavg (area under the 
curve divided by time since the first dose) were consid-
ered as potential exposure metrics in the model. As the 
probability of a dose-altering AE is not time-invariant, 
a parameter was included to account for the decreased 
probability of experiencing a dose-altering AE over time. 
The square root of time was selected as it was considered 
to adequately characterize the effect of time. The linear 
form of the model is presented below.

where �int is an intercept, �Exposure represents the effect of 
a one-unit increase in the exposure during a given week on 
the risk of experiencing a dose reduction, �time is a linear 
effect to account for systematic changes in the mean as a 
function of time (included as the square root of the time [in 
number of weeks] since the start of treatment). An interac-
tion parameter �interaction was included to allow for changes 
in the effect on treatment over time. The parameter �1i rep-
resents intersubject variability in the effect of the exposure 
and was assumed to be normally distributed with mean 0 
and variance �2.

Tumor model

Several semimechanistic TGI models were explored in the 
development of a structural model. The general form was 
a change over time modeled as a net growth effect and 
a drug-induced decay effect. The Simeoni (2004), Stein 
and Wang (2012), and Claret (2009) models were consid-
ered.2,14,27 The Claret model was selected as the primary 
tumor dynamic model based on the visual evaluation 
of the model fit which best captured the rapid decrease 
and sustained suppression of tumor growth. This model 
utilizes longitudinal tumor-size data to estimate a drug-
specific cell-kill rate constant (kD), a drug-resistance rate 
constant (�), and a disease-specific growth rate constant 
(kL). The effect of exposure was added as an effect on the 
kill rate constant along with the drug resistance param-
eter that decreases the killing rate over time (�). The initial 
value of the tumor compartment, y(t) at time zero, was 

set to the observed baseline tumor size for each subject, 
which may have been collected up to 28 days prior to the 
first dose of active treatment. The form of the derivative is 
provided below:

In this model, the effect of drug exposure over time was 
tested using a linear, maximum effect (Emax), and power 
parameterization. The parameterization was the exposure 
metric to the power of � using the metric Cavg from time 
zero up until the tumor collection day, which was simu-
lated using the previously developed population PK model. 
The power parameterization was selected based on model 
stability, precision of model estimates, and goodness of 
fit diagnostics. A covariate search using forward selection 
(p = 0.05) followed by backward elimination (p = 0.001) 
was used to assess age, sex, baseline tumor size, smoking 
status, and baseline Eastern Cooperative Oncology Group 
performance score (ECOG PS) as potential covariates on 
kD, kL, and �.

Variability was included in the model with random ef-
fects for kD and �, assumed to be lognormal. The residual 
error was adequately described using an additive error 
following a normal distribution. Although simulations in 
theory could predict some negative values with the addi-
tive normal error, the central tendency was well-estimated 
and the visual predictive checks (VPCs) looked good with 
the observed 5th, 50th, and 95th percentiles all within the 
bands in each of the bins.

PFS model

After the tumor model was developed, the PFS was 
modeled with a Cox proportional hazard model using 
the predicted rate of tumor size reduction at week 8 
relative to the observed baseline SLD as a covariate on 
the hazard function. The predicted tumor size was cal-
culated using the individual post hoc estimates from 
the TGI model. To account for differences in the timing 
of the observed tumor size measurements, the rate of 
change was standardized by the time, in days, since the 
first dose of dacomitinib. This was calculated as (y(0) 
– y(week 8))/y(0)/Time where y(0) is the observed base-
line SLD, y(week 8) is the model-predicted tumor size 
at week 8, and Time is the actual number of days from 
the first dose and the observed day of the tumor assess-
ment for each patient. For patients that discontinued 
prior to week 8, the per-day rate of change at the time of 
the last tumor measurement (most commonly week 4)  
was used. The baseline tumor size and the predicted 

logit(p)=�int+
�

�Exposure+�1i
�

⋅Exposure+�time ⋅
√

time+�interaction ⋅

�

Exposure ⋅
√

time
�

dy

dt
= kL ⋅ y(t) − kD ⋅ Exposure ⋅ exp( − � ⋅ t) ⋅ y(t)
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tumor size rate of change at week 8 were included in the 
model. An additional covariate search was performed 
evaluating age, sex, body weight, and baseline ECOG 
using a p = 0.05 inclusion criterion.

Simulations of dose modifications

Simulations were performed to assess the relationship of 
exposure with tumor growth and dose-altering AEs con-
sidering the effect of dose interruptions and permanent 
dose reductions during treatment. A total of 500 simu-
lations were performed with 2000 subjects randomly 
sampled, with replacement, from the original analysis 
dataset to maintain any correlation structure among pa-
tients. Post hoc random effects were simulated for each 
subject from the distributions specified in the popula-
tion PK model, the TGI model, and the dose-altering AE 
model. Dosing records were simulated out to 120 weeks 
(~27.6 months), which was considered sufficient as the 
median PFS was 14.7 months in the phase III trial. The 
simulations tested for a dose-altering AE every 7 days 
(once a week). If a dose-altering AE was not simulated 
to occur that week, the patient continued at the same 
dose. If a dose-altering AE was simulated to occur, it 
was assumed the patient would require a 1-week dosing 
holiday (no doses for 7 days) before resuming at a lower 
dose. Seven days was considered a reasonable length of 
time for dose-interruption to resolve the AE sufficiently 
before a patient resumes treatment. Dose reductions 
were in 15-mg decrements with a maximum of two dose 
reductions (maximum of one dose reduction if starting 
at 30 mg).

The estimated Cavg that resulted under each of the dif-
ferent dose-reduction scenarios was used to predict tumor 
size.

Tumor response was calculated as at least a 30% reduc-
tion from baseline. Tumor progression was based on the 
RECIST criteria (increase of >20% from nadir) and eval-
uated once every 2 months (matching the frequency of 
the clinical trials). Because the TGI model cannot capture 
extended complete remission, progression was calculated 
relative to the individual predicted nadir. If the time was 
prior to the nadir, a 20% increase from the previous mea-
surement as well as 20% greater than the individual pre-
diction (IPRED) at that time was required for progression. 
From the simulations, response rates, dropout rates due to 
AEs, dropout rates from disease progression, and the sur-
vival probabilities (accounting for censoring due to AEs) 
were calculated and plotted with 90% prediction intervals. 
Visual predictive checks used 16 and 250 subjects, resam-
pled with replacement from the 2000 simulated subjects, 
for 30 mg and 45 mg q.d. starting doses, respectively.

RESULTS

Patient disposition

The data used in this analysis were collected from two 
studies conducted in patients with cancer: the phase II 
study A7471017 (Clini​caltr​ials.gov ID: NCT00818441, 
January 8, 2019) and the phase III study ARCHER1050 
(Clini​caltr​ials.gov ID: NCT01774721, April 17, 2019). Both 
studies were conducted in accordance with the princi-
ples of the Declaration of Helsinki and the International 
Council for Harmonization Guidelines for Good Clinical 
Practice. Each study was approved by the institutional re-
view board of each study center. Written informed con-
sent was obtained from all individual patients included 
in each study. All mandatory laboratory health and safety 
procedures were complied with when conducting any ex-
perimental work reported.

The phase II study evaluated the safety and efficacy 
of dacomitinib. Patients were administered dacomitinib 
at either 30 mg q.d. or 45 mg q.d. The phase III study 
compared the efficacy of dacomitinib 45 mg q.d. versus 
gefitinib 250 mg q.d. Patients in these studies who had 
EGFR-activating mutations (exon 19 deletions or exon 21 
L858R mutation) and who had at least one tumor mea-
surement were included in the analysis. There were 270 
patients that met the disease and mutation criteria. Four 
of these patients did not have any tumor measurements in 
the source dataset and were excluded from the analysis. In 
total, 266 patients were used in the modeling, of which 16 
patients from study A7471017 started at 30 mg q.d. and the 
remaining patients receiving 45 mg q.d. (n = 29 for 1017 
and n  =  221 for study ARCHER1050; see Table  1). The 
baseline tumor size relative to the last dose and age as well 
as the observed individual time course of the tumor sizes 
are provided in Figures S1 and S2.

Analysis data

The exposure metrics Cmax and Cavg were calculated for 
all patients in the pooled analysis dataset using a previ-
ously developed population PK model developed for da-
comitinib (description in Supplemental Materials). The 
reasons for dose interruptions or permanent reductions 
were recorded in the case report forms (CRFs) for each 
subject in the studies. Dose-altering AEs were determined 
based on this information. The tumor sizes were calcu-
lated following RECIST using the SLD (cm) from up to 
five target lesions. The measurements and determination 
of progression were based on the evaluation from an inde-
pendent reviewer for all patients in study ARCHER1050; 
however, in study A7471017, the investigator made the 

http://clinicaltrials.gov
http://clinicaltrials.gov
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determinations. Across the 266 patients in the analysis 
dataset, 67% experienced at least one dose reduction with 
the median time to the first dose reduction of 71 days for 
patients assigned to the 45 mg q.d. starting dose. Dose in-
terruptions and dose reductions were primarily driven by 
AEs with skin toxicities being the most common. All AEs 
were reversible by stopping or reducing the dose. The tim-
ing of dose reductions and the proportion of patients with 
a dose reduction to 30 mg and/or 15 mg q.d. are shown 
in Figure  1 out to 2 years postdose. Assumptions and 
limitations are provided in the Supplementary Material.  
R, NONMEM, and PsN were used for the analyses,28–31 
libraries, and software versions.32,33 The model estimates 
from the three models presented are provided in Table 2.

Dose-altering AE model

The empirical model for dose-altering AEs established an 
ER relationship with the Cmax in the previous week, which 
was selected based on the log-likelihood. The square root 

of time was found to adequately characterize the effect of 
time. The model showed that the probability of a dose-
altering AE was higher with a 45 mg dose compared with 
a 30 mg dose (see Figure 2). The greatest period of dose 
reductions was during the first 2 months of treatment.  
A posterior predictive check is provided in Figure S3.

TGI model

The TGI model was found to adequately characterize the 
tumor inhibition over time, accounting for time-varying 
exposures, with a growth rate (kL  =  0.012 years−1), cell 
death rate (kD = 1.002 years−1/[μg/L]θcavg coefficient of var-
iation [CV] = 89%) with drug resistance (λ = 14.47 years−1, 
CV  =  96%) leading to prolonged tumor shrinkage. The 
estimated exposure effect, θcavg, using a power param-
eterization, was 0.454 (p < 0.0001), indicating a greater 
tumor death rate associated with increased dacomitinib 
exposure. Although the rate of disease resistance was esti-
mated to be relatively fast, the variability for the resistance 

Variable Level
Study 
A7471017

Study 
ARCHER1050 Total

Sample size 45 (100%) 221 (100%) 266 (100%)

Starting dose 30 mg q.d. 16 (36%) 0 16 (6%)

45 mg q.d. 29 (64%) 221 (100%) 250 (94%)

Smoker Never 36 (80%) 143 (65%) 179 (67%)

Current 0 14 (6%) 14 (5%)

Former 9 (20%) 64 (29%) 73 (27%)

Baseline ECOG 0 21 (47%) 74 (33%) 95 (36%)

1+ 24 (53%) 147 (67%) 171 (64%)

Dose reductions None 16 (36%) 75 (33%) 91 (34%)

One 22 (49%) 84 (37%) 106 (39%)

Two 7 (16%) 66 (27%) 73 (27%)

Age, years Mean (SD) 62.2 (10.6) 61.1 (11.3) 61.3 (11.2)

Median 62 62 62

Min; Max 39; 84 28; 87 28; 87

Baseline SLD, cm Mean (SD) 7.5 (6.3) 5.3 (2.9) 5.7 (3.8)

Median 6 4.7 4.8

Min; Max 1.3; 28 1.0; 21.5 1.0; 28

Time of first dose reduction, days

Starting dose 30 mg q.d. Median 113 – 113

Min; Max 64; 896 – 64; 896

Starting dose 45 mg q.d. Median 70.5 74 74

Min; Max 10; 362 9; 617 9; 617

Second dose reduction, 
days

Median 141 143 141

Min; Max 43; 701 11; 617 11; 701

Abbreviations: ECOG, Eastern Cooperative Oncology Group; Max, maximum; Min, minimum; q.d., once 
daily; SLD, sum of the longest diameter.

T A B L E  1   Background, demographic, 
and dose reduction summaries
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parameter was substantial with the CV of 96% resulting 
in many patients experiencing sustained periods of TGI. 
Shrinkage of kD and λ were 20% and 22%, respectively, 
which is considered acceptable.34 None of the covariates 
met the selection criterion and were not included in the 
final model. Although no covariates were included in the 
TGI model, covariate effects were accounted for in the ex-
posure simulations using the population PK model. The 
VPC does not show any issues with the predictive ability 
of the model (see Figure S4). The diagnostic plots are pro-
vided in Figure S5. The sharp rise seen in the last tumor 
measurement for some patients is assumed to be partially 
explained by the residual error, which would affect the 
ability to predict the time of progression.

PFS model

The final Cox proportional hazards model included base-
line SLD and the relative rate of change of the tumor 
size at week 8, predicted from the TGI model. No other 

covariates met the inclusion criterion. The estimated ef-
fect for baseline SLD on the hazard function corresponded 
to a larger baseline SLD associated with an increased haz-
ard (p < 0.05). The relative rate of tumor shrinkage predic-
tor was found to have a negative estimate, indicating that 
a faster rate of reduction of tumor size is associated with a 
lower hazard (p < 0.1). The effect of the rate of change of 
the tumor size at week 8 on the hazard function for PFS is 
evidence of an ER relationship with efficacy.

Simulations of tumor shrinkage with 
different dosing regimens

Simulations were performed to evaluate the timing of dose 
reductions as well as their effect on the tumor size over 
time. Following the schema described in the Methods 
section, the exposures were simulated based on the dose 
reductions; dose escalation was not considered. The per-
cent of subjects who dropped out of the study due to AE 
are provided in Figure S6. Due to fewer dose reductions 

F I G U R E  1   Observed relative frequency of patients receiving each of the dosages. The proportion of patients receiving 45 mg (orange), 
30 mg (purple), 15 mg (green), dose interruptions (blue), or withdrawn/follow-up/censored (red) is shown over time. Each vertical bar 
represents 1 week of time. To create this graphic, each patient was categorized into one of the five groups. If on treatment, the lowest dose 
during the 1-week interval was used. If a patient missed at least one dose during the week, the patient was considered to be in the dose 
interruption category.
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T A B L E  2   Model parameter estimates for both dose-altering AEs, TGI, and PFS models

Estimates 90% CIa RSE (%) p value* Shrinkage (%)

AE model

Intercept (�int) −4.174 (−4.921 to −3.427) −10.9 <0.001

Cmax (�Cmax) 12.012 (4.21, 19.81) 39.5 0.011

sqrt (week) (�time) −0.522 (−0.685 to −0.359) −19.0 <0.001

Cmax-sqrt (week) interaction (�time.Cmax) 3.823 (1.78, 5.87) 32.5 0.002

Omega (Cmax) (�Cmax) 6.333 54

TGI model

kL, years−1 0.012 (0.0082, 0.0145) 20.4 <0.001

kD, years−1/(μg/L)θcavg 1.002 (0.763, 1.273) 24.4 <0.001

�, years−1 14.47 (12.82, 16.11) 9.7 <0.001

Cavg 
(

�Cavg
)

0.454 (0.386, 0.522) 9.1 <0.001

Residual variance (�) 0.431 (0.404, 0.460) 9.6
�k_L 0 Fixed 0

�k_D (%CV) 0.788 (89%) (0.582, 0.995) 20
�� (%CV) 0.926 (96%) (0.636, 1.253) 22

PFS model

Baseline SLD 1.0409 (1.012, 1.069) 0.0166

Week 8 tumor change rate 0.9867 (0.975, 0.998) 0.0726

Abbreviations: %CV, percent coefficient of variation; AE, adverse event; Cavg, average exposure from time 0 up until the day of each tumor assessment; 
CI, confidence interval; Cmax, maximum concentration from the most recent dose; PFS, progression-free survival; RSE, relative standard error; SLD, sum of the 
longest diameter; TGI, tumor growth inhibition.
aConfidence intervals for the AE model and PFS we calculated using the profile likelihood approach, while for the TGI model they were estimated using SIR.
*The P-value was calculated using the assumption of normality. The coefficient of variation (CV) was calculated as CV = 100% ⋅

√

ω2.

F I G U R E  2   Probability of a dose-
altering AE over time. The estimated 
probability of a dose-altering AE is 
provided for both 45 mg q.d. and 30 mg 
q.d. AE, adverse event.
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being possible, the simulations for the 30 mg starting dose 
do not adequately represent the rates observed in patients. 
The 45 mg starting dose underestimates the dropout rates. 
When considering only observed dropouts who had at 
least one dose reduction, the simulations better capture 
the observed rates, although the dropout early in treat-
ment is still underestimated.

Using the exposure from these simulations, the pre-
dicted percentage of subjects with shrinkage of at least 
30% was calculated at each month and compared to the 
observed rates (see Figure  3). The simulations for the 
45 mg starting dose match the observed rates, along with 
the quick onset of the response, very well. The predictions 
for the 30 mg starting dose seem to overestimate the rates 
as well as the onset rates, which appears to be slower than 
in patients starting at 45 mg, although there were only 16 
observed subjects with the lower starting dose. Tumor 
progression was predicted based on the simulations (see 
Figure  S7). Together with the dropouts due to AEs, the 
Kaplan–Meier survival probabilities for PFS were calcu-
lated for each of the simulations and shown in Figure S8. 

The predicted median PFS (90% prediction intervals) 
based on the simulations was 15.0 months (12.6, 18.8) for 
45 mg q.d and 15.1 months (7.8, 27.8) for 30 mg q.d. In gen-
eral, the simulations overpredict the response rates for the 
16 subjects who started with 30 mg q.d.

The time course of the tumor size was also simulated 
for a typical individual based on preset times for the dose 
reductions (see Figure 4). The simulations of the typical 
exposures show that when starting at 45 mg q.d., the ex-
pected tumor size is expected to reach the RECIST defi-
nition with greater shrinkage compared to the 30 mg 
starting dose with no dose reductions. Additional consid-
erations regarding defining disease progression and the 
predictive performance of the simulations are discussed 
in the Supplementary Materials.

DISCUSSION

Dacomitinib showed a statistically significant improve-
ment in PFS (the primary endpoint) in the pivotal phase 

F I G U R E  3   Predicted response rate of at least 30% over time. The points represent the observed rates of subjects with at least 30% 
shrinkage from their baseline tumor measurement during each 1 month period. The shaded areas represent the 90% prediction interval for 
the rates of responders from the 500 simulations accounting for dose reductions. The 90% prediction intervals are based on n = 16 patients 
for 30 mg q.d. and 250 patients for 45 mg q.d. The solid blue line for the 30 mg starting dose panel shows the typical response calculated from 
a simulated sample size of 250 subjects to help with comparisons to the 45 mg q.d. starting dose.
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III study over the positive control (gefitinib). However, 
permanent dose reductions together with a single tested 
starting dose resulted in an observed inverse ER rela-
tionship with PFS as well as other end points for safety 
and efficacy (data not provided). With a high rate of dose 
reductions and no formal dose ranging study, a natural 
question is whether the starting dose is appropriate. The 
three models and the simulations presented together sup-
port the conclusion that despite the risk of permanent 
dose reductions, 45 mg q.d. is an appropriate starting dose 
for the indicated patient population.

The dose-altering AE model found that a higher Cmax 
was associated with a higher probability of grade greater 
than or equal to 3 AEs, which resulted in a dose modi-
fication. In addition, patients who never required a dose 
reduction tended to have lower cycle 2 day 1 plasma. The 
patients who never required a dose reduction also expe-
rienced lower rates of grade greater than or equal to 3 
AEs.23,26 For the 33% of patients without a dose reduction, 
a lower starting dose would mean even lower exposures 
with no expected safety benefits. For the patients who did 
require permanent dose reduction, characterizing the ER 
relationship was essential to evaluate the benefit of the 
higher starting dose.

The Claret TGI model adequately characterized the 
tumor sizes over time with a power parameterization for 

the effect of exposure. The exposure parameter was less 
than one and indicates diminishing returns with higher 
exposures. Because patients who required permanent 
dose reductions tended to have higher exposures, the 
shape of the ER curve may have a bias, which is a plau-
sible reason for the diminishing benefits at higher expo-
sures. Nonetheless, the effect was statistically significant 
establishing an ER relationship with an efficacy measure 
having accounted for the dose reductions. This was subse-
quently linked to PFS, including the tumor shrinkage rate 
as a predictor.

The model for dose-altering AEs illustrated that con-
sidering events on a weekly basis adequately character-
ized the ER relationship over time. The simulations of the 
dropout rate based on AEs underestimated the initial dis-
continuations due to AEs, but, over time, the VPCs show 
that the rates are contained within the prediction bands 
for 45 mg q.d. (see Figure  S6). The dropout rates due to 
AEs are overpredicted for the 30 mg q.d. group because 
only one dose reduction is allowed. In the observed sub-
jects, only one discontinued due to an AE.

The overall efficacy for any combination of dose re-
ductions was the main concern irrespective of the tim-
ing. Figure 3 shows that with the 45 mg q.d. starting dose, 
the tumor response rates (shrinkage of at least 30%) are 
greater with a faster onset rate than with 30 mg q.d. The 

F I G U R E  4   Simulated tumor size for selected dosing schemes. The time course for three different starting dose and dose reduction 
scenarios are presented for a typical patient. The red line (top) is the typical tumor size for a starting dose of 30 mg q.d. with no dose 
reductions. The blue line (middle) represents the typical tumor size over time for a starting dose of 45 mg q.d. with dose reductions at week 
4 and week 11. The green line (bottom) represents the typical tumor size over time for a starting dose of 45 mg q.d. with dose reductions 
at week 11 and week 20. The black dotted line represents the RECIST criteria of 30% shrinkage, which is used to determine if a patient 
responds. RECIST, Response Evaluation Criteria in Solid Tumors; q.d., once daily.
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predictions for the 45 mg group are well-characterized by 
the models accounting for dose reductions. The simula-
tions overpredict the response rates for the 30 mg group 
with the predicted response rates at each time markedly 
better than the observed rates. The predicted median PFS 
for the 45 mg q.d. starting dose was consistent with the 
clinical trials, but the initial disease progression rate was 
overestimated. There were too few PFS events for a reli-
able estimate of median PFS for the 30 mg q.d. group. As 
shown in Figure 4, the expected tumor size time course for 
three potential dosing scenarios were 45 mg q.d. starting 
dose with a dose reduction at week 11 and a second dose 
reduction at week 20; 45 mg q.d. starting dose with a dose 
reduction at week 4 and a second dose reduction at week 
11; and 30 mg q.d. starting dose with no dose reductions. 
The timing of the dose reductions was selected based on 
the median values in Table 1. These specific cases, along 
with the response rates prediction in Figure 3, show that 
even with dose reductions, a starting dose of 45 mg q.d. 
has greater tumor shrinkage than a starting dose of 30 mg 
q.d.

The evaluation of the recommended starting dose of 
dacomitinib benefited in several ways. There was a small 
cohort of patients in the target population from study 
A7471017 who initially received 30 mg q.d., which pro-
vided a second starting dose to characterize the ER re-
lationship with tumor size (efficacy). The percentage of 
patients with at least one dose reduction was high (66%) 
but was still sufficient to characterize an ER curve (un-
like the case with lenvatinib). In addition, the known AEs 
were all reversible and manageable by dose interruption/
reduction. The percentage of AE-related discontinuations 
was small (<10% in the phase III study). With ER relation-
ships characterized for both efficacy and safety, modeling 
and simulation were able to illustrate the beginning of 
treatment is the time in which the greatest tumor shrink-
age is expected, and, as a result, the higher starting dose 
(45 mg q.d.) is associated with the benefit in patients.
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