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KEY POINTS

� The small size of rodent eyes makes examination and individualized treatment
challenging.

� As with all exotic species, improper husbandry plays a disproportionate role in the devel-
opment of many rodent corneal diseases.

� Although rodent eyes have their own unique anatomy, they remain susceptible to many of
the same diseases that affect dogs and cats. Emphasis has been placed on conditions
unique to the species discussed herein.

� Mice and rats frequently present with varying forms of corneal opacification and deposits
that may not be of clinical significance.

� Rodents are hypsodonts, with enamel extending past the gum line and a continuous
growth of their teeth, making them highly susceptible to uneven wear and overgrowth
that can be reflected in secondary ocular disease.
INTRODUCTION

Rodents are mammals of the order Rodentia, and constitute up to 40% of all known
mammal species. Rodents are defined by their hypsodont dentition, with continuously
growing incisors of the upper and lower jaw. The species discussed herein are domes-
ticated from their wild counterparts for laboratory, farm, and pet purposes. The pres-
ence of inbred strains, most notably in mice and rats, must be considered when
examining pet rodents, as many originate from laboratory strains. These genetic
ocular defects are occasionally sought as models for human disease, but they can
also be unwelcome byproducts linked to the desired trait. As social species that natu-
rally live in colonies, herd management and individual welfare may be presented to the
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attending veterinarian. Mice, rats, and chinchillas are thought to be predominantly
nocturnal to crepuscular, while guinea pigs are diurnal. Their eye anatomy reflects their
origins. All rodents have a cornea divided into stratified epithelium, a Bowman layer
(epithelial basement membrane), stroma, Descemet membrane, and the endothelium.

GUINEA PIG (CAVIA PORCELLUS)

Guinea pigs are the largest of the rodents covered in this section. They live an average
of 4 to 5 years, but can live as long as 8 years. They are not found in the wild, but are a
domesticated relative of other species of cavies. Once used frequently for research
studies, they are now primarily a household pet.

Normal Anatomy

Fine superficial corneal neovascularization (usually extending from limbus axially to
the first or second third of the cornea) has been reported as a normal finding in fetal,
newborn, and adult guinea pigs.1 However, a later confocal microscopy study did not
confirm this.2

Small palpebral conjunctival outpouchings were noted in the upper and lower
fornices in almost all examined animals according to Dwyer and colleagues (1983),
and were determined via histology to be masses of lymphoid tissue. Their prevalence
across individuals resulted in researchers concluding these foci to be a normal finding.
Guinea pigs have a remarkably low corneal sensitivity (or a high pressure threshold

is needed to elicit a blink), replicated in 3 studies.1,3,4 In these studies, the guinea pig
was observed to have limited to no reflex tearing, which may be a component of the
lack of corneal sensitivity (Fig. 1, Table 1). This plays an important clinical role.
Staphylococcus epidermidis, a-hemolytic Streptococcus, and Corynebacterium

were the top 3 aerobic commensal isolates from normal healthy guinea pigs.4

Adnexa-Related Corneal Disease

Trichiasis, or hair from the skin contacting the cornea, occurs in a wire-haired breed of
guinea pigs, Texel cavies; 0.8% of surveyed animals had this congenital abnormal-
ity.11 After birth the wiry hair can curl inwards into the eye, causing corneal ulcers
and epiphora. Lubricating the eyes and hair around frequently immediately after birth
until the hair grows in a more controlled manner can help.
Fig. 1. Guinea pig undergoing Schirmer tear test. Guinea pigs have been shown to have a
remarkably insensitive cornea relative to other domesticated species, and little to no reflex
tearing. (Courtesy of Dr Stacy Andrew.)



Table 1
Corneal parameter

STT 1 (mm/min)
PRTT
(mm/15 s) CTT (g/mm2)

Guinea
pig

3 mm4 21.2 � 4.24 6.644

0.36 � 1.1 (Duncan Hartley cavies)5 16.0 � 4.75 3.75

9.65 � 3.5 (used a 3 � 35 mm strip
instead of traditional 5 � 40
mm)3

7.753

Mouse
& Rat

6 � 86 w0.96 (6 cm)7

w12.8 (0.8 � 0.9 mm,
sedated rats, author noted
result was unusually high)8

Chinchilla 1.07 � 0.549 14.6 � 3.510 w10.84 (1.24 � 0.46 cm)9

1.5 � 0.910

Selected tear film parameters in rodents. Mean � standard deviation is included when available.
Corneal sensitivity is reported in g/mm2. When applicable, a standard conversion table for Cochet-
Bonnet aesthesiometerwas used to convert fromcmtog/mm2. Range: 6.0-0.5 cm5 0.96-17.68g/mm2.
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Entropion, either primary or cicatrial after an eyelid trauma, is reported in guinea pigs.
Entropion is typically treated via a variety of blepharoplasties. To the author’s knowl-
edge, blepharoplasty in a guinea pig has not been reported. Because of their small
adnexal structures, they may be more suited to a hyaluronate injection that can evert
the lids semipermanently or to frequent lubrication of the cornea to mitigate pathology.

Primary Corneal Disease

To the author’s knowledge, guinea pigs are the only species discussed in this article
formally reported to exhibit periocular dermoids.12 Large corneal dermoids can
compromise vision by their opacification of the visual axis. Haired dermoids may
contaminate the conjunctival sac by harboring foreign material and debris. The treat-
ment of choice for dermoids is surgical removal via keratectomy, but given the thin-
ness of the guinea pig cornea (Table 2), this treatment should be undertaken with
great care.
Table 2
Selected corneal parameters in rodents and their respective method of measurement. Mean ±
standard deviation is included when available

Central Corneal Thickness
(mm)

Endothelial
Cell Count
(Peak, Cells/
mm2)

Mechanism of Measurement
(Respectively)

Guinea pig 227.85 � 14.092 2352 � 492 Pachymetry
Confocal

Mouse 108.0 � 5.113

106.0 � 3.4514
1587 � 7415 Optical coherence tomography

Optical low coherence reflectometer
Confocal

Rat 159.08 � 14.99 (Winstar)14 1951 � 6715

3744 (Lewis)16
Optical low coherence reflectometer
Confocal
Histology

Chinchilla 340 � 309 342317 Pachymetry
Contact specular microscope
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Corneal lipidosis (bilateral stromal lipid dystrophy) is also reported.11 This has been
described as a bilateral paracentral lipid deposition with varying degrees of density
and coverage. This appears to be less common than the corneal dystrophy reported
in mice and rats.

Corneal Foreign Bodies

As previously discussed, guinea pigs have been found to have a low corneal sensitivity
and a negligible ability to produce reflex tears, thereby placing them at an unusual risk
for ocular foreign bodies. They have also been noted to have an unusually low blink
rate.2,5 This is compounded by their typical housing, in a bedded enclosure with straw
and hay at eye level. In a survey of 1000 guinea pigs, 4.7% had conjunctivitis, which
was frequently secondary to a traumatic injury from a foreign body.11 This had also
been seen in a previous survey of guinea pigs.1 It has been theorized that the corneal
vessels and lymphoid tissue unique to guinea pigs eyes were an evolved strategy over
increased blinking and discomfort seen in other animals. That being said, foreign
bodies should still be taken seriously and treated promptly. Per Williams and Sullivan
(2010), these foreign bodies, along with congenital trichiasis, seemed to be the most
irritating for the animals.

Treatment Considerations

Guinea pigs have lost their ability to endogenously form ascorbic acid, like people and
capybaras, and are therefore at greater risk for scurvy relative to other species of ro-
dent. Scurvy often starts with mucous membrane disease including petechiation and
ulceration. Dry eye has also been reported as a sequela. Vitamin C is used in other
species as an anticollagenase.18 Therefore, supplementation during times of ulcera-
tion, especially a melting ulcer (Fig. 2), is likely to be beneficial regardless of nutritional
status. Many foods are rich in vitamin C, and there are also nutritional supplements
available.
Because guinea pigs are the largest of the species discussed here, topical treat-

ment is more feasible in terms of administration. Systemic absorption is still a risk,
and so prolonged treatment, especially with topical steroids and nonsteroidal anti-
inflammatory drugs, should be approached cautiously. Guinea pigs are typically docile
and amenable to handling. Given their common place as a household pet, individual-
ized treatment including frequent topical medication is more achievable.
Fig. 2. Infected corneal ulcer in a guinea pig. This is a disease process in which guinea pigs
would benefit from additional supplementation of vitamin C for normal physiology and
also for its anticollagenolytic properties. (Courtesy of Dr Stacy Andrew.)
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MICE (MUS)

Mice are the smallest rodent discussed in this section. They are one of the most suc-
cessful mammals on Earth today and are viewed as pets, research subjects, vermin,
and vectors. They are the most common experimental laboratory animal in recent de-
cades because of their homology with people, small size, and rapid reproduction.
Breeding onset is about 50 days, and the life span is typically 1 to 2 years when
kept as pet.

Normal Anatomy

A detailed comparative study was performed using confocal microscopy of normal
4-month-old Swiss mice.15 Bowman layer was observed between basal epithelial cells
and the anterior stroma. Similar to rats, the anterior and posterior stroma had
numerous anuclear reflective stellate structures. Endothelial cell density was also
determined (see Table 2).
Just like guinea pigs, corneal vascularization has been reported to be a normal

finding in 2 mouse strains – athymic and euthymic nude mice.19

Schirmer tear test with traditional Whatman filter paper is not possible in the species
based on size, but normal tear volume can be assessed via phenol red thread testing
(see Table 1).6

Mice in Research

No article on mice would be complete without touching on their significance as a
research model.
Mice are models for certain ocular surface diseases, most notably Sjögren

syndrome (SS), a common autoimmune dry eye syndrome in people. Mice exhibiting
SS-like characteristics have a mononuclear cell infiltration into exocrine glands, loss of
acinar tissue, and secretory dysfunction. Corneal pathology includes corneal vascu-
larization, keratinization, and the propensity for bacterial corneal ulcers (Fig. 3).
Numerous murine strains have been used for their SS-like disease manifestations,
Fig. 3. Ocular pathology associated with mouse models of Sjögren syndrome. Here one can
see disease ranging from a clear corneal with mild discharge, to blepharospasm and kera-
titis, all the way to a stromal corneal ulcer with secondary infection. (Courtesy of Dr Renata
Ramos.)
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and an excellent review article summarizing the various models has been published.20

Initially these characteristics were spontaneously arising, but later the alterations were
associated with gene knockout, resulting in transgenic mice that model aspects of the
disease.
Mice have helped make a breakthrough in the link between primary open-angle

glaucoma and the thickness of the central cornea. Mice were recently used to identify
a transcription factor, POU6F2, that is associated with central corneal thickness and
susceptibility of retinal ganglion cells to injury.21

Primary Corneal Disease

Corneal deposits are a common finding in laboratory mice (Fig. 4). Deposition of cal-
cium in Bowman layer with or without accompanying vascularization has been re-
ported in both normal and SS-model mice (MRL/Mp strain).22 It is speculated that
these deposits are genetically linked, but excess ammonia in cage bedding may
also contribute.23 After investigating husbandry, treatment of the deposits is not
performed.
Peter anomaly, a form of anterior segment dysgenesis, has been documented spon-

taneously mice and is being used as a model for the disease.24,25 The keratolenticular
adhesion results in the presence of a leukoma (corneal opacity) of varying size.
Corneal transplant is the treatment in people, but even then overall visual prognosis
is poor.26 This treatment has not been reported in veterinary patients. Additionally,
intraocular pressure should be assessed, as aggressive glaucoma often accompanies
these changes.24
Fig. 4. Severe example of corneal dystrophy in a laboratory mouse. This individual was
considered comfortable (no blepharospasm) and clinically acceptable as a research subject.
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Treatment Considerations

The primary limiting factor in treatment of mice is their small size. Corneal transplants
have been performed successfully, but the success rate of these surgeries has not
been published, as most studies focus on graft rejection, excluding those leaking or
infected grafts from statistical analysis.27,28 In veterinary medicine, conjunctival grafts
are more commonly performed relative to clear corneal transplants, but to the author’s
knowledge, this surgical technique has not been reported in any the species covered
in this article.
The small size of the mouse also means many topical treatments have the potential

for significant systemic absorption. Even the application of a topical sodium channel
blocker to facilitate examination should be applied with judiciousness given its poten-
tial for systemic toxicity.29

RATS (RATTUS)

Rats and mice are closely related and only differentiated by their size, not specific
taxonomic criteria. This section focuses on the most common rat species, Rattus nor-
vegicus (brown rat and laboratory rat),Rattus rattus (black rat), and fancy rat (Rattus nor-
vegicus). Life span is typically 2 yearswhen kept as a pet, but they can live up to 3 years.

Normal Anatomy

Rats and mice have 3 tear-producing glands, the intraorbital, the extraorbital, and the
Harderian. The Harderian is a well-studied exocrine gland associated with the third
eyelid. This is what produces the porphyrin and lipid-laden tears in rats and is of clin-
ical significance because of the vivid, visible tears it produces in several diseases.30

Adnexa-Related Corneal Disease

Tear staining or chromodacryorrhea refers to a dark stain below the inner corner of the
eye, caused by porphyrin-pigmented secretion from the Harderian gland. It indicates
stress in rats but can have other indirect causes. Chromodacryorrhea was produced
within 15 minutes in young rats following intravenous injection of acetylcholine or
acute stress induced by limb restraint.31 By a similar mechanism, the presence of
chromodacryorrhea was even identified as a welfare indicator on commercial pig
farms.32 This finding may gain more attention in the laboratory animal sphere, where
welfare is paramount. The presence of chromodacryorrhea should not be ignored,
as it is not a normal finding. As discussed, it may be caused by environmental stress,
physical illness, or underlying disease. Furthermore, even when not hypersecreted,
porphyrins are labile until photic energy. Exposure to high-intensity light induced ne-
crosis of the glandular cells in a study on a research population of Wistar rats.33 The
injury appeared to be caused by the creation of free radicals within glandular cells,
probably as a result of photodynamic action on the porphyrins in the gland. Proper
husbandry with a day-night cycle is essential for rat health and welfare.

Primary Corneal Disease

Certain strains of rat are reported to have a high rate of subepithelial mineralization
(corneal dystrophy), just like mice. Clinically, these opacities are subepithelial (associ-
ated with abnormal epithelial basement membrane, Bowman layer). They vary from a
few punctate opacities only visible with a slit lamp to marked dense opacities covering
a majority of the corneal surface (Fig. 5). A thorough ophthalmologic and histopatho-
logical study was performed on Fischer-344 (F344) rats that demonstrated a high inci-
dence of corneal basement membrane dystrophy.34 In the most severely affected



Fig. 5. Another example of severe corneal dystrophy, this time in a laboratory rat. Just like
the mouse example, no blepharospasm was exhibited by this individual.
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strains, this correlated to a systemic basement membrane disorder. It was speculated
that these opacities are relatively under-reported for several reasons, and in this study
anywhere from 50% to 100% of rats examined from various breeders had corneal
dystrophy. Thankfully, these opacifications did not appear to cause the animals
discomfort or have an adverse effect on normal physiologic function. However, in peo-
ple, epithelial basement membrane dystrophy is associated with recurrent corneal
erosions.35

F344 rat strains are also unusually prone to intraocular tumor, which may manifest
as a pigmented opacity in the cornea. Orbital malignant schwannomas and amelanotic
melanoma are reported.36

Infectious Corneal Disease

Sialodacryoadenitis (SDA) is a highly contagious common viral infection in rats. SDA
is caused by rat coronavirus and can spread rapidly, especially through laboratory
colonies. Anorexia occurs during these viral infections. The virus has a tropism for
epithelial cells and can infect the Harderian and extraorbital glands, causing ocular
disease.37 Often, lacrimal gland involvement leads to reduced tear production. Young
rats are especially susceptible to SDA, and the infection can occur in the lower res-
piratory tract, resulting in pneumonia. Thankfully, the primary disease is usually self-
limiting and resolves within a week; however, secondary signs may take up to a
month to fully resolve. Diagnosis is confirmed by detecting coronavirus antigen
with reverse transcriptase polymerase chain reaction (RT-PCR)38 or serologic
testing.39
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Treatment Considerations

Treatment limitations are similar between rats and mice. Their small size and colony
habitat often preclude topical treatment.

CHINCHILLA (DOMESTICATED FROM CHINCHILLA LANIGERA)

Of the species covered, chinchillas are the most recently domesticated and the least
studied. They are also the longest lived in this group of rodents, living on average
10 years in captivity, although chinchillas living into their 20s have been reported.10

Chinchillas were originally bred for fur but since have become pets and are used in sci-
entific research. Of the species discussed here, chinchillas have the most recent liter-
ature regarding presentation as a pet for ocular examination, and less research-based
publications relating to their ocular biology. In a recent retrospective study over the
course of 10 years, 7.8% of chinchillas presenting to a tertiary clinic had primary
ophthalmic complaints.10

Normal Anatomy

Chinchillas are characterized as having a shallow orbit, and proptosis can easily be
induced with pressure on the eyelids; therefore, care must be taken when examining
them.40 Chinchilla endothelial cell density has been determined via specular micro-
scopy (see Table 2).17 Like in other species, cell density decreases and pleomorphism
increases with age.

Adnexa-Related Corneal Disease

Of the available publications and consensus among zoo veterinarians, ocular
discharge appears to be the most common condition. The discharge/epiphora is sus-
pected to be secondary to dental disease, as in all rodents, chinchillas are hypsodonts
with continually growing teeth. This continual growth is compounded by their longevity
and potential for inappropriate husbandry.41 Root extension into the nasolacrimal duct
and subsequent epiphora is the most common clinical sign. Chinchillas with only clear
epiphora are typically considered primary dental disease patients.10

Infectious Corneal Disease

Bacteria normally populate the conjunctival fornix. In chinchillas,9 Lima and colleagues
(2010) found that Streptococcus species (27.45%) was most commonly isolated,
followed by Staphylococcus aureus (23.52%), and finally coagulase-negative
Staphylococcus (19.60%). This is in comparison to42 Ozawa and colleagues (2017),
who studied chinchillas affected by bacterial conjunctivitis. In diseased individuals,
61.5% yielded a gram-negative isolate (50% being Pseudomonas aeruginosa). The
remainder yielded gram-positive isolates, Staphylococcus species being most com-
mon (26.9%). Chinchillas with acute conjunctivitis (1–3 days) were much more
commonly affected by gram-negative organisms, and most cases were unilateral;
36.7% had concurrent dental disease.

Treatment Considerations

As chinchillas often experience conjunctivitis secondary to other disease, a thorough
dental examination addressing the underlying cause is essential. However, despite
this clinical paradigm, most chinchillas with bacterial conjunctivitis are reported to fully
resolved with topical with or without oral antimicrobial therapy within 3 weeks.42 Being
larger in size than rats and mice and more typically housed in a pet environment, chin-
chillas may be more amenable to topical medication, similar to guinea pigs.
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SUMMARY

Most diseases specific to rodents are either congenital or related to husbandry. Unfor-
tunately, their small size limits many of the typical surgical treatments routinely per-
formed in other veterinary species. Once husbandry is addressed, treatment may
be limited to mitigation of the disease process but not complete resolution.
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