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Abstract: Ferroelectric tunnel junctions (FTJs) have attracted attention as devices for advanced
memory applications owing to their high operating speed, low operating energy, and excellent
scalability. In particular, hafnia ferroelectric materials are very promising because of their high
remanent polarization (below 10 nm) and high compatibility with complementary metal-oxide-
semiconductor (CMOS) processes. In this study, a Si-doped HfO2-based FTJ device with a metal-
ferroelectric-insulator-semiconductor (MFIS) structure was proposed to maximize the tunneling
electro-resistance (TER) effect. The potential barrier modulation effect under applied varying voltage
was analyzed, and the possibility of its application as a non-volatile memory device was presented
through stability assessments such as endurance and retention tests.

Keywords: FTJ; ferroelectric; non-volatile memory

1. Introduction

With the advent of the information age, Internet of things (IoT)-based electronic com-
munication equipment has produced huge amounts of data [1]. Moreover, the number
of data centers that store huge amounts of data has increased exponentially, leading to a
situation in which physical space cannot be ignored [2,3]. In addition, the operation of
large-scale servers encounter power consumption issues because of the requirements for
standby power and cooling for heat control [4]. To solve these problems, it is necessary
to develop high-performance next-generation semiconductor devices [5–7]. In particular,
the non-volatility, high integration, high operating speed, and low power consumption of
memory semiconductors for information storage must be improved. Currently, commer-
cialized dynamic random access memory (DRAM), static random access memory (SRAM),
and NAND flash memory have made great progress through continuous development,
but they still do not satisfy some requirements for next-generation memory devices [8]. As
a consequence, the development of a new type of memory device is essential. Recently,
various memory devices based on non-volatile characteristics, such as resistive switching
memory [9,10], phase-change memory [11,12], ferroelectric memory [13,14], and ferromag-
netic memory [15,16] have been introduced as next-generation memory device candidates.
Among these various memory candidates, ferroelectric tunnel junction (FTJ) memory using
ferroelectric polarization reversal is considered a promising candidate owing to its func-
tional superiority and scalability [17–21]. An FTJ device modulates the potential barrier
between the electrode and ferroelectric material through the polarization reversal of the
ferroelectric thin film, forming two different electrical resistance states, which is known as
tunneling electroresistance (TER) [22,23]. The TER effect, which is directly related to the
performance of the memory device [24], is expressed as follows [25]:

TER =
JON

JON − JOFF
(1)
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where JON is the current density in the ON state, and JOFF is the current density in the OFF
state. The theoretical concept of FTJ was proposed in the form of a “polar switch” and was
initially studied based on perovskite ferroelectrics [26–29]. To improve the electron tunnel-
ing phenomenon, it was necessary to continuously reduce the thickness of the ferroelectric
thin film. However, the development of perovskite ferroelectric-based FTJ devices has
been at a standstill for a long time because of the scale-down issue in which ferroelectricity
is lost at ultra-thin thicknesses [30]. Recently, the ferroelectricity of HfO2 was reported
in ultra-thin films (≤10 nm) [31]. Subsequently, many studies have applied HfO2-based
ferroelectrics to achieve high-performance FTJ devices. In particular, HfO2 thin films have
easy access to mass production owing to advantages such as their high compatibility with
the complementary metal-oxide-semiconductor (CMOS) process and low crystallization
temperature [18,30,32]. In addition, the FTJ device can be fabricated using a two-terminal
structure such as for metal-ferroelectric-metal (MFM), which has the advantage of being
applicable for designs for high integration of 4F2 [33–36]. Tunneling current-based op-
eration and a fast polarization reversal speed enable low power consumption and fast
driving [37,38]. In this study, a metal-ferroelectric-insulator-semiconductor (MFIS) stack
with a composite barrier was investigated. An asymmetric potential barrier was induced
by employing heavily doped n-type Si and SiON insulators. We demonstrated that the
MFIS stack had a high TER effect through a memory operation characteristic analysis
and an energy band diagram simulation. The memory characteristics were verified using
resistance–voltage (R–V) hysteresis loops showing the resistive switching characteristics,
and the reliability of the memory characteristics was evaluated. Finally, we presented the
possibility of next-generation memory applications for MFIS FTJ devices.

2. Materials and Methods

To verify the improvement in the memory characteristics of the composite barrier FTJ
device, MFM and MFIS structures were fabricated with a Si-doped HfO2 (HSO) ferroelectric
film. The bottom TiN electrode of the MFM structure was deposited to a thickness of 20 nm
through reactive sputtering with a DC plasma source (Advanced Energy, Campbell, CA,
USA). The partial pressure ratio of O2 and N2 gas was (N2 20 sccm/(O2 5 sccm + N2
20 sccm)) × 100 = 80%. The DC power was 100 W, and the working pressure was 2 mTorr.
For the MFIS stack, SiON was grown to a thickness of 25 Å on heavily doped n-type Si
(≈1019 cm−3) substrate. Si-doped HfO2 ferroelectric film was deposited with a thickness
of 8 nm via atomic layer deposition (ALD) at 280 ◦C. A mixture of Hf[N(CH3)(C2H5)]4
(TEMAH) and Si[N(CH3)2]4 (4DMAS) (Hf:Si = 16:1) was used as the precursor, and ozone
was used as the oxygen source. The composition ratio of the Si used as a dopant was
4.2 mol%. Subsequently, TiN was deposited using the same process as the bottom electrode,
and Pt was deposited to a thickness of 50 nm using an e-beam evaporator. The top electrode
was patterned using a circular pattern (radius = 100 µm) hard mask. Subsequently, a rapid
thermal annealing (RTA) process was performed in a N2 atmosphere at 600 ◦C for 20 s.

3. Results

Figure 1a,b show transmission electron microscopy (TEM) bright field images of
the FTJ devices with MFM (TiN/HSO/TiN) and MFIS (TiN/HSO/SiON/Si) structures,
respectively. It can be seen that HSO for non-volatile memory performance was deposited to
a thickness of 8 nm, and SiON for asymmetric potential barrier formation was deposited to
a thickness of 25 Å. Figure 1c,d show the elemental depth profiles of the TiN/HSO/TiN and
TiN/HSO/SiON/Si stacks, respectively, obtained using energy dispersive spectroscopy
(EDS). Because the upper stacks of the MFM and MFIS structures are identical, the depth
profiles of the Pt/TiN/HSO stacks are similar. In the case of the lower stacks, the Ti and N
peaks are visible under the HSO thin film in the MFM structure, whereas the Si and N peaks
are increased for the MFIS structure. The TEM images and EDS element depth profiles
verify that the MFM and MFIS structures are well implemented. An asymmetric electrode
structure using a heavily doped n-type Si substrate and a SiON insulator was designed
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to maximize the TER effect by using the asymmetry of the potential barrier formed in the
MFIS structure.
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Figure 1. The TEM data for (a) MFM and (b) MFIS FTJ devices; elemental depth profiles of (c) MFM
and (d) MFIS stacks analyzed by EDS.

Figure 2a,d shows the current-volatge (I-V) characteristics of the MFM and MFIS FTJ
devices, respectively, measured using a triangular waveform of 2 kHz, as shown in the inset
of Figure 2a. When the amplitude of the triangular waveform rises, polarization switching
occurs in the opposite direction of the electric field. Through polarization switching, the
amount of movement of the electric charge increases, resulting in an increase in the current.
Peak points 1 and 3 of the I–V curve correspond to the switching current. Because the
voltage applied to the MFM stack is applied only to the ferroelectric film, polarization
switching begins at a very low voltage, and the MFM FTJ has a very narrow read voltage
margin. However, in the MFIS stack, the insertion of the insulator causes a voltage division
across the ferroelectric film and the insulator. In particular, because the HfO2 thin film
used as a high-k material (εr = 25~35) has a relatively high dielectric constant compared to
that of SiON (εr = 4.6), the amount of voltage division is small, even when the thin film is
thicker [39,40]. Therefore, the MFIS FTJ device undergoes polarization switching at a higher
voltage than the MFM FTJ device; thus, the read margin, which is an important factor in
the operation of FTJ devices, is relatively large in the MFIS structure. In addition, as shown
in Figure 2d, it is possible to secure a stable driving voltage range of the FTJ device with
a wide read voltage margin of −2.5 V to 2.5 V that does not affect the polarization state.
Figure 2b,c shows energy band diagrams when the direction of polarization in the MFM
stack is down (b) and up (c). Figure 2e,f shows the energy band diagrams in the MFIS stack.
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Figure 2. The current–voltage characteristics of (a) MFM and (d) MFIS FTJ devices measured using a
triangular waveform; energy band diagrams for polarization directions of down and up in the (b,c)
MFM structure and (e,f) MFIS structure.

In the MFM stack, there is a barrier difference during the same read operation due
to polarization reversal; however, there is no significant barrier difference due to the
symmetrical electrode structure. Consequently, the TER according to the polarization
direction is not expected to be large. In contrast, in the MFIS structure, the energy band
change with downward and upward polarization is greater than that of the MFM stack.
The potential barrier of SiON bends steeply in the case of downward polarization, and
the width of the effective tunneling barrier is narrow and steep. Therefore, when the
polarization is downward, the tunneling current is expected to be large. On the other hand,
in upward polarization, the SiON potential barrier is not sharp, and the effective tunneling
barrier is also thick; hence, a small tunneling current flows. As a result, unlike the MFM
structure, the MFIS structure can maximize the TER effect because the barrier asymmetry
with the polarization direction is large.

The memory properties of the FTJ device that operates based on a polarization switch-
ing mechanism are strongly associated with the changes in the polarization switching
distribution and density in the ferroelectric thin film. Therefore, investigating the switch-
ing characteristics of the device through electric field cycling is important for assessing
its reliability. To analyze the switching characteristics of the device, the I–V curve and
first-order reversal curve (FORC) were analyzed. The FORC is an effective method for
observing domain movement, and it can be used to analyze the polarization density of a
ferroelectric film switched in a specific electric field. Using the saturation voltage (MFM:
−3 V; MFIS: −5 V) as the base bias, triangular pulses are applied in which the reverse
electric field is increased at +0.25 V per step in each subsequent sweep. The switching
density (ρ) obtained from the difference between the current densities of Er,i and Er,i−1 is
expressed as follows [41,42]:

ρ−(Er, E) ≈ 1
2E
×

J−FORC(Er,i, E)− J−FORC(Er,i−1, E)
Er,i − Er,i−1

(2)
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where E is the electric field, Er is the reverse electric field, i is the number of reversed electric
field sweeps starting from the saturation voltage, and JFORC is the current density. The
switching density extracted using Equation (2) is expressed as a Preisach model, and the
distribution of the coercive field (Ec) and internal bias field (Ebias) can be observed in detail.

Ec =
E− Er

2
, Ebias =

E + Er

2
(3)

Figure 3a shows the I–V characteristics of the MFM FTJ device with electric field cy-
cling. As the electric stress increases, the wake-up, switching peak shift, and merging effects
occur continuously [43,44]. This can be observed in detail in the FORC diagram. Figure 3b
shows a switching density pseudo-color plot of the MFM stack in the pristine state. The
switching density peaks are divided into two groups (red and green circles) at Ebias = −0.65
and 0.75 MV/cm, respectively. Both groups are shifted towards Ebias = 0 MV/cm, which is
different from the pristine state after 104 electric field cycles (Figure 3c). Figure 3d shows
the I-V characteristics of the MFIS FTJ device with electric field cycling. Owing to the
presence of the insulator, switching occurs later, and a switching peak is observed at 4.5 V.
However, there is a slight variation in the switching characteristics due to electric field
cycling. Figure 3e shows a switching density pseudo-color plot of the MFIS stack in the
pristine state. One switching density peak is observed near Ebias = −0.2 MV/cm. Unlike
the MFM stack, the switching density peak does not shift in the MFIS stack, even after
104 electric field cycles (Figure 3f). These results indicate that the MFIS stack has stable
switching characteristics in terms of reliability, and thus the FTJ device with a composite
energy barrier has greater application potential as a memory device than the MFM FTJ
device with a symmetric energy barrier. Therefore, the memory characteristics analysis
was performed using the MFIS FTJ device.

Materials 2022, 15, x FOR PEER REVIEW 6 of 11 
 

 

 
Figure 3. A comparison of the stability of the MFM and MFIS FTJ devices under electrical switching 
cycling: current–voltage curves of (a) MFM and (d) MFIS FTJ devices with an increase in the number 
of cycles; switching density pseudo-color plots (b), (e) in the pristine state, and (c), (f) after 10k 
switching cycles. The scale bar to the right of the graph represents the switching density, ρ. 

In Figure 4, the analysis of the pulse driving conditions applicable to read and write 
driving for the memory operation of the FTJ device is performed. Figure 4a shows the 
pulse scheme used to determine the read operation. Before the read pulse, the polarization 
is aligned upward and downward to investigate the difference in the tunneling current. 
An amplitude of ±5 V and a pulse of 50 µs were used to ensure sufficient alignment of the 
polarization in one direction. Then, the tunneling current was measured by applying 
pulses from 0 V to 2.5 V at 0.5 V steps. In addition, to observe the dependence of the tun-
neling current on the change in amplitude, the pulse width was fixed at 100 µs. Figure 4b 
shows the read current as a function of the applied voltage. Below 1.75 V, there is no sig-
nificant current difference between the upward and downward polarizations. However, 
the current difference begins to occur from 2 V, and the largest TER ratio occurs at 2.5 V. 
The MFIS FTJ device shows tunneling currents of 580 nA in the ON state and 73 nA in the 
OFF state, resulting in a TER value of 700%. This tunneling current difference is similar to 
that predicted by analyzing the energy band diagram shown in Figure 2. Figure 4c shows 
the pulse scheme used to optimize the pulse width for the writing (top) and erasing (bot-
tom) operation. The pulse amplitude was fixed at 5 V (writing) and −5 V (erasing), and 
the tunneling current was measured using a read voltage pulse after each programming 
(write or erase) with pulses 1–50 µs in pulse width. In the Figure 4d, the red data is the 
measured tunneling current along the width of the write programming pulse (Figure 4c 
top), and the blue data is the measured tunneling current while adjusting the width of the 
erase programming pulse (Figure 4c bottom). Regardless of the polarization direction, the 
tunneling current initially increases as the pulse width increases and then saturates at 20 
µs (Figure 4d). Thus, we can determine that the FTJ device completes the barrier modula-
tion at a pulse width of 20 µs. The use of a write pulse of ±2.5–5 V, 20 µs and a read pulse 
of 2.5 V, 100 µs was validated by the experimental results as the driving conditions for 
obtaining the optimal TER effect. A resistance–voltage (R-V) hysteresis loop was investi-
gated using the optimized pulse driving conditions. Figure 4e shows the pulse scheme 

-3 -2 -1 0 1 2 3

-200

-100

0

100

200

300

C
ur

re
nt

 (µ
A

)

Voltage (V)

 Prisitne
 10
 100
 1k
 10k

c)

0

30
MFM 10k

15

E c
[M

V
/c

m
]

Ebias [MV/cm]
0 1.5 3-3 -1.5

0

1

2

3b)

Ebias [MV/cm]

E c
[M

V
/c

m
]

0 1.5 3-3 -1.5
0

1

2

3

0

30
MFM Pristine

15

-6 -4 -2 0 2 4 6
-200

-100

0

100

200

C
ur

re
nt

 (μ
A

)

Voltage (V)

  Pristine
  10
  100
  1k
  10k

a)

d) f)
MFIS 10k

15

E c
[M

V
/c

m
]

0

30e)

Ebias [MV/cm]

E c
[M

V
/c

m
]

MFIS Pristine

0

30

15

0 2.4 4.8-4.8 -2.40

0.9

3.8

4.8

2.9

1.9

Ebias [MV/cm]

0

0.9

3.8

4.8

2.9

1.9

0 2.4 4.8-4.8 -2.4

Figure 3. A comparison of the stability of the MFM and MFIS FTJ devices under electrical switching
cycling: current–voltage curves of (a) MFM and (d) MFIS FTJ devices with an increase in the number
of cycles; switching density pseudo-color plots (b), (e) in the pristine state, and (c), (f) after 10 k
switching cycles. The scale bar to the right of the graph represents the switching density, ρ.



Materials 2022, 15, 2251 6 of 10

In Figure 4, the analysis of the pulse driving conditions applicable to read and write
driving for the memory operation of the FTJ device is performed. Figure 4a shows the
pulse scheme used to determine the read operation. Before the read pulse, the polarization
is aligned upward and downward to investigate the difference in the tunneling current.
An amplitude of ±5 V and a pulse of 50 µs were used to ensure sufficient alignment of the
polarization in one direction. Then, the tunneling current was measured by applying pulses
from 0 V to 2.5 V at 0.5 V steps. In addition, to observe the dependence of the tunneling
current on the change in amplitude, the pulse width was fixed at 100 µs. Figure 4b shows
the read current as a function of the applied voltage. Below 1.75 V, there is no significant
current difference between the upward and downward polarizations. However, the current
difference begins to occur from 2 V, and the largest TER ratio occurs at 2.5 V. The MFIS
FTJ device shows tunneling currents of 580 nA in the ON state and 73 nA in the OFF
state, resulting in a TER value of 700%. This tunneling current difference is similar to
that predicted by analyzing the energy band diagram shown in Figure 2. Figure 4c shows
the pulse scheme used to optimize the pulse width for the writing (top) and erasing
(bottom) operation. The pulse amplitude was fixed at 5 V (writing) and −5 V (erasing), and
the tunneling current was measured using a read voltage pulse after each programming
(write or erase) with pulses 1–50 µs in pulse width. In the Figure 4d, the red data is the
measured tunneling current along the width of the write programming pulse (Figure 4c
top), and the blue data is the measured tunneling current while adjusting the width of
the erase programming pulse (Figure 4c bottom). Regardless of the polarization direction,
the tunneling current initially increases as the pulse width increases and then saturates
at 20 µs (Figure 4d). Thus, we can determine that the FTJ device completes the barrier
modulation at a pulse width of 20 µs. The use of a write pulse of ±2.5–5 V, 20 µs and
a read pulse of 2.5 V, 100 µs was validated by the experimental results as the driving
conditions for obtaining the optimal TER effect. A resistance–voltage (R-V) hysteresis loop
was investigated using the optimized pulse driving conditions. Figure 4e shows the pulse
scheme used to obtain the R–V hysteresis data. The tunneling current, measured as the
write pulse, was increased from 0 V→ 2.5 V→ 5 V and decreased from 5 V→ 2.5 V→ 0 V
→−2.5 V→−5 V. When the negative saturation amplitude was reached, it was increased
again to 0 V. The resistance was measured with increasing increments of 0.5 V from 2.5 V,
at which polarization switching started. As shown in the R–V hysteresis loop in Figure 4f,
resistance switching is observed after 3 V. As the amplitude reaches 3 V, barrier modulation
occurs through polarization reversal from the OFF state to the ON state, or vice versa.
Finally, resistance switching due to the polarization is complete at ±5 V. Furthermore, in
saturation resistance, when an amplitude less than the programmed amplitude is applied,
the resistance does not change until the opposite threshold voltage is reached. Therefore, it
can be seen that the MFIS FTJ device has excellent memory characteristics that can clearly
distinguish the ON/OFF ratio by controlling the polarization reversal with pulse driving.

Endurance and retention tests were performed to evaluate the reliability of the memory
characteristics of the previously analyzed FTJ device. Figure 5a shows the endurance
properties evaluated by repeated ferroelectric polarization reversal through electric field
cycling. The memory characteristics in the pristine state, with a tunneling current difference
of approximately four times, are maintained during 2 × 103 electric field cycles. However,
the ON/OFF current ratio increases as the current value in the ON state gradually increases
during electric field cycling. This can be caused by the formation of leakage current paths
due to the rearrangement or creation of defects, such as oxygen vacancies in the ferroelectric
film during electrical cycling. In order to secure the reliability of the device, there is a need
to continue efforts to minimize the electrical degradation characteristics due to the fatigue
phenomenon of the thin film. Nevertheless, the FTJ device still has a wide memory window.
Figure 5b shows the retention characteristics to demonstrate the non-volatility of the device.
In both the ON and OFF states, the current decay phenomenon in which the non-volatile
characteristics disappear is not observed before 105 s, demonstrating that the device has
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excellent non-volatile characteristics. The extrapolation of this analysis makes it possible to
predict that the programmed memory will be maintained for approximately 10 years.
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Figure 4. The pulse driving conditions analysis: (a) pulse scheme used to determine the read driving
condition; (b) tunneling current depending on read voltage pulses with varying amplitudes and a
pulse width of 100 µs; (c) pulse scheme used to determine the write driving condition; (d) tunneling
current depending on the write voltage pulse; (e) pulse scheme used to obtain the resistance–voltage
(R–V) hysteresis data; (f) R–V hysteresis loop.
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4. Conclusions

We demonstrated FTJ devices based on TiN/HSO/TiN (MFM) and TiN/HSO/SiON/Si
(MFIS) structures for memory applications. Ferroelectric polarization switching and energy
potential barrier modulation were induced by a voltage pulse driving scheme with varying
pulse amplitudes or pulse widths. The thin dielectric layer at the interface between the
ferroelectric barrier and the metal electrode formed an asymmetric energy barrier in the
FTJ device, maximizing the height difference of the barrier during polarization switching;
consequently, the TER effect was greatly improved. In addition, this contributed to securing
a sufficient memory read driving margin owing to the voltage dividing effect between the
ferroelectric film and the insulator and induced stable polarization switching characteristics
compared to the symmetrical FTJ device. The MFIS-structured FTJ memory devices can
endure over 2× 103 electric field cycles at the writing program voltage pulse. Moreover, the
ON and OFF states of the FTJ device are expected to be maintained for more than 10 years at
room temperature, based on the retention data of 105 s. These FTJs with an inter-dielectric
layer have a high potential for next-generation non-volatile memory applications.
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