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Abstract
Background: TP53 is an important tumor suppressor gene on human 17th chromo-
some	with	its	mutations	more	than	60%	in	tumor	cells.	Lung	cancer	is	the	highest	in-
cidence	malignancy	in	men	around	the	world.	N-	6	methylase	(m6A)	is	an	enzyme	that	
plays	an	important	role	in	mRNA	splicing,	translation,	and	stabilization.	However,	its	
role	in	TP53-	mutant	non-	small-	cell	lung	cancer	(NSCLC)	remains	unknown.
Method: First,	 we	 investigated	 17	 common	 m6A	 regulators'	 prognostic	 values	 in	
NSCLC.	Then,	after	the	establishment	of	risk	signature,	we	explored	the	diagnostic	
value	of	m6A	in	TP53-	mutant	NSCLC.	Finally,	gene	set	enrichment	analysis	(GSEA),	
gene	 ontology	 (GO)	 enrichment	 analysis,	 and	 differential	 expression	 analysis	were	
used	 to	 reveal	 the	 possible	 mechanism	 of	 m6A	 regulators	 affecting	 TP53-	mutant	
NSCLC	patients.
Results: Study	 showed	 that	 nine	 m6A	 regulators	 (YTHDC2,	 METTL14,	 FTO,	
METTL16,	YTHDF1,	HNRNPA2B1,	RBM15,	KIAA1429,	and	WTAP)	were	expressed	
differently	between	TP53-	mutant	and	wild-	type	NSCLC	(p <	0.05);	and	ALKBH5	and	
HNRNPA2B1	were	 associated	with	 the	 prognostic	 of	 TP53-	mutant	 patients.	After	
construction	of	the	risk	signature	combined	ALKBH5	and	HNRNPA2B1,	we	divided	
patients	with	TP53	mutations	 into	high-		 and	 low-	risk	 groups,	 and	 there	was	 a	 sig-
nificant	survival	difference	between	two	groups.	Finally,	338	differentially	expression	
genes	(DEGs)	were	found	between	high-		and	low-	risk	groups.	GO	enrichment	analy-
sis,	PPI	network,	and	GSEA	enrichment	analysis	showed	that	m6A	may	affect	the	im-
mune	environment	in	extracellular	and	change	the	stability	of	mRNA.
Conclusion: In	 conclusion,	m6A	 regulators	 can	be	used	as	prognostic	predictors	 in	
TP53-	mutant	patients.
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1  |  INTRODUC TION

Lung	 cancer	 remains	 the	 deadliest	 malignancy	 in	 the	 world,	 and	
non-	small-	cell	lung	cancer	accounts	for	85%	of	all	types	of	lung	can-
cer	 individuals,	which	 is	 characterized	 by	 high	 incidence	 and	 high	
mortality.	 Non-	small-	cell	 lung	 cancer	 can	 be	 mainly	 classified	 to	
three	histological	 subtypes:	 lung	 squamous-	cell	 carcinoma	 (LUSC),	
lung	adenocarcinoma	(LUAD),	and	large-	cell	lung	cancer.1	Although	
great progress has been made in the detection and the treatment 
in	NSCLC	patients	 in	 recent	years,	 the	5-	year	survival	 remains	 for	
NSCLC	remains	only	16.6%.2

TP53,	also	known	as	p53,	is	the	most	frequently	mutated	gene	
in	NSCLC	patients,	even	up	to	80%	in	squamous-	cell	carcinoma.3	It	
is	one	of	the	widely	studied	tumor	suppressor	genes,	which	names	
from	the	protein	with	the	molecular	weight	of	53	kDa.	P53	protein	
is	an	 important	regulator	of	cell	growth,	proliferation,	and	damage	
repair.	 DNA	 damage	 and	 oncogene	 activation	 can	 stimulate	 the	
acetylation	and	the	activate	of	p53,	to	realize	TP53	function	as	a	cel-
lular stress sensor.4	Moreover,	TP53	is	the	most	frequently	mutated	
gene	in	human	malignancies,	and	the	tumor	suppressive	function	of	
p53	protein	in	TP53-	mutant	individuals	was	reversed	compared	with	
TP53-	wild	type.	In	vivo	experiments	confirmed	that	Trp53	knockout	
mice	had	a	higher	risk	of	developing	cancer.5

People	have	discovered	a	reversible	modification	of	RNA	meth-
ylation	that	occurs	at	the	sixth	position	of	the	RNA	molecule	ade-
nine	nitrogen	atom	(N-	6	methylation,	m6A).	M6A	methylation	is	the	
most	 common	post-	transcriptional	modification	 in	 eukaryotes	 and	
plays	an	important	role	in	mRNA	metabolism	and	translation,	as	well	
as cell differentiation and embryonic development.6	 It	often	found	
enriched	 in	 3′-	UTR	 and	 near	 the	 termination	 codons	 of	 mRNA.7 
M6A	regulators	can	be	classified	into	three	types	according	to	their	
functions,	which	 are	 called	 “writers,”	 “erasers,”	 and	 “readers.”	 The	
function	of	the	“writers”	is	modifying	methyl	to	nucleotides,	such	en-
zymes	include	METTL3/14/16,	RBM15/15B,	WTAP,	KIAA1429,	and	
ZC3H13.	METTL3,	as	a	catalytic	subunit,	combines	with	METTL14	
to	form	a	hetero	complex.8	And	METTL3	was	also	found	to	play	the	
role	as	a	“reader”	and	located	in	the	cytoplasm.9	WTAP	can	bind	to	
the	hetero	complex	and	plays	an	important	role	in	the	recruitment	of	
the	hetero	complex.10	METTL3/14-	WTAP	complex	can	be	induced	
into	the	nucleus	by	ZC3H13,	thereby	form	the	ZC3H13-	KIAA1429-	
HAKAI	 complex	 in	 the	 nucleus	 to	 regulate	 the	 m6A	 process.11 
RBM15/15B	 can	 also	 promote	 the	methylation	 for	 certain	 RNAs.	
Methylation	in	mRNA	caused	by	“writers”	can	be	demethylated	by	
“erasers”	(including	FTO	and	ALKBH5),	which	makes	the	process	re-
versible.12	“Readers”	 is	essentially	a	class	of	RNA-	binding	proteins,	
which	can	be	divided	according	to	different	domains,	such	as	YTH	
domains	(YTHDF1-	3	and	YTHDC1/2),	HNRNPs	domains	(HNRNPC	
and	HNRNPB2A1),	 and	some	same	RNA-	binding	domains,	 respec-
tively.13– 15 These regulators can bind specifically to the methyl on 
mRNA.12	These	genes	build	interaction	network	that	worked	by	act-
ing	on	m6A-	modified	mRNAs.

So	 far,	many	 studies	have	 revealed	 the	 roles	of	m6A	methyla-
tion	 modification	 in	 various	 tumors,	 particularly	 hepatocellular	

carcinoma,	 breast	 cancer,	 gastric	 cancer,	 and	 lung	 cancer.16–	19 
However,	 the	 expression	 and	 prognostic	 significance	 in	 TP53-	
mutant	non-	small-	cell	lung	cancer	are	still	unknown.

To	 further	 investigate	 the	 role	 of	 m6A	 modification	 in	 TP53-	
mutant	 lung	 cancer	 patients,	 we	 conducted	 an	 in-	depth	 analysis	
of	17	m6A	gene	expression	profiles	in	469	lung	cancer	patients.	In	
469	patients,	233	individuals	had	a	TP53-	mutant	status.	All	the	data	
were	downloaded	from	the	Cancer	Genome	Atlas	(TCGA).

2  |  MATERIAL AND METHODS

2.1  |  Data set

All	data	were	downloaded	from	TCGA	database	(https://portal.gdc.
cancer.gov/),	 including	 1026	 NSCLC	 patients'	 RNA-	seq	 transcrip-
tome	profiling	and	561	NSCLC	patients'	single	nucleotide	variation	
with corresponding clinical information.

2.2  |  Selection of m6A regulators

A	 total	 of	 17	m6A	 regulators	were	 finally	 identified	 in	 our	 analy-
sis	 based	 on	 our	 search	 including	 eight	 “writers”	 (METTL3/14/16,	
WTAP,	 RBM15/15B,	 KIAA1429,	 and	 ZC3H13),	 seven	 “readers”	
(YTHDF1/2/3,	YTHDC1/2,	HNRNPA2B1,	and	HNRNPC),	two	“eras-
ers”	(FTO,	ALKBH5).20,21

2.3  |  Bioinformatics analysis

R	4.0.2	was	applied	to	all	analysis.	First,	we	divided	all	samples	into	
TP53-	mutant	and	TP53	wild-	type	cohort.	We	compared	expression	
levels	between	TP53-	mutant	and	TP53	wild-	type	cohort.	Univariate	
cox	analysis	was	applied	to	independent	prognostic	analysis	for	17	
m6A-	related	genes,	hazard	 ratio	 (HR)	value	was	used	 in	determin-
ing	protective	or	risk	gene.	Multivariate	cox	regression	was	used	to	
construct	an	independent	prognostic	signature	by	regularizing	and	
screening	17	genes	 in	TP53-	mutant	patients,	and	the	risk	score	of	
screened	genes	was	calculated.	The	calculation	formula	of	risk	score	
is Risk score =

∑n

j=1
Coefj ∗ ij.	R	package	“Survival”	and	“glnmet”	were	

applied	to	univariate	and	multivariate	regression	cox	analyses	 in	R	
version	4.0.2,	respectively.

We	 then	 investigated	 the	 different	 pathways	 between	 high-	
risk	 group	 and	 low-	risk	 group	 in	TP53-	mutant	 cohort	 by	 gene	 set	
enrichment	 analysis	 (GSEA),	 and	 the	 GSEA	 test	 run	 1000	 times.	
Differentially	 expression	 genes	 (DEGs)	 were	 acquired	 between	
high-		and	 low-	risk	group	 in	TP53-	mutant	cohort.	Ggplot2	package	
was	applied	to	GO	pathway	enrichment	analysis	of	these	DEGs.	A	
protein– protein interaction graph of these DEGs was constructed in 
STRING	 (http://strin	g-	db.org/).	MCODE	plugin	 of	 Cytoscape	 soft-
ware	was	applied	to	PPI	visualization,	and	Bingo	plugin	was	used	to	
build	GO	pathways	diagrams.

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
http://string-db.org/
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2.4  |  Statistics

Wilcoxon	 test	was	 performed	 to	 compare	m6A	 expression	 differ-
ence	between	mutant	group	and	wild-	type	group.	Chi-	squared	test	
was used to compare the difference of clinical features between dif-
ferent	 subgroup.	Kaplan–	Meier	method	was	 used	 for	 the	 analysis	
of	overall	survival.	Univariate	and	multivariate	cox	regression	analy-
ses were applied to assess the relationship between prognostic and 
risk	score.	The	missing	data	were	deleted	from	the	analysis.	All	the	
statistical	analyses	were	performed	in	R	version	4.0.2,	and	p value 
<0.05 was considered statistically significant.

3  |  RESULTS

3.1  |  Differential expression of m6A- related genes 
in Lung cancer

Analyzing	 the	 expression	 of	 17	 m6A-	related	 genes	 in	 233	 TP53-	
mutant	 samples	 and	 236	 TP53	wild-	type	 samples,	 we	 found	 that	
the	expression	of	nine	genes	(YTHDC2,	METTL14,	FTO,	METTL16,	
YTHDF1,	HNRNPA2B1,	RBM15,	KIAA1429,	and	WTAP)	were	signif-
icantly	different	between	two	cohorts	(Figure	1A,B).	The	correlation	
analysis	showed	that	WTAP	was	significantly	negatively	correlated	
with	YTHDC1,	ZC3H13,	METTL3,	and	METTL16	 in	 the	wild	 type,	
while	 the	negatively	correlated	genes	 in	mutant	cohort	were	FTO	
and	 METTL3,	 YTHDC2,	 and	 HNRNPC.	 Most	 of	 the	 other	 genes	
were	positively	correlated	in	two	cohorts	(Figure	1C,D).

3.2  |  Independent prognostic signatures 
building and comparison in wild- type and 
mutant cohorts

We	 then	 constructed	 a	 prognostic	model	 using	 univariate	 cox	 re-
gression	 and	 multivariate	 cox	 analyses.	 Univariate	 cox	 regression	
was	applied	to	screen	prognostic-	associated	genes.	We	found	that	
HNRNPA2B1	gene	has	 a	 good	correlation	with	prognostics	 in	pa-
tients	 without	 TP53	mutation.	 Results	 showed	 that	 ALKBH5	 and	
HNRNPA2B1	lead	to	poor	prognostic	in	TP53-	mutant	patients.	High	
expression	of	FTO	and	METTL14	meant	different	prognostic	risk	in	
patients	 between	TP53-	mutant	 and	wild-	type	groups.	 Forest	map	
showed	that	high	expression	of	FTO	and	METTL14	was	considered	
lower	risk	in	the	wild-	type	patients,	which	was	exactly	the	opposite	
in	the	mutant	patients	(Figure	2A,B).

Later,	we	constructed	prognostic	signatures	of	17	genes	in	mu-
tant	 cohorts	 using	 multivariate	 cox	 regression	 analysis	 to	 predict	
patients'	 prognostic	 risk	 score.	Using	 this	method,	we	 established	
prognostic	signatures	containing	ALKBH5	and	HNRNPA2B1	in	the	
mutant	 cohorts.	Result	 of	 the	multivariate	 cox	 regression	 and	 the	
coefficient	 value	were	 shown	 in	 Table	 1.	 Then,	 based	 on	 the	 risk	
score,	patients	were	divided	into	the	high-		and	low-	risk	group.	There	
was	a	significant	difference	between	two	groups	in	patients'	overall	

survival	 (Figure	2C).	The	results	of	ROC	curve	also	showed	that	 it	
was	feasible	to	evaluate	the	overall	survival	rate	by	risk	signature	in	
the	TP53-	mutant	patients	(Figure	2D).	Compared	with	clinicopath-
ological	 features,	 risk	 score	was	also	good	predictors	 in	prognosis	
(Figure	2E).	To	validate	the	signature	in	predicting	patients'	outcome,	
univariate	and	multivariate	cox	regression	were	applied	to	evaluate	
the	accuracy	of	demography,	clinicopathology,	and	risk	score.	In	ad-
dition,	the	result	showed	that	risk	score	performed	well	in	predicting	
the	prognosis	of	TP53-	mutant	patients	compared	with	clinicopath-
ology	features	whether	in	univariate	or	multivariate	cox	regression	
analysis	 (Figure	 3A,B).	 This	 result	 indicated	 that	 the	 independent	
prognostic	 signature	 constructed	 by	 ALKBH5	 and	 HNRNPA2B1	
had	 better	 predictive	 value	 than	 TNM	 in	 TP53-	mutant	 patients.	
Significant	difference	 in	gender	was	 revealed	by	exploring	 the	 re-
lationship	between	demographics	and	clinicopathology	(Figure	3C).	
In	the	risk	curves,	the	relationship	of	cases	between	the	risk	score	
and	patients'	survival	were	arranged	in	order	of	risk	score	from	low	
to	high,	and	we	observed	that	alive	patients	became	sparse	as	the	
risk	score	increases	(Figure	3D,E).	It	can	also	be	concluded	that	with	
the	increment	of	HNRNPA2B1	and	ALKBH5	expression,	an	increas-
ing	trend	occurred	in	the	risk	score	(Figure	3F).	These	findings	con-
firmed the accuracy of the independent prognostic model.

Then,	we	 explored	 the	distinction	of	m6A	 regulators	 between	
high-	risk	 and	 low-	risk	 group.	 The	 results	 showed	 that	 the	 expres-
sion	 of	 ALKBH5	 and	 HNRNPA2B1	 in	 high-	risk	 group	 was	 higher	
than	low-	risk	group,	and	the	difference	was	statistically	significant	
(Figure	3G).	Among	them,	more	than	a	half	of	m6A	regulators	had	a	
differential	expression	between	two	groups	(Figure	3H).

3.3  |  M6A- regulated signaling pathways and 
functional enrichment

Gene	 set	 enrichment	 analysis	 analysis	was	 conducted	 to	excavate	
the	different	signaling	pathways	and	cell	functional	enrichment.	As	
shown	 in	Figure	4,	biological	 functions	related	to	cell	proliferation	
and	DNA	synthesis	were	highly	enriched	in	high-	risk	group	includ-
ing	cell	cycle,	spliceosome,	folate-	involved	one	carbon	metabolism,	
aminoacyl-	tRNA	 synthesis,	 RNA	 degradation,	 DNA	 replication,	
purine	 and	 pyrimidine	 metabolism,	 mismatch	 repair	 (MMR),	 and	
nucleotide	 excision	 repair	 (NER).	 IgA	 producing	 intestinal	 immune	
networks	was	observed	to	be	silent	in	high-	risk	group	and	enriched	
in	 low-	risk	group	 (Figure	4).	FDR	<0.05 of signaling pathways and 
cell	functions	was	used	as	inclusion	criteria	in	GSEA	analysis.

Then,	we	searched	for	the	differentially	expression	genes	(DEGs)	
between	high-		and	low-	risk	groups.	338	DEGs	were	found	by	differ-
ential	expression	analysis.	Heatmap	and	volcano	plot	were	shown	in	
Figure	S1.	The	338	DEGs	were	analyzed	in	BINGO	plugin	of	cytos-
cape,	and	the	functional	enrichments	of	three	modules	of	GO	anal-
ysis	 (BP,	CC,	 and	MF)	were	 shown.	We	 found	 that	most	 different	
pathways	were	located	in	extracellular	region.	Molecular	functions	
dominated by these DEGs were more enriched in receptor bind-
ing,	 organic	 acid	 transmembrane	 transporter	 activity,	 IgE	 binding,	
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symporter	activity,	etc.	Biological	processes	were	associated	mainly	
with	the	regulation	of	response	to	external	stimulus,	cytolysis,	hu-
moral	immune	response,	and	response	of	fibrinolysis	(Figure	5A).	In	
addition,	these	molecular	functions	and	biological	process	were	also	
shown	in	the	heatmap	(Figure	5B).

We	then	put	all	the	DEGs	to	STRING	web	tool	(http://strin	g-	db.
org/)	to	analyze	the	protein–	protein	interaction	network	to	further	
determine	the	molecular	mechanism	of	the	DEGS	(Figure	5C).	And	
the	PPI	network	obtained	from	the	String	database	is	then	imported	
in	 cytoscape	 for	 visualization.	 Green	 nodes	 represent	 the	 down-	
regulated	 genes	 and	 red	 nodes	 represent	 the	 up-	regulated	 genes	
(Figure	5D).

3.4  |  Relationship between m6A regulators and 
prognostic in TP53- mutant individuals

Finally,	we	assessed	the	relevance	between	all	m6A	regulators	ex-
pression	and	overall	survival	in	TP53-	mutant	patients.	All	the	cases	
were	 categorized	 into	 two	 groups	 by	median	 expression	 value	 of	
respective	 gene,	 then	 Kaplan–	Meier	 survival	 curves	were	 plotted	

between	high-	expression	and	low-	expression	groups.	According	to	
the	 feedback	 information	 from	the	survival	curves,	we	 found	 four	
regulators	including	ALKBH5,	METTL3,	HNRNPA2B1,	and	YTHDC1	
with	 their	 expression	 levels	 significantly	 correlated	 with	 survival	
(Figure	6).

3.5  |  Clustering and grouping prognoses for 
mutant and wild- type cohorts

In	order	to	explore	a	new	m6A	related	classification	of	TP53-	mutant	
NSCLC,	we	performed	the	consensus	clustering	to	all	patients.	The	
wild-	type	and	the	mutant	cohort	were,	respectively,	divided	into	two	
clusters	by	consensus	clustering,	respectively,	based	on	the	expres-
sion	profiles	of	all	genes	(Figure	7A,B).	In	the	process	of	consensus	
clustering,	we	analyzed	the	possibility	of	clustering	count	(k	value)	
from	2	to	9	(Figure	7C–	H).	Finally,	k = 2 was applied to the mutant 
and	the	wild-	type	cohort.	The	clinicopathological	characteristics	of	
the patients in each cluster were listed in Table 1.

We	then	analyzed	the	clinicopathology	and	survival	of	two	sub-
groups of each cohort. We found that two subgroups of wild type 

F I G U R E  1 Differential	expression	of	m6A	regulators	in	TP53	wild-	type	and	mutant	type	and	correlation	in	respective	cohorts.	(A).	The	
heatmap	of	m6A	regulators	expression	in	every	individual.	(B).	Violin	plot	of	m6A	regulators	expression	differential	in	wild-	type	and	mutant	
type.	(C	and	D).	Correlation	in	m6A	regulators	based	on	the	Pearson	correlation	in	wild	and	mutant	cohorts.	*p value <0.05,	**p value <0.01,	
***p value <0.005

http://string-db.org/
http://string-db.org/
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have	a	significant	difference	in	T	stage,	while	a	more	significant	dif-
ference	in	M	stage	consists	in	mutant	cohort.	There	was	a	significant	
difference	 in	 stage	exists	 in	both	cohorts	 (Figure	8A,B).	However,	
survival	analysis,	according	to	the	results	of	both	in	the	wild-	type	co-
hort (p = 0.121) and mutant cohort (p =	0.089),	survival	situation	be-
tween	the	subgroups	were	not	significantly	different	(Figure	8C,D).

4  |  DISCUSSION

Lung	cancer	is	the	most	common	malignancy	tumor	among	men	and	
the	second	leading	cause	of	death	of	malignancy	in	women	that	ranks	
only	second	to	the	breast	cancer.	In	general,	most	patients	were	di-
agnosed	with	lung	cancer	with	local	or	distant	metastasis;	hence,	the	
average	5-	year	survival	rate	for	diagnosed	lung	cancer	patients	is	as	
low as 15%.22	Therefore,	systematic	palliative	is	the	most	common	

clinical	 treatment	 for	 lung	 cancer,	 including	 radiotherapy,	 chemo-
therapy,	and	immunotherapy.23	As	the	most	common	mutated	gene	
in	human	malignant	tumors,	TP53	gene	plays	a	role	in	tumor	forma-
tion,	development,	and	treatment.	About	50%	patients	have	TP53	
mutations,	which	 are	often	missense	mutations.24 Compared with 
wild-	type	patients,	TP53-	mutant	individuals	have	poor	prognostics	
and	strong	tolerance	to	chemoradiotherapy;	hence,	it	can	be	used	as	
a	good	prognostic	biomarker	for	patients	with	NSCLC.25 P53 protein 
is	the	expression	product	of	TP53	gene,	which	is	often	not	detected	
in normal individuals. But the abnormal activation of p53 in cell can 
be	caused	while	TP53	gene	is	in	a	mutated	state,	and	the	mutant	pro-
tein	can	be	endowed	with	functional	acquisition.	It	is	in	this	way	that	
the TP53 gene participate in many stages with tumor development 
and mediates the treatment tolerance of tumors.24

Chemical	modification	of	RNA	is	considered	to	have	important	
biological	 functions.	 So	 far,	more	 than	 160	RNA	 chemical	modifi-
cation	 have	 been	 found	 in	 eukaryotes	 of	 which	 N-	6	 methylation	
that	always	as	known	as	m6A	is	the	most	common.	M6A	was	found	
functional	 in	RNA	 transcript,	RNA	splice,	 and	RNA	degradation	 in	
mammals.	Babieri	 I.	showed	that	METTL3	and	FTO	could	regulate	
the transcription of CEBP through its interaction with CEBP pro-
tein	family	and,	thus,	promotes	the	procession	of	AML.26	However,	
with	 the	 discovery	 of	 the	 first	 “eraser,”	 FTO,	 the	 m6A-	mediated	

F I G U R E  2 (A	and	B)	Univariate	cox	for	m6A	regulators	in	patients	with	and	without	TP53	mutant.	(C)	Mutant	cases	were	divided	into	two	
groups	by	gene	signature,	and	the	Kaplan–	Meier	curves	between	two	groups,	with	p value =	1.966e-	03.	(D)	ROC	curve	of	gene	signature	to	
predict	the	prognostic	in	TP53-	mutant	patients,	AUC	represents	the	sensitivity	of	prediction.	(E)	Multiple	ROC	curve	of	gene	signature	to	
compare	with	age,	gender,	stage,	and	TMN

TA B L E  1 The	coef	value	of	the	m6A	regulators	in	risk	signature.

N- 6 methylation 
regulators Coef value Hazard ratio

HNRNPA2B1 0.458124565 1.581105941

ALKBH5 0.514780837 1.673271743
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F I G U R E  3 (A	and	B)	Verification	of	gene	signatures	by	univariate	cox	regression	and	multivariate	cox	regression.	(C)	Associated	between	
clinicopathological	features	and	m6A	regulators.	(D	and	E)	Risk	score,	survival	time,	and	survival	status	of	patients.	(F)	The	relationship	
between	expression	of	m6A	regulators	and	prognostic	risk.	(G)	Expression	of	HNRNPA2B1	and	ALKBH5	in	two	groups.	(H)	Expression	of	all	
m6A	regulators.	HR,	hazard	ratio

F I G U R E  4 Performed	GSEA	analysis	between	two	groups	to	seek	different	signaling	pathways	and	cellular	functions.	It	was	revealed	
that	cell	functions	in	high-	risk	patients	is	more	associated	with	spliceosome,	cell	cycle,	folate	and	one	carbon	pool	metabolism,	aminoacyl	
tRNA	synthesis,	RNA	degradation,	DNA	replication,	purine/pyrimidine	metabolism,	MMR	and	NER,	etc.	The	IgA	secreting	intestinal	immune	
network	was	found	in	low-	risk	group,	and	that	only	this	cellular	function	was	enriched	in	low-	risk	group	and	silenced	in	high-	risk	group
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methylation	 of	 the	 sixth	 nitrogen	 atom	of	 RNA	 adenine	 has	 been	
recognized	as	a	dynamic	reversible	regulation.27

According	to	current	studies,	m6A	regulators	plays	a	role	in	vari-
ety	of	human	tumors	and	can	also	be	an	important	marker	to	predict	
prognostic	in	human	malignancy.	As	the	core	gene	of	the	“writers,”	
METTL3	plays	a	vital	part	 in	many	tumors.	 In	LUAD,	METTL3	can	
augment	 EGFR	 expression	 and	 promote	 the	 cyclization	 of	 mRNA	
through	eIF3.28	In	addition,	high	expression	of	METTL3	can	be	con-
sidered	as	 a	 signal	of	poor	prognosis	 in	 lung	adenocarcinoma,	he-
patocellular	carcinoma,	and	gastric	cancer.29	In	 lung	squamous	cell	
carcinoma,	tumors	with	high	expression	of	demethylase	FTO	show	
greater	aggressivity	and	proliferation,	as	well	greater	apoptotic	resis-
tance	(usually	by	acting	on	M2F1).	Hence,	FTO	is	clinically	recognized	
as a prognostic factor for lung squamous cell carcinoma.30	ALKBH5	
and	HNRNPA2B1	were	found	to	be	predictors	in	TP53-	mutant	pa-
tients	in	our	study.	ALKBH5	is	a	member	of	Alk	protein	family,	with	
its	dysregulation	has	been	found	in	many	tumors.	ALKBH5	contains	
a	DSBH	domain,	which	can	bind	to	the	ATP	domain	of	DDX3	gene,	
thus,	 affecting	 cell	 cycle,	 apoptosis,	 RNA	 degradation,	 and	 other	
cellular processes.31	 In	 the	 present	 study,	 expression	 of	 ALKBH5	
varied	 in	 different	 malignant	 tumors.	 ALKBH5	 is	 often	 lower	 ex-
pression	in	colon	cancer	and	pancreatic	cancers,32,33 while its higher 
expression	is	always	a	sign	of	poor	prognosis	in	breast	cancers	and	
lung cancers.34,35	We	focused	on	expounding	 the	role	of	ALKBH5	

in	NSCLC.	Evidence	suggested	that	reduced	levels	of	n-	6	methyla-
tion	of	FOXM1	can	inhibit	proliferation	and	invasion	phenotypes	of	
lung	cancer	cells.	This	reduction	occurred	 in	ALKBH5	knock-	down	
individuals.36	 HNRNPA2B1	 is	 closely	 related	 to	 a	 function	 called	
m6A-	swicth.	It	has	a	HNRNPs	domain	which	has	specific	structures,	
thus,	to	regulate	RNA–	protein	interactions.12	In	addition,	it	can	reg-
ulate	the	splicing	of	transcriptional	exons	and	the	formation	of	pre-	
miRNA,	which	is	similar	to	METTL3—	m6A	“readers”.13

In	our	study,	we	were	devoting	to	construct	a	signature	that	con-
tains	m6A	regulators	that	were	expected	to	predict	the	prognostic	in	
TP53-	mutant	non-	small-	cell	lung	cancer	patients.	We	first	analyzed	
the	differences	of	m6A	regulators'	expression	in	TP53-	mutant	and	
wild-	type	NSCLC	patients	and	found	that	more	than	a	half	of	m6A	
regulators	expression	were	different	between	two	groups.	The	fol-
lowing	univariate	cox	regression	analysis	revealed	that	m6A	regula-
tors	predicted	different	prognostic	risk	with	different	status	of	TP53	
gene.	For	example,	high	expression	of	ALKBH5	in	TP53-	mutant	pa-
tients	meant	a	poor	outcome,	but	with	no	significant	effect	in	TP53-	
mutant individuals. We then established the prognostic signature in 
patients	with	TP53	mutant.	Multivariate	cox	regression	showed	that	
a	signature	consisting	ALKBH5	and	HNRNPA2B1	could	categorize	
the	patients	 into	high-		and	 low-	risk	groups.	Kaplan–	Meier	survival	
curve indicates that there are significant differences between two 
groups obtained by the signature. The validity of the prediction 

F I G U R E  5 (A)	Tree	modules	(CC,	BP,	and	MF)	of	GO	analysis	in	cytoscape	plugin	BINGO.	(B)	Heatmap	of	GO	functional	enrichment	
analysis.	(C)	Protein–	protein	interaction	network	which	accomplished	in	STRING.	(D)	Visualization	of	PPI	networks	in	cytoscape.	CC,	cellular	
component;	BP,	biological	process;	MF,	molecular	functions;	GO,	Gene	Ontology
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was verified by univariate independent prognostic and multivariate 
independent	prognostic	analysis.	The	 forest	map	showed	that	 risk	
score	was	a	better	predictor	of	patients'	prognostic	than	stage	and	
TNM.	The	risk	curve	also	confirmed	the	conclusion.	The	majority	of	
m6A	regulators	in	high-	risk	group	has	a	significantly	higher	expres-
sion.	GSEA	enrichment	analysis	was	carried	out	between	high-		and	
low-	risk	groups	next	 to	analysis	possible	mechanism.	 It	was	 found	
that	the	enriched	pathways	in	high-	risk	group	were	more	related	to	
cell	proliferation	and	gene	expression.	The	conclusion	predicts	the	

possible	impact	of	m6A	regulators	in	patients	with	TP53	mutations.	
And	the	DEGs	between	groups	were	identified	for	further	functional	
exploration.	These	DEGs	were	put	 in	GO	enrichment	analysis	and	
visualized.	The	 results	 showed	 that	 these	DEGs	were	 significantly	
enriched	in	functions	as	receptor	binding,	cytolysis,	and	so	on,	which	
mostly	occurred	in	extracellular	region	and	plasma	membrane,	which	
meant	m6A	may	affect	the	microenvironment	of	TP53-	mutant	can-
cer	cells.	Finally,	we	used	the	method	of	the	consensus	clustering	to	
classify	the	TP53-	mutant	and	wild-	type	cohorts	into	any	subgroups,	

F I G U R E  6 The	relationship	between	expression	of	each	m6A	regulator	and	overall	survival	in	patients	with	TP53	mutations
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F I G U R E  7 (A–	H),	Cluster	of	respective	cohorts

F I G U R E  8 Survival	and	clinicopathology	characteristics	between	two	subgroups	in	TP53	wild-	type	and	mutant-	type	correspondingly.	(A	
and	B),	relationship	between	m6A	regulator	and	clinicopathology;	(C	and	D),	Kaplan–	Meier	overall	survival	curves,	elucidates	the	survival	of	
the	two	subgroups.	*	differences	are	statistically	significant
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respectively,	 in	 an	 attempt	 to	 find	 a	better	prediction	method	 for	
tumor prognosis.

In	 our	 study,	 we	 systematically	 analyzed	 the	 potential	 value	
and	 possible	 mechanism	 of	 m6A	 regulators	 in	 TP53-	mutant	
NSCLC	patients.	However,	there	were	still	some	limitations	in	this	
study.	First,	all	 the	data	were	downloaded	 from	the	TCGA	data-
base	and	should	be	validated	 in	 lung	cancer	patients;	second,	all	
the	 cases	were	 from	 the	United	 States,	which	 could	 lead	 to	 re-
gional	and	racial	biases	in	the	results;	third,	the	exact	mechanism	
remains unclear.

In	short,	m6A	regulators	may	provide	new	insights	and	explore	
new target for the diagnosis and treatment of patients with TP53 
mutations	in	NSCLC	patients.
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