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field. Next, we summarize the diagnostic and therapeutic approaches 
employed for PCD/KS on the basis of its partially understood 
pathoetiology. Throughout these sections, we have discussed several 
complications associated with PCD/KS, including the causal link 
between PCD/KS and male infertility, and we briefly point out 
appropriate treatment approaches for these complications.

INCIDENCE AND CLINICAL MANIFESTATIONS OF PRIMARY 
CILIARY DYSKINESIA/ KARTAGENER'S SYNDROME
KS is a rare clinical disease. Its overall incidence is approximately 
1/40 000, and it occurs in about 1% of cases of bronchiectasis and 20% 
of cases of situs inversus. The general age of onset is 10–29 year, and 
most of the patients are school‑aged children or adolescents younger 
than 15 years of age. However, there is no significant difference in the 
incidence between males and females.2,9

Cilia are widely present in a variety of tissues and organs, such 
as the organs of the respiratory tract, paranasal sinuses, Eustachian 
tube, middle ear, oviduct, spermaductus, flagella of the sperm tail, 
brain and spinal cord ependyma. Therefore, clinical PCD/KS may not 
merely exhibit the typical ‘clinical triad’, but may often be accompanied 
by a variety of malformations or complications. The most common 
complications include congenital heart disease, hydrocephalus, cleft 
palate, bilateral cervical ribs, anal atresia, urethral crack and duplex 

INTRODUCTION
In 1933, Kartagener for the first time reported four patients with 
‘sinusitis‑bronchiectasis‑situs inversus syndrome’ and emphasized 
that this ‘clinical triad’ was a special kind of congenital syndrome 
with familial and hereditary characteristics. Therefore, the syndrome 
presenting all three symptoms was named complete Kartagener’s 
Syndrome (KS). Another term, incomplete KS, was used to describe 
cases that did not involve situs inversus.1–3

A previous study has revealed some defects of the ciliary dynein 
arm in the airway epithelial cells of KS patients.4 These defects may be 
related to the decreased mucosal scavenging capability and the absence 
of ciliary motility in KS. In 1988, Rossman and Newhouse5 suggested a 
more appropriate nomenclature for this condition, i.e. primary ciliary 
dyskinesia (PCD). Generally, PCD encompasses all congenital ciliary 
dysfunctions, and the term ‘KS’ can still be used for describing the 
syndrome accompanied by situs inversus. KS is an autosomal recessive 
genetic disease accounting for approximately 50% of the cases of PCD. It 
is one of the most serious subtypes of PCD as it is caused by simultaneous 
abnormal ciliary function in several parts of the organism.6–8

In this review, we first discuss the incidence and various clinical 
manifestations of PCD/KS. Then, we present the probable molecular 
mechanism underlying this disease by summarizing the information 
on the known predisposing genes and the recent progress made in this 
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kidney. In addition, PCD/KS may be complicated by pulmonary heart 
disease,10 acute mesangial proliferative glomerulonephritis,11 renal cell 
adenocarcinoma,12 central giant cell granuloma,13 mediastinal tumor,14 
amyotrophic lateral sclerosis,15 pulmonary hypertension/pulmonary 
capillary hemangioma,16 diffuse bronchiolitis,17 rheumatoid arthritis,18 
congenital glaucoma/cataracts, nearsightedness, membranous pupil, 
olfactory defects, serous mucinous otitis,19 hearing loss, conductive 
deafness, nephrogenic bone defects,20 pulmonary infundibular 
stenosis, chronic kidney failure,21 reproductive tract abnormalities, 
testicular seminoma,22 mental retardation, schizophrenia,23,24 neonatal 
respiratory distress25–27 and so on. Ciliary dysfunction in the oviduct 
or endometrium may lead to an increasing risk of ectopic pregnancy 
or infertility in women.3,28,29 Sperm flagellum is also a type of cilia. 
Therefore, abnormal ciliary structure may lead to the reduction or 
loss of the ability of the flagellum to swing, ultimately causing male 
infertility.

PATHOPHYSIOLOGY AND THE ROLE OF GENETIC FACTORS
The normal ultrastructural arrangement of cilia shows a typical ‘9 + 2’ 
pattern: in cross‑section, two central and nine pairs of peripheral 
microtubules can be observed by electron microscopy. All these 
units are linked by the following three structures.  (i) A nexin link, 
viz., an elastic bridge linking consecutive microtubules, which plays 
a role in stabilizing the axoneme. (ii) Dynein arms, which allow the 
nine pairs of microtubules to slide against each other, resulting in a 
swing of the flagellum. The outer dynein arm (ODA) and the inner 
dynein arm (IDA) extend from the peripheral microtubules, which 
are connected by nexin links. (iii) Radiating spokes, which connect 
central microtubules with peripheral microtubules and change the 
distance between the peripheral microtubules and the center sheath 
so as to prevent excessive bending of the flagellum. Together, these 
structures play an important role in maintaining the overall structure 
of the flagellum.

A variety of structural defects inside the cilia have been found in 
patients with PCD/KS by electron microscopy. These defects involve 
abnormal radiating spokes, microtubular structure, ODA/IDA and 
so on. These defects are always consistent with the morphological 
performance of the stunted cilia, including abnormalities of the 
number  (including absence) or structure  (such as heterotopia, 
shortening) of the units mentioned above.30,31 Currently, the known 
defects of cilia can be broadly divided into the following categories: 
(i) abnormalities of dynein arms, which occur most commonly32 and 
include partial or complete absence of ODA/IDA,33 (ii) abnormalities 
of radiating spokes, including the absence of spokes or centrotheca or 
deviated central microtubules, (iii) inappropriate directionality of cilia 
because of the partial or complete absence of the central microtubules33 
and  (iv) abnormal number of peripheral microtubules. Atypical 
structures such as 8 + 1, 8 + 2, 8 + 3 or 7 + 2 have been observed on 
cross‑section in some parts of histology. As more and more types of 
defects are found, more scientific classifications are being explored.34 
These defects of stunted cilia are usually the genotype determined 
characteristics of the patients, but secondary local anomalies caused 
by inflammation also cannot be ruled out completely in some cases.

During normal embryonic and fetal life, the rotation of various 
organs is specifically directed and determined by certain genetic factors. 
In this process, cilia facilitate the correct orientation of viscera sinus in 
the embryo by swinging in a certain direction. However, in the presence 
of ciliary disorders, this directional rotation may become random, 
which may result in malrotation of various organs. Partial or complete 
situs inversus may result in this manner.35 In addition, congenital 

systemic structural and functional abnormalities of cilia always result 
in defective ciliary clearing function, causing the retention of secretions 
or bacteria. Inflammation may also be initiated by blockage of the sinus 
apertures. Persistent or recurrent infections cause bronchiectasis or 
sinusitis, thus forming part of the pathological basis of KS.

The pathophysiology of PCD/KS is based on poor ciliary 
movement, which results from genetic defects of ciliary function.36,37 
Cilia contain a variety of structural proteins or regulatory proteins, 
and even only the axoneme is composed of more than 130 types 
of polypeptides; hence, hundreds of genes control these proteins. 
Theoretically, any mutation of related genes may eventually lead to 
the formation of dysfunctional cilia, which also reflects the genetic 
heterogeneity of PCD/KS patients.38,39 For this reason, in the decades 
following recognition of PCD/KS as a clinical entity, many molecular 
genetic approaches have been applied for the following purposes:(i) 
to screen and identify candidate genes associated with the disease; (ii) 
to localize the candidate region of the PCD/KS‑related genes in the 
genome;40–42 and  (iii) to investigate the relationships between the 
functions of these genes (including their mutations) and the different 
phenotypes of PCD/KS patients.43

The axonemal dynein intermediate chain gene, DNAI1  (located 
on chromosome 9p12–21), and the axonemal dynein heavy chain 
gene, DNAH5  (located on chromosome 5p15–14), are two of the 
best studied genes in PCD/KS. Mutations in these genes may result 
in absence of ODA, leading to abnormalities of ciliary ultrastructure 
and motor function.31,44–47 A number of studies have shown the 
relationship between genetic mutation and PCD/KS phenotypes, thus 
driving the investigation of the underlying pathologic mechanism. 
Guichard et al.48 performed mutation screening of DNAI1 in 34 KS 
patients; they identified gene defects in DNAI1 in three independent 
patients, and the family members of two of these patients also suffered 
from PCD without situs inversus viscerum. This study demonstrated 
the association between ciliary function and the localization of organs. 
In 2002, Ibanez‑Tallon et al.49 established a model of Dnah5 defects in 
mice. After insertional mutagenesis, these animals presented with a 
variety of PCD exosyndromes, particularly hydrocephalus. Moreover, 
the absence of ODA in these animals could be clearly observed under 
electron microscopy. These results indicated that mutation of Dnah5 
was one of the major factors leading to PCD and provided direct 
evidence for the pathogenesis of hydrocephalus.

Besides DNAI1 and DNAH5, other similar genes have been 
identified and studied in recent years. Dynein intermediate chain 
2 (DNAI2) may be a candidate gene for PCD/KS according to a report 
by Pennarun et al.50 It comprises 14 exons, is located on 17q25, and is 
highly expressed in the trachea and testes. In 2001, the complete cDNA 
and genomic sequences of axonemal beta heavy chain dynein (DNAH9) 
were first reported by Bartoloni et al.51 In 2002, the same group reported 
that mutations in axonemal heavy chain dynein type 11 (DNAH11) 
may lead to PCD/KS‑related symptoms. They also pointed out that 
KS may be related to paternal uniparental disomy of chromosome 
7.8 In 2008, Schwabe et al.52 confirmed this view, but emphasized the 
possibility of retaining normal axonemal ultrastructure and male 
fertility when nonsense mutations in DNAH11 occurred. In 2011, Mazor 
et al.53 reported a homozygous point mutation of axonemal dynein 
light chain 1 (DNAL1), viz. NM_031427.3: c.449A> G; p.Asn 150Ser. 
The occurrence of this mutation reduced the stability of DNAL1 and 
altered the correlation between this protein and the dynein heavy chain/
microtubule. PCD may consequently result with absent or substantially 
shortened ODA. After identifying mutations in DNAAF3  (also 
known as PF22), Mitchison et al.54 suggested that DNAAF3 plays an 
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important role in the pre‑assemblage of the dynein complex prior to 
the formation of cilia. The packing of an active cilia‑dynein complex 
in the cytoplasm may follow a conserved, step‑wise process, which is 
similar to the findings for some other pre‑assembled proteins, such as 
DNAAF2 (also known as PF13 or KTU) and DNAAF1 (also known 
ODA7 or LRRC50).54,55

Apart from axoneme‑related genes, several other candidate genes 
for PCD/KS have been screened for mutations and studied in order to 
clarify their physiological functions.56–59 DNA polymerase lambda (Pol 
lambda, also known as Pol beta 2), a member of the DNA polymerase X 
family, has 32% homology with DNA Pol beta at the amino acid level. In 
2002, Kobayashi et al.60 prepared Pol lambda(‑/‑) knockout mice utilizing 
homologous recombination technology. The embryonic development 
of these mice appeared to be normal; however, most of them showed 
hydrocephalus with characteristic lateral ventricle expansion, resulting 
in high postnatal mortality. The surviving individuals always suffered 
from chronic purulent sinusitis accompanied by visceral translocation; 
males were sterile because of motionless sperm. Normal offspring 
could be produced through intracytoplasmic sperm injection (ICSI), 
suggesting that meiosis was not affected, but ultrastructural analysis 
showed that the IDA of the ependymal cells and respiratory epithelial 
cells were not intact, which may be the basis of the disease. Zariwala 
et al.61 identified Dpcd as a candidate gene for PCD. In 2002, Pennarun 
et al.62 isolated human PF20 and screened this gene in five patients 
with abnormal ciliary structure. Human PF20 showed homology 
to Chlamydomonas PF20. Furthermore, adenylate kinase 7  (AK7) 
provides energy for the beating of cilia via conversion of adenylic 
acids (2ADP = ATP + AMP). In 2010, Milara et al.63 measured AK7 
expression by real‑time PCR and western blotting and investigated 
its effect on the ciliary beat frequency by siRNA experiments. They 
also evaluated the motility and ultrastructure of cilia in 29 PCD/KS 
patients and 26 healthy people, and found that the expression of AK7 
was related to ciliary beat frequency, which may be a cause of ciliary 
dysfunction in PCD/KS patients. A study by Mata et al.64 in 2012 also 
found two mutations on AK7 in PCD/KS patients; viz., a previously 
reported single‑nucleotide polymorphism (rs 2369679) and a novel 
mutation, c.1214insT, which may also be associated with PCD/KS.

In 2011, Geremek et al.65 generated genome‑wide gene expression 
profiles using bronchial extractions from a PCD patient and identified 
many genes highly related to PCD by employing a quality‑threshold 
clustering algorithm. Of the 372 genes identified,164 were known, 
strongly suggesting that the remaining 208 may be new cilia‑related 
genes, which provides a number of candidates for investigation in PCD/
KS. However, it is likely that not all mutations in these genes will cause 
abnormal ciliary movement, which indirectly reflects the intrinsically 
complex link between genetic variation and morbid phenotype.66‑68

DIAGNOSIS
In practice, the clinical diagnosis of PCD/KS is not difficult. The main 
clinical manifestations of the condition include recurrent chronic 
cough, sputum, nasal congestion, nasal discharge, hemoptysis and other 
symptoms of respiratory infections.3,69 The incidence of PCD/KS among 
the offspring of consanguineous marriages is about 20%–30%; the 
incidence is especially pronounced in Caucasians. PCD is a congenital, 
clinically and ultrastructurally heterogeneous disease due to abnormal 
structure and/or function of cilia, and KS is an autosomal recessive 
genetic disease accounting for approximately 50% of the cases of PCD. 
It may recur in the same generation or show an inter‑generational 
familial hereditary tendency.70 Accordingly, the parents of patients may 
have a consanguineous or inter‑generational marital history and the 

patients’ brothers or sisters may also suffer from PCD/KS. Therefore, 
the acquisition of detailed, relevant information is crucial.71

Imaging investigation is one of the important methods in the 
diagnosis of KS.72 In order to confirm whether bronchiectasis or 
sinusitis, both of which are important clues for the diagnosis of KS, 
are present, some auxiliary examination of the chest or sinuses may be 
needed, depending on the clinical manifestations. Imaging diagnosis 
of bronchiectasis and sinusitis is relatively easy because these are 
common diseases. Dextrocardia is the main basis for imaging diagnosis 
of PCD/KS, because it is the most essential sign of the syndrome. 
Dextrocardia may be associated with the reversal of the S‑shaped 
heart tube during embryonic development, and it is easily discovered 
by means of radiography.

In addition to imaging investigation, biopsies of the nasal or airway 
mucosa may contribute to the diagnosis of PCD/KS. However, artificial 
secondary ciliary damage must be avoided by obtaining the biopsy 
materials from the relatively healthy parts of the patient in a stable 
state. A culture of ciliated epithelial cells may also be required.73,74 If 
ultrastructural defects inside the cilia are observed under scanning 
electron microscopy or transmission electron microscopy, and if 
these defects have the morphological appearance of ciliary dysplasia, 
PCD can be diagnosed.75 The cilia of patients with other mucus 
clearance defects have no ultrastructural defects, but do demonstrate 
decreased oscillatory frequency or abnormal arrangement patterns 
in their internal structure.76 Given that the clinical manifestations 
of these patients may not be obvious or typical, some noninvasive 
examinations should be considered, such as a saccharin experiment 
or the measurement of nitric oxide concentrations in exhaled nasal 
air.31,76–79 For instance, if the concentration of nasal nitric oxide is 
substantially lower than control values, PCD/KS is more likely to be 
positively diagnosed.73 Another technique, the pulmonary radioaerosol 
mucociliary clearance test has also shown excellent sensitivity and 
specificity in the diagnosis of PCD/KS.74,80,81

Genetic diagnosis is another approach for assisting diagnosis of 
PCD/KS, but it is not yet popularly applied in the clinical setting.77,82,83 
In 2007, Morillas et al.29 developed a clinical genetics analytical method 
that used DNAI1 and DNAH5 and involved a total of nine exons; the 
most common mutations in these two genes could be detected using 
this method, thereby promoting genetic diagnosis of PCD/KS. Given 
that the number of PCD/KS susceptibility genes and mutations that are 
being identified continues to increase, more extensive genetic screening 
should be performed in PCD/KS patients in the future.

It is important that incomplete and wrong diagnoses, such as 
diagnoses of ordinary sinusitis, pneumonia, asthma and tuberculosis, 
are avoided as much as possible; there are few specific indications 
during the early onset of PCD/KS, and several atypical presentations 
may occur. Bronchiectasis, for example, is an important indication 
of PCD. For a more definite diagnosis, some known causes of 
bronchiectasis, such as fibrosis, primary immunodeficiency, antitrypsin 
deficiency and some connective tissue diseases, must be ruled out. For 
adult patients, PCD can almost be ruled out if no bronchiectasis can 
be observed through high‑resolution CT.84

TREATMENT
McManus et al.85 described faster development of respiratory symptoms 
before the age of 25 years, which worsens more slowly after this age. 
Therefore, treatment for PCD/KS should be initiated as early as possible, 
although there is currently no cure. For the treatment of bronchiectasis, 
the use of anti‑infective therapies that promote discharge of secretions 
is indispensable. Since severe bronchiectasis may adversely affect 
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the prognosis of the disease, pneumonoresection may be applied to 
treat local bronchiectasis without other visceral injury. For sinusitis, 
intranasal corticosteroids can be used in addition to drainage methods, 
and sensitive antibiotics should be cautiously adopted according to the 
results obtained in the culture of secretions. If conservative treatment 
is ineffective or if severe nasal polyps are accompanied by sinusitis, 
nasal endoscopic surgery can be considered. Effective treatment of 
sinusitis may relieve progression of bronchial and lung disease. Given 
the serious consequences that usually result from lung damage caused 
by repeated infections, such as respiratory insufficiency, pulmonary 
heart disease and heart failure; the therapeutic objectives for PCD/KS 
are to enhance prevention, facilitate prompt definitive diagnosis, avoid 
misdiagnosis, ensure active treatment, control infection and postpone 
development of lesions.72,86–89 Adherence to these objectives will usually 
ensure a good prognosis.90

The sperm of infertile male patients with PCD/KS are usually 
immotile to varying degrees, or are even completely static and manifest 
defective morphology. Afflicted men generally have immotile ejaculated 
sperm and have almost no chance of achieving a spontaneous pregnancy. 
For these PCD/KS patients, assisted reproductive technology, including 
in vitro fertilization and ICSI, should be considered. In vitro fertilization 
could be a treatment option for patients when sperm motility is 
retained.91 However, ICSI is currently the only treatment option for 
most PCD/KS patients. ICSI overcomes the factors related to impaired 
motility and bypasses the natural processes for fertilization. A number 
of reports have confirmed that it is possible to obtain healthy offspring 
in PCD/KS patients with the help of ICSI technique.92–103

The sperm for ICSI could be obtained from ejaculate, epididymis 
or testis. Although some authors reported successful pregnancies using 
sperm from ejaculate,95,104 it has been demonstrated that fertilization 
is improved with immotile testicular spermatozoa.92 Until a better 
understanding of genetic control of PCD/KS is achieved, successful 
ICSI treatment will depend on sperm motility and should be 
individualized.100 When using immotile sperm, differentiation between 
live and dead sperm is critical for the success of ICSI.105 Some practical 
methods have been developed to differentiate and improve sperm 
motility. The hypoosmotic swelling test is widely used for identification 
of viable spermatozoa in a pool of immotile spermatozoa for ICSI.102,104 
A noncontact diode laser assessment for sperm viability may be a useful 
alternative, especially in cases where the hypoosmotic swelling test is 
not informative.106 A new sperm‑screening method based on SYBR‑14/
propidium iodide flow cytometry has recently been reported.107 To 
improve their motility, sperm with greater potential for fertilization 
may be obtained from ejaculated semen if patients undergo multiple 
ejaculations before providing the sample for in vitro fertilization/ICSI.108 
In addition, the velocity of sperm can be stimulated by treatment with 
pentoxifylline, a phosphodiesterase inhibitor. Employing this approach, 
a successful pregnancy and live delivery has been achieved.109

To date, it has been demonstrated that ICSI is an effective treatment 
modality for PCD/KS patients even with severest forms of male factor 
infertility.95 However, it should be noted that the fertility of PCD/KS 
patients can still not be compared with that of the normal population,28,110 
even though there have been many positive reports. In addition, clinical 
practitioners should be aware that the low fertility in male PCD/KS 
patients may involve a high incidence of aneuploid sperm, which is 
related to primary flagellum abnormalities.111 Although the reported 
pregnancies and offspring are mostly normal and healthy,95,97–103 it should 
be noted that the defects not only cause impaired fertility, but also 
increase the risk of genetic defects in the offspring. Therefore, genetic 
counseling may be mandatory for couples pursuing assisted reproductive 

technology and genetic assessment of sperm is highly recommended 
prior to clinical action.110 To avoid undesirable cycles of treatment with 
a high possibility of failure or inheritance of genetic diseases, use of a 
semen donor may be a better option for some patients with severe defects.

In summary, PCD/KS severely affects the quality of life of patients, 
and the male infertility resulting from the disease is a major concern. 
More rapid, accurate, effective and economic means of diagnosis as well as 
treatments will hopefully be developed in the near future. The popularity 
of assisted reproductive technology will certainly benefit infertile couples 
affected by this disease. However, full understanding of the underlying 
molecular mechanisms of PCD/KS will require further studies.
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