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ABSTRACT In this paper, we compute and examine two-way localization limits for an RF endoscopy
pill as it passes through an individuals gastrointestinal (GI) tract. We obtain finite-difference time-domain
and finite element method-based simulation results position assessment employing time of arrival (TOA).
By means of a 3-D human body representation from a full-wave simulation software and lognormal models
for TOA propagation from implant organs to body surface, we calculate bounds on location estimators
in three digestive organs: stomach, small intestine, and large intestine. We present an investigation of the
causes influencing localization precision, consisting of a range of organ properties; peripheral sensor array
arrangements, number of pills in cooperation, and the random variations in transmit power of sensor nodes.
We also perform a localization precision investigation for the situation where the transmission signal of the
antenna is arbitrary with a known probability distribution. The computational solver outcome shows that the
number of receiver antennas on the exterior of the body has higher impact on the precision of the location
than the amount of capsules in collaboration within the GI region. The large intestine is influenced the most
by the transmitter power probability distribution.

INDEX TERMS Endoscopy pill, TOA location limits, bounds, 3D, two-way location, signal probability.

I. INTRODUCTION
Lately, wireless capsule endoscopy (WCE) has garnered
plenty of interest owing to its non-intrusive characteristic [1].
Assessment of the gastro-intestinal (GI) region is essential
to recognize any colorectal cancer inside the digestive sys-
tem tract. It has been discovered that colorectal cancer is
the second foremost source of cancer associated fatalities in
the United States. Additionally, WCE permits the doctor to
depict the whole GI region exclusive of scope trauma and
air insufflations. Conventional practices like gastroscopy and
colonoscopy can barely get to the first couple of or final few
feet of the GI region.

The WCE obtained its endorsement from the U.S. Food
and Drug Administration (FDA) in 2001, and in excess
of 200,000 patients have taken advantage of the benefits of

this innovative skill. WCE begins with the subject ingesting
the pill. The normal motion of muscles transports the pill
effortlessly and simply all through the GI tract, which is
sending out color picture taken by the camera in the pill
as it goes through. The process is mobile, permitting the
subjects to carry on with their every day activity all through
the endoscopic assessment. In spite of the benefits WCE has,
it is reported that a doctor takes a couple hours to review
the snapshots taken through every WCE assessment, given
that roughly fifty thousand pictures are taken throughout
the eight hour timeframe of the test [2]. This reduces the
speed of this method of assessment and makes the process
considerably more expensive. Besides, after the assessment
by WCE, the doctor might have a desire to re-examine a
location of concern for additional analysis or management.
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Precise position data of the pill can assist in both quickening
up the review of the snapshots and supporting the doctor for
eventual treatment.

A variety of methods for positioning of the pill have
been researched in viability analyses. The initial plan was to
employ a spatial examining scheme to establish the position
of the points with the highest received signal strength (RSS).
This method is unmarketable and unmanageable.

Frisch et al. [3] examined a wireless triangulation scheme
by means of an exterior antenna arrangement that gauges the
signal power of the pills communications at several positions
and applies this data to approximate the space between the
pill and external sensors. Themean investigational inaccuracy
is described to be 37.7 mm [4]. A technique put forth by
Kuth et al. [5] to estimate the location and direction of the
pill using X-ray emission photography. The method results
in the pill to be be seen explicitly because it possesses a
number of energy impervious features that are typically made
of metal or synthetic material and exhibit a an extremely
distinct photograph. Hence, it is conceivable to function with
a very little amount of energy helping in decreasing medi-
cal hazards on the subjects. Another process was suggested
by Kawasaki and Kohno [6] to pinpoint the position of bio-
logical implants by means of TOA established waveform
recovery technique. Initially, the transmission velocity of
the waveform propagating in the patients body is approx-
imated by collecting the photographs from CAT or MRI
machines. After that, a dynamic pattern fusion technique is
used to compute the transmission period established by the
result of the comparator in the middle of the Tx and the
Rx. Additional methods established for the positioning of
camera pills comprise magnetic field detection [7]. A tiny
permanent magnet is encased into the pill. With the detection
information of a magnetic antenna arrangement on the exte-
rior the subjects body, the 3D positioning and 2D direction
of the pill are approximated. More recently some studies
like [8] and [9], have employed hybrid localizations using
data fusion of vision and RF sensors for WCE applications.
Accelerometer based techniques have also been employed in
camera pill positioning [10], [11]. In this research, a 39.3 mm
electronic inertial meter with three axes, operating at 20 Hz,
was inserted inside the pill and information was propagated
using Zigbee protocol to an outside workstation. Because the
inertia is quantitatively obtained, velocity can be calculated
more precisely than location as it needs only one integral
solution. Therefore, classifying the actual position of each
image obtained from the pill is important in both analytic and
remedial purposes of pill based endoscopy.

One of the most popular methodologies, RSS based posi-
tioning techniques have the benefit of versatility and a com-
paratively small price of execution. Consequently, it has been
selected to be employed for the Smartpill device [12] in
USA and the M2A device [13] in Israel. Usually, wireless
positioning methods use results obtained from TOA, angle
of arrival (AOA) or RSS experiments. Even though, the RSS
method is less sensitive to a restricted frequency spectrum and

inhospitable wireless channels, a commonly acknowledged
advantage of the TOA method is better precision relative
to the RSS and AOA methods [14], despite some studies
like [15] attempting to combine these two techniques for
better precision. Nonetheless, the high refractive index of
the body results in sizable inaccuracies in TOA approxima-
tion and the restricted frequency band (402–405 MHz) of
Medical Implant Communication Services (MICS) makes it
difficult to perform precise TOA measurements. This issue
is worsened by the motion of the GI tract, and the drainage
and replenishing sequence, resultant in irregular errors in
distance measurements [16]. Hence, the location data from
TOA approximation is not optimal in the existing literature;
and this paper attempts to remedy this problem.

There are essentially two methods to employ TOA data
for positioning, triangulation and waveform identification.
In this study, we limit our focus on the problems concerned
with TOA triangulation methods. The TOA Triangulation
method is derived from the impulse response model from
organs containing the devices to the exterior of the body. The
technique is employed to compute the space between every
surface antenna and the pill. After that, at least four of the
measured distances are employed to compute the position of
the pill in 3D space.

The most difficult issue in the positioning of the pill arises
from the complicated nature of the surroundings of the pill
as it goes down the human body. Because the GI tract is of
an extended cylindrical formation that doubles up on its own
at multiple instances and has the freedom to shift inside the
abdomen, it is very challenging to precisely determine the
position of the pill. Adding to that, because of the subject
moving about and resting activities like breathing, the actual
position of the antennas on the exterior of the patient and
their comparative location to the pill within the GI tract keeps
changing, deeming the meaning of positioning dissimilar
from conventional definitions. At present, the majority of
studies have concentrated on coming up with algorithms and
mathematical models to find the solution of the triangulation
issue section III in [17]. In this paper, we take a separate route.
Basing our approach on the statistical medical device impulse
response model derived in [18], we concentrate on the pre-
cision of pills traveling inside the body using TOA based
triangulation methods; Yi et al. have derived the positioning
bound computation for a solitary capsule scenario in [19]. The
Cramer-Rao bounds (CRB) developed in this study measure
the restrictions of positioning precisionwithmultiple external
sensor protocol, medical device impulse responsemethod and
multiple capsules inside the body. Our end goal is to investi-
gate the precision attainable at different tissues and decide
whether this precision is sufficient for WCE. Related papers
have been published for indoor personnel localization [20]
and robot positioning [21].

We start in Section. II by detailing the computer aided
finite element method (FEM) simulations describe the envi-
ronment and the device to exterior impulse response model
for the human body. After that, employing the exact position
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FIGURE 1. An Illustration of the human digestive system the typical path
of an endoscopy pill.

obtained form the CAD design and the mathematical model,
we obtain the CRB for multiple pill positioning and the
positioning bound with arbitrariness in the signal timing in
Section. III. In Section IV, we present outcomes of the model
that emphasize the sensor and tissue position factors that
influence the precision of positioning. We test the accuracy
of the computational solver used in this study in Section V.
In the end, we offer our conclusions in Section VI.

II. FUNCTIONALITY AND ASSESSMENT APPROACH
A. FUNCTIONALITY ASSESSMENT SETUP
A human digestive system is made up of an intestines, a stom-
ach and an esophagus, as illustrated in Fig. 1. To effectively
construct a model setup to compute the CRB of an RF
endoscopy pill as it moves down the GI tract, we employ a
three-dimensional body simulation from the 3D FEM based
high-frequency solver (HFSS [22]). We establish the accu-
racy of this solver by comparing basic field measurements
with their corresponding simulation models in HFSS. For
research purposes we use a center frequency of 900MHz with
a bandwidth of 100MHz. Each simulation run took about
4-6 hours to complete. Further details of these scenarios are
presented in Section V.

This simulation has a 2mm 3-D resolution and comprises
of radio-wave permeability characteristics of over 175 organs
of a female human body. From this we obtain spatial posi-
tions of the GI tract, as shown in Fig. 2. For the position-
ing of the external antennas, we implemented the scenario
in [3] and [23], with the assumption that these antennas are
positioned on a vest worn by the subject for the duration of

the investigation. Matching quantities of sensors are placed
in the anterior and on the posterior of the vest. We com-
puted the CRB for 8, 16, 32 and 64 external antennas with
a spatial position of 268, 9, 323, 9, 312 mm, a representa-
tive arrangement for 32 external antennas is demonstrated
in Fig. 3.

B. TOA MODEL FOR THE DIGESTIVE SYSTEM
In this section, we outline the internal sensor to external
sensor mathematical TOAmodel that is employed to compute
the CRB of endoscopy pill positioning. This model makes use
of the signal velocity model in different dielectric materials
and described in [18]. The key elements employed to estab-
lish this model comprise the FEM based simulation engine
and human body model from Ansys. The TOA between the
internal and external sensor antennas can be calculated using
the following equation:

ν(ω) =
c

√
εr (ω)

, (1)

where ν(ω) is the velocity of the signal in a human tissue,
c is the velocity of a radio signal is space, and εr is the
dielectric constant of the human tissue. As stated before,
biological materials highly attenuate a radio wave. Hence,
a very high dielectric constant is estimated. In our simula-
tions, we employ a 100 mm displacement between external
and internal sensors as the limit for selecting the dielectric
constant. If the displacement is lower than 100 mm, we pick
the near surface dielectric constant, in other cases deep tis-
sue dielectric constants are used. An example of surface-to-
surface communication can be seen in can be seen in Fig. 5.
Fig. 4 shows a plot obtained from this equation. Note that it
will not give us a linear distribution of values for distance for
each time of arrival. We will therefore have to add a random
variable and calculate bounds on its standard distributions in
our computations.

The standard deviation for this random variable can be
represented by

σ 2
D ≥

1
8π2

1
SNR

1
TW

1

f 20

1

1+ W 2

12f 20

, (2)

where T is the observation time, SNR is the Signal-To-Noise-
Ratio. f0 is the center frequency of operation and W is the
bandwidth of the system.

C. UNPREDICTABILITY OF IMPULSE TIME ARRIVAL
In real-life wireless system scenarios, the antennas cannot
predict an accurate time of arrival of the pulse because of
the price of the standard calibration of the apparatus. While,
the measure time of arrival may be a particular nanosecond
value, the arrival time fluctuates a small number of nanosec-
onds around the this mean [24]. The chief elements that
affect time of arrival deviation for networks in and around
the human body are enumerated thus: (a) apparatus assembly
disparity and differences in battery levels from one node to the
other, (b) motion of the patient subject because of movements
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FIGURE 2. Positions of one internal and one external sensor as seen from (a) slightly turned outside the body (b) side of the stomach and
intestines (c) slightly turned stomach and intestine.

FIGURE 3. External Sensor Distribution (note: an equal number of
sensors would be placed on the opposite side of the model).

and variations in the directions of the sensors, (c) the node
devices may not be located at the exact height above from
the body exterior at the same time. Some sensors could be
in contact with the exterior while some may be a little ways
above the surface. As stated in [25], a time than the sensor
not in contact with human tissue. All these elements add to
the uncertainty in the time of arrival of the pulse which in
turn has an impact on the precision of positioning.

III. TOA SIMULATIONS AND OBSERVATIONS
Fig. 2 shows an FEM simulation in HFSS and Fig. 6 shows
the waveform received at the sensor on the surface of the belly

FIGURE 4. Plot obtained from eq. (1).

with the transmitter positioned inside the small intestine. The
transmitter and receiver are about 11 cm apart. As shown in
the time domain response (TDR) plot in Fig. 6, the pulse
is received at 0.48 ns, which roughly translates to 14.4 cm,
i.e. a distance measurement error of 3.4 cm. Notice, also,
in Fig. 2 that the dipoles are modeled to act as both the pill
and surface sensors for the simulations. This is for simplicity
of design, and to reduce simulation time and computational
resources needed. The downside of using these dipoles to
represent the sensors is the capacitive dip we see before and
after the received pulse in the waveform. But if we plot the
normalized power received, the negative region of that plot
will be eliminated when the voltage is squared.

A number of such simulations were carried out with the
transmitter kept in the intestine and the position of the
receiver was rotated around the body at 10 different positions
at the same horizontal level, to account for different dis-
tances. One such simulation was run where the position of the
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FIGURE 5. An example of surface-surface communication.

FIGURE 6. Impulse response between pill inside intestine and sensor on
the surface of the belly.

transmitter was in the intestine and the receiver was kept at the
same horizontal position but at the models back, to see what
happens when the waveform travels through bones and other
tissue on its way from one sensor to another. This verifies
the shadow-fading effect due to the higher density of organs
between the two sensors. Fig. 7 illustrates what the waveform
looks like after passing through these denser tissue.

All these simulations were then used to plot a distance vs.
TOA plot to assess deviations of the plotted points from a
straight line representing the ideal TOA for each distance.
Fig. 8 shows this plot.

The standard deviation per dB of the Path-loss model, from
the PDF shown in Figure 12, came out to be 15.575/50 =
0.3115. While, the standard deviation per ns of the TOA
model, form the PDF shown in Fig. 10, came out to be
0.361004/1.4 = 0.25786. Hence, the TOA model seems to
be more accurate. More detailed simulations are underway to
improve the accuracy of the TOA model.

FIGURE 7. Impulse response between pill inside intestine and sensor on
the back.

FIGURE 8. Time of Arrival vs. distance for various sensor positions.

FIGURE 9. Distance Measurement Error from TOA for each sensor
position.

To estimate the distance from the TOA plot shown in Fig.8,
we used eq. (1).

From the slope of the TOAvs. distance line, the εr came out
to be 1.336. This value was also used to estimate themeasured
value for a distance of 5 cm between the sensors, mentioned
in section IV. Fig. 9 shows the distance measurement error
plot obtained from the simulations carried out. It can be seen
that the distance measurement error (given in millimeters)
increases linearly with distance.
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FIGURE 10. PDF of the Distance Measurement Error from TOA for each
sensor position.

IV. CRB FOR TOA BASED SPATIAL ENDOSCOPY
PILL POSITIONING
In this section, we develop the spatial CRB established on the
TOAmodels described in the preceding section. We take into
account both scenarios with multiple sensors are in working
together and where there is variations in pulse arrival times.
The CRB for 2D positioning limits has been discussed in [26].
Here, we describe the limits in all three spatial dimensions by
working on the calculations done in two dimensions.

A. CRB FOR MULTI-SENSOR COLLABORATIVE
POSITIONING
Extending on the TOAmodels in Section. II, we will perform
derivations for the spatial CRB for collaborative positioning
of an endoscopy pill. We study the following setup: N RF
sensor nodes are positioned on the surface of the human
body using the vest with the position of each represented by
θc = [p2, p2, . . . , pN ]. The path of these sensors from the
capsule could be blocked but they can quantify the TOA their
adjacent nodes and the most visible sensor can receive the
TOA data from the capsule and perform additional compu-
tation in collaboration with the other sensors. M number of
capsules could be swallowed by the patient subject with their
positions represented by θr = [pN+1, . . . , pN+M ]. The vector
of sensor factors is θ = [θcθr ]. For this spatial scenario,
pi = [xi, yi, zi]T where i ∈ [1,N +M ] and T is the transpose
action. The unidentified elements to be calculated may be
denoted by a 3× N matrix.

θc = [p1, p2, . . . , pN ],

=

x1 x2 . . . xN
y1 y2 . . . yN
z1 z2 . . . zN

. (3)

Take the sensors into consideration (sensors comprise
the pill and surface antennas).i and j receive paired-up

signals Xij. We make the assumption that all surface anten-
nas can detect the TOA from the pill travelling through
the GI tract, but the multi-path characteristics for the
various transmission paths change as the number of differ-
ent media between the surface antenna and the pill trav-
elling down the GI tract varies. Hence, we take H{i} =
{j; sensor j receives linked-up signals from sensor i}.H{i} =
{1, . . . , i 1, i+1, . . .N+M} for i ∈ [1,N ] andH{i} = {1,N }
for i ∈ [N + 1,N +M ] since a sensor is not able to receive
a linked signal from itself and the surface antennas will not
receive signals from other receivers either. Thus, the size of
the received vector X is N × (N +M1)+M × N .
Using mutuality, we make the assumption Xij = Xji,

therefore, it is enough to study just the lower vertex of the
receiver matrix X when expressing the combined probability
function [27]. The CRB on the covariance matrix of any
unbiased estimator θ̂ is given by [28]:

cov(θ̂ ) = E
[
(θ̂ − θ )(θ̂ − θ )T

]
≥ F−1θ , (4)

where E[·] is the expectation operation and F is the Fisher
information matrix (FIM) defined as:

Fθ = −EOθ (Oθ ln f (X |θ ))T ,

= Eθ [
∂

∂θ
ln f (X |θ )

( ∂
∂θ

ln f (X |θ )
)T ],

=

FRXX FRXY FRXZ
FTRXY FRYY FRYZ
FTRXZ FTRYZ FRZZ

 3D situation (5)

where f (X |θ ) is the joint PDF of the observation vector X
conditioned on θ . For the RSSmeasurements case, the Xi,j are
log-normal random variables, and the density is given by [19]

f (Xi,j|pi, pj) =
10

log 10√
2πσ 2

dB

1
Xi,j

exp
[
−
b
8

(
log

d2i,j
d̃2i,j

)2]
b =

(10α
σdB

)2
,

d̃i,j = d0
( X0
Xi,j

) 1
x
,

di.j =
√
(xi − xj)2 + (yi − yj)2 + (zi − zj)2 (6)

for i = 1, 2,N + M and j ∈ H (i), d(i, j) is the MLE of
range di,j given received power Xij. Then the logarithm of the
joint condition pdf is

l(X |θ ) =
M+N∑
i=1

∑
j∈Hi,j<i

log fX |θ (Xi,j|pi, pj). (7)

It is mentioned in [26] that the second-order partial differ-
ential of eq. (7) w.r.t θr and θs is going to be a total of terms
if θr and θs are coordinates of the same sensor k , but will be
only one term if θr and θs are coordinates of separate sensors
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k and l, k 6= l. For example:

∂2l(X |θ )
∂xk∂zk

= −b
∑
i∈H (k)

(xi − xk )(zi − zk )

d4i,k

[
− log

d2i,k
d̃2i,k
− 1

]
,

∂2l(X |θ )
∂xk∂zl

= −bIH (k)(l)
(xi − xk )(zi − zk )

d4i,k

[
log

d2i,k
d̃2i,k
− 1

]
,

(8)

where IH (k)(l) = 1 if l ∈ H (k) and 0 otherwise. since

E
( d2i,k
d̃2i,k

)
= 0. Thus the elements of Fθ are:

[FRXX ]k,l =


b
∑

i∈H (k)

(xk − xi)2

σ 4
kl

k = l

−bIH (k)(l)
(xk − xi)2

σ 4
kl

k 6= l

[FRXY ]k,l =


b
∑

i∈H (k)

(xk − xi)(yk − yi)

σ 4
kl

k = l

−bIH (k)(l)
(xk − xi)(yk − yi)

σ 4
kl

k 6= l

[FRXZ ]k,l =


b
∑

i∈H (k)

(xk − xi)(xk − zi)

σ 4
kl

k = l

−bIH (k)(l)
(xk − xi)(zk − zi)

σ 4
kl

k 6= l

[FRYY ]k,l =


b
∑

i∈H (k)

(yk − yi)2

σ 4
kl

k = l

−bIH (k)(l)
(yk − yi)2

σ 4
kl

k 6= l

[FRYZ ]k,l =


b
∑

i∈H (k)

(yk − yi)(zk − zi)

σ 4
kl

k = l

−bIH (k)(l)
(yk − yi)(zk − zi)

σ 4
kl

k 6= l

[FRZZ ]k,l =


b
∑

i∈H (k)

(zk − zi)2

σ 4
kl

k = l

−bIH (k)(l)
(zk − zi)2

σ 4
kl

k 6= l
(9)

Let x̂i, ŷi, ẑi be the unbiased estimation of xi, yi, zi, the trace
of the covariance of the ith location estimate is given by:

σ 2
i = tr{covθ (x̂i, ŷi, ẑi)}

= Varθ (x̂i)+ Varθ (ŷi)+ Varθ ẑi,

≥

[
FRXX − (FRXY FRXZ )

(FRYY FRYZ
FRYZ FRZZ

)−1
i,i

(FRXY
FRXZ

)]
+

[
FRXY − (FRXY FRYZ )

(FRXX FRXZ
FRXZ FRZZ

)−1(FRXY
FRYZ

)]−1
i,i

+

[
FRZZ − (FRXZFRYZ )

(FRXX FRXY
FRXY FRYY

)−1(FRXZ
FRYZ

)]−1
i,i

(10)

B. CRB FOR TOA POSITIONING WITH SENSOR WITH
HIGHEST RSS (PATH OF LEAST RESISTANCE)
One metric to relate the precision of TOA and RSS estab-
lished positioning approaches is their corresponding Cramer-
Rao Lower Bounds (CRLB) [7]. The CRLB of a deterministic
factor states a lower bound on the variance of its estimators.

For the operational rate, bandwidth and SNR employed
in GPS systems this limit demonstrates that precision of a
few meters is attainable if we can wait for some minutes.
If we want to expand this technology to include body area
networks, we have three issues (1) we require more accu-
racy to pinpoint objects contained in the body (2) we need
to handle the extra path loss suffered by the signal while
traveling into the tissue within practical measurement peri-
ods (3) we require procedures to handle potential multipath
environments.

The distance power slope would significantly vary for
different portions of the human flesh as presented in Fig. 13.
Also, the distance measurement error for RSS comes to the
order of the space between the transmitter and receiver, which
would not be satisfactory for the millimeter level precision
requisite inside the human body.

To verify this statement, we plotted the RSS from
our simulations for each of the surface antenna loca-
tions shown in Fig. 3. This plot is shown in Fig. 11,
and the gradient obtained from this plot came out to
be 4.59, which is analogous to the model in published by
NIST [18].

FIGURE 11. RSS vs. Distance plot for each sensor position.

The values plotted in Fig. 11 were then plugged into the
NIST model and the distance measurement error for RSS
was plotted. This plot is shown in Fig. 12. Notice that the
errors obtained from TOA, shown in Fig. 9, are in the mil-
limeter range and the highest value is 3.5 cm, while the
ones shown in Fig. 12 are in cm, with the highest value
being 5.1 cm. This confirms that ranging using RSS has
larger errors than its TOA counterpart. To further estab-
lish this, if we plug in the values given in Fig. 12 into
the path-loss model defined by Sayrafian-Pour et al. [18],
at a distance of 50 cm, we can evaluate the CRLB on the
variance of path-loss was in the range of 0.0699 and 0.427 dB;
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FIGURE 12. Distance Measurement Error from RSS for each sensor
position.

FIGURE 13. PDF of the Absolute Values of Distance Measurement Error
from RSS for each sensor position.

while the CRLB on the variance of TOA using eq. (9) at the
same distance came out to be 0.011388ns.

In this section, the variables to be calculated are the x, y and
z positions of the pill, and a fresh array π = [π01, . . . , π0N ]
because not any of the N surface antennas have precise
information of the time of arrival of the pulse it transmits. The
Bayesian CRB [28] also known as Van trees inequality says
that any approximation θ̂ must have an inaccuracy association
matrix R ∈ given by

Rε > F−1 = [Fθ + FO], (11)

where Rε = E[(θ̂ − θ )(θ̂ − θ )T ], and Fθ and FP will be
the FIM and the previous data matrix accordingly, given by
eq. (12).

Fθ = −E[Oθ (O)θ ln f (pi,j|θ )T ],

Fp = −E[Oθ (Oθ ) ln f (θ )T ], (12)

where pi,j would be the dual-directional impulse response
array. The previous data matrix FP is given in eq. (12).

FP = diag[0Tn , 0
T
n .0

T
n ,

1TN
σ 2
n
] (13)

where 0n would be an n-length array of zeros and 1N
represents an array of length N consisting of ones, while
σ̄ 2
π would be the variance of the random variable π0i (the

time of arrival 1 cm away from the pill i) that is supposed
to have an i.i.d Gaussian probability distribution for each
surface antenna i.

We represent the dual-directional measurements Pi,j and
Pj,I by the array pi,j = [Pi,jPj,i] as a dual-variable Gaussian
with an average of ui,j and a variance of Ci,j, where

ui,j =
[π0j − 10x log10

|ri − rj|2

42
u

π0i − 10x log10
|ri − rj|2

42
u

]
(14)

Ci,j = σ 2
dB

[1 ρ

ρ 1

]
(15)

where α denotes the time of arrival exponent, and ρ would
be the association constant among the dual-directional
responses, 0 ≤ ρ ≤ 1. For the sake of simplicity we con-
vert the dual-directional response array pi,j to an orthogonal
matrix A using the following derivation:

ρ̃i,j = Api,j,

A =
[
1 1
1 −1

]
(16)

Such a full rank transformation of measurement does not
change the Fisher information. For simplicity of notation,
we denote p̃i,j = [p̄i,j, p

4

i,j]
T , where p̄i,j corresponds to the

average of the two measurements and p4i,j corresponds to the
difference between two measurements. After some mathe-
matical analysis, it can be seen that p̄i,j has a mean ūi,j and
covariance c̄ and p4ij has a mean u4ij and covariance c4 as
given below

baruij = π0j + π0i − 10x log1 0
|ri − rj|2

402
,

c̄ =
(1+ ρ)σ 2

dB

2
I3n+N ,

u4ij =
π0j − π0i

2
,

c4 =
(1− ρ)σ 2

dB

2
I3n+N , (17)

where I3n+N is 3n + N × 3n + N identity matrix and ū
and y4 are the mean values for the sum and difference of
measurements respectively for all measured pairs,

ū = [ūi1,j1 , . . . , ūin,jn ]
T ,

u4 = [u4i1,j1 , . . . , u
4

iN ,jN ], (18)

where i1; j1; . . . ; iN , jN corresponds to each unique pair.
A pair makes measurement if they are in the measurement
range of each other. Here we assume that the measurement
rangeis infinite (i.e., every sensor can do measurements with
every other sensor). The Fisher information matrix Fθ given
by eq. (12) can be split into two sub matrices Fθ and F4θ
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corresponding to sum and difference measurements due to
their independence.

Fθ = F̄θ + F
4

θ . (19)

The FIM of a vector of multivariate Gaussian measurements
with mean l(h) and covariance C is given by [24]

Fθ = [Oθµ(θ )]TC−1[Oθµ(θ )],

=


FRXX FRXY FRXZ FRXπ
FRYX FRYY FRYZ FRYπ
FRZX FRZY FRZZ FRZπ
FRπX FRπY FRπZ FRππ

. (20)

From eq. 19 we have,

F̄θ = [Oθ µ̄(θ )]TC−1[Oθ µ̄(θ )],

=


F̄RXX F̄RXY F̄RXZ F̄RXπ
F̄RYX F̄RYY F̄RYZ F̄RYπ
F̄RZX F̄RZY F̄RZZ F̄RZπ
F̄RπX F̄RπY F̄RπZ F̄Rππ

, (21)

F̄4θ = [Oθµ4(θ )]TC−1[Oθµ4(θ )],

=


F̄4RXX F̄4RXY F̄4RXZ F̄4RXπ
F̄4RYX F̄4RYY F̄4RYZ F̄4RYπ
F̄4RZX F̄4RZY F̄4RZZ F̄4RZπ
F̄4RπX F̄4RπY F̄4RπZ F̄4Rππ

. (22)

The calculations of the discrete components of the matrix are
comparable to eq. (9), and presented in [29].

V. ESTABLISHING THE ACCURACY OF THE ANSYS
HFSS SOLVER
While previous studies [30] have attempted to use FDTD
based 3D simulation methods to approximate TOA character-
istics, in principle the FEM technique is established as more
precise due to its use of tetrahedral meshes instead of a rectan-
gular grid. An example of modelling wideband channel char-
acteristics using the FEM technique in Ansys HFSS has been
described in [31]. Real-life experiments were first conducted,
whereby surface-to-surface measurements were taken, and
then compared to their corresponding FEM simulations. Both
in actual measurements and software simulations, two dipoles
with 900MHz as their center frequency were placed 50cm
apart (Fig. 14 (a)) and their channel parameters were plotted,
using a network analyzer, over a bandwidth of 100MHz. This
plot was then used to find the impulse response using the
chirp z-transform function in Matlab. Next, a person with
height 172cm and weight 156lbs was positioned between
the two antennas (Fig. 14(b)). Additionally, a human body
model with similar characteristics was placed in the HFSS
simulation environment, between the two antennas (Fig. 15).
The impulse response for this new channel was also plotted in
the same way. The comparative results are shown in Fig. 16.
The side faces of the radiation box in the HFSS simulations
were assigned concrete as their material and the front and
back faces were assigned the radiation boundary to imitate
the environment of the lab.

FIGURE 14. Measurement setup (a) with body (b) without body.

FIGURE 15. Ansoft HFSS TM simulation setup (a) without body (b) with
body and electric field plot. The two horizontal black lines represent the
dipoles.

FIGURE 16. Impulse response obtained from the two simulated and
measured channels.

From the measurement taken without the body, the TOA
of the first path was calculated to be 1.70ns, which roughly
translates to about 51cm - an error of 1cm from the actual
distance. The same value from the HFSS simulation equals
1.95ns, which in turn translates to 58cm, indicating an error
of about 7cm from the measurement. The TOA of the first
path from measurements taken with the body computed as
2.07ns, translating into 60cm, which means that on average,
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the human body would slow down the signal enough to cause
a 9cm offset in the measurements. But the simulation with the
body shows that the TOA of the first path is 2.00ns, again an
offset of about 9cm from the measurements; showing a good
correlation between measurements and simulations.

From Figure 4.14, the rms delay spread of the first three
paths for the measurements without the body is 4.12ns and
the same value for the simulation without the body is 3.97ns;
a difference of just 0.15ns. When the body was added to
the measurement setup, the rms delay spread was 3.79ns,
the same value for the simulation with the body corresponds
to 3.32ns; an error of about 0.47ns. Hence, it is shown using
rms delay spread that the results obtained from the HFSS
simulation are very close to those obtained from the actual
measurements. This leads us to conclude that FEM is an
effective means to simulate the wideband profile of a human
body channel.

VI. CONCLUSION
This paper continues from the study conducted in the
2014 comparative evaluation of RSS and TOA by
Ye et al. [32]. In that publication, the HFSS 3D model was
only used to import the human body parts in order to trace
the path of the capsule in a separate image processing soft-
ware. In the experiments conducted in this study, we use the
FEM technique available in the HFSS software locally to
perform EM simulations between a fixed pill location and
various external sensor locations on a 3D array. Furthermore,
the CRLB derived in that study are used to establish the
accuracy of RSS, while this study aims to use these functions
for TOA calculations.

In this study, we examined the prospective precision
constraints for TOA and cooperation based on path-of least
resistance (received signal strength after shadow fading) posi-
tioning of an endoscopy pill traveling down the human diges-
tive system. We confirmed the likelihood of accomplishing
a mean positioning error of 50 mm in the gastrointestinal
system. We also confirmed that no more than 10 receivers
on the surface of the human body are required to accomplish
sufficient positioning precision for pill-based endoscopy.
Software model results using Ansys HFSS revealed that
accumulating the quantity of surface antennas on the body
would have higher effect on the general positioning accuracy.
This is also practical, as we only use one pill to perform
capsule endoscopy, but we can put multiple sensors on the
surface. We also studied the consequence of arbitrariness in
impulse response on the positioning precision. In conclusion
and keeping real-world concerns in consideration, we make
the inference that cooperating surface sensors, using RSS to
determine shadow fading, and then determining the location
using time of arrival of a pulse transmitted from the capsule
will give us the best chance of accurate localization.
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