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Abstract

Rice genetic diversity is regulated by multiple genes and is largely dependent on vari-

ous environmental factors. Uncovering the genetic variations associated with the

diversity in rice populations is the key to breed stable and high yielding rice varieties.

We performed genome wide association studies (GWASs) on seven rice yielding

traits (grain length, grain width, grain weight, panicle length, leaf length, leaf width,

and leaf angle) based on a population of 183 rice landraces of Bangladesh. Our

GWASs reveal various chromosomal regions and candidate genes that are associated

with different traits in Bangladeshi rice varieties. Noteworthy was the recurrent

implication of chromosome 10 in all three grain-shape-related traits (grain length,

grain width, and grain weight), indicating its pivotal role in shaping rice grain mor-

phology. Our study also underscores the involvement of transposon gene families

across these three traits. For leaf related traits, chromosome 10 was found to harbor

regions that are significantly associated with leaf length and leaf width. The results of

these association studies support previous findings as well as provide additional

insights into the genetic diversity of rice. This is the first known GWAS study on vari-

ous yield-related traits in the varieties of Oryza sativa available in Bangladesh—the

fourth largest rice-producing country. We believe this study will accelerate rice

genetics research and breeding stable high-yielding rice in Bangladesh.
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1 | INTRODUCTION

Rice (Oryza sativa L.) is one of the most important food crops and

feeds half the world’s population. Especially, this is the staple food of

about 170 million people in Bangladesh, and this country has one

of the highest per capita consumption of rice. Therefore, its food

security largely depends on the good harvest of rice. Future increases

in rice production, required to feed a continuously growing population

of this country amidst various adverse climatic conditions due to

climate change and limited arable land resources, will rely primarily on
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genetic improvement of rice cultivars. Therefore, understanding the

genetic basis of physiological and morphological variation in rice land-

races in Bangladesh is critical for improving the quality and quantity

of rice production. During the last few decades, great efforts in rice

research have been made by the Bangladesh Rice Research Institute

(BRRI), in association with the International Rice Research Institute

(IRRI) to boost rice production. However, the current effort in increas-

ing rice production in Bangladesh is mostly based on analyzing mor-

phological characteristics and developing hybrids with trial-and-error.

This traditional approach is not “scalable” to investigate the tremen-

dous genetic and phenotypic variation of thousands of rice varieties

available in Bangladesh. Genome wide association studies (GWASs)

may reveal important genotype-phenotype associations, which will

direct the agricultural scientists towards a more informed research for

breeding better rice varieties with desirable phenotypes suitable

for the climate of Bangladesh.

GWASs have become a popular method to identify advantageous

alleles and quantitative trait loci (QTL) associated with large-scale

complex traits in rice population. Due to the growing awareness of

the efficacy of GWASs in molecular dissection of traits and the abun-

dance of genomic and phenotypic resources, many GWASs have been

conducted over the past few years on various rice varieties across the

world. Huang et al. (2010) performed an association study on 14 rice

agronomic traits across 373 indica rice varieties and identified a total

of 80 related sites. Huang et al. (2012) identified a total of 32 heading

date sites and 20 grain type sites across 950 rice varieties. Zhao et al.

(2011) performed a GWAS on 34 traits across 413 rice varieties from

82 countries and identified 234 associated sites. Zhang et al. (2015)

analyzed 315 rice varieties from the International Core Rice Germ-

plasm Bank to perform a GWAS on five panicle traits, and a total of

36 candidate-associated regions were detected. Yang et al. (2014)

performed a GWAS on 15 traits, including 13 traditional agronomic

traits and identified 141 associated loci. Then, they compared how

these traits change along with the ecological environment. This led to

the identification of valuable varieties and sub-groups with more

favorable alleles. Biscarini et al. (2016) conducted a genome-wide

association analysis for grain morphology and root architecture for

temperate rice accessions adapted to European pedo-climatic condi-

tions, and a set of 391 rice accessions was GBS-genotyped leading to

57,000 polymorphic and informative SNPs, among which 54% were in

genic regions. A total of 42 significant genotype–phenotype associa-

tions were detected: 21 for plant morphology traits, 11 for grain qual-

ity traits, and 10 for root architecture traits. The results helped them

to dig into the narrow genetic pool of European temperate rice and to

identify the most relevant genetic components contributing to a high

yield of this germplasm. Zhang et al. (2019) performed a GWAS with

EMMAX for 12 agronomic traits using Ting’s core collection (7,128

rice landraces from all over China and from some of the other main

rice-cultivating countries collected by Li et al., 2011). Yang et al.

(2019) detected SNP loci and determined related genes affecting the

rice grain shape, which led to high-yielding breeding of rice. In that

study, a total of 161 natural Indica rice varieties grown in southern

China were used for a GWAS of grain shape-related traits. These

traits include grain length (GL), grain width (GW), 1,000-grain weight

(TGW), and grain length/width (GLW). Ma et al. (2019) conducted a

GWAS, and a gene called OsSNB was identified controlling the grain

size in rice. Similarly, significant efforts have been made for associa-

tion mapping with other yield related traits (e.g., panicle and leaf traits)

(Yang et al., 2014; Yang et al., 2015; Yang et al., 2019; Zhang

et al., 2015; Zhang et al., 2019).

In this study, we performed genome-wide association studies on

seven yield traits across 183 rice varieties in Bangladesh. We leverage

the 3K Rice Genome Project (3K RGP) (3000 Rice Genomes

Project, 2014), where 3,000 rice genomes were re-sequenced and a

resulting set of over 19 million SNPs has been characterized and made

accessible (3000 Rice Genomes Project, 2014; Alexandrov et al., 2015;

Mansueto et al., 2017). While the previous GWAS studies provide

fundamental resources regarding association mapping on various rice

traits, none of them were especially targeted for Bangladeshi rice

varieties. However, the grain yield-related rice traits are regulated by

multiple genes, which are significantly influenced by the environment

(Huang et al., 2010, 2013; Ikeda et al., 2013; Zhang et al., 2015). As

such, this study will further elucidate the impact of specific environmental

conditions on the association between traits and genetic variations.

2 | MATERIALS AND METHODS

2.1 | Rice materials

We leveraged the data from 3K RGP (3000 Rice Genomes

Project, 2014) (snp-seek.irri.org), which has sequenced a core selec-

tion of 3,000 rice accessions from 89 countries. We filtered a total of

183 rice varieties of Bangladesh. Detailed information on these

183 rice varieties are provided in Supporting Information S2. We

considered seven yield-related phenotypes, namely, grain length (GL),

grain width (GW), grain weight (GWT), panicle length (PL), leaf length

(LL), leaf width (LW), and leaf angle (LA). Out of the 183 rice varieties

of Bangladesh in the 3K RGP, 168 had recorded phenotypic values for

GL, GW, and GWT, while 158, 163, 160, and 84 rice varieties had

values for PL, LL, LW, and LA, respectively (3000 Rice Genomes

Project, 2014). Rice grain shapes are closely related to the yield and

quality (Huang & Qian, 2017; Yang et al., 2019). Leaf traits are among

the major determinants of plant architecture and are strongly associ-

ated to yield (Hoang et al., 2019; Pérez-Pérez et al., 2010;

Tsukaya, 2004; Wang et al., 2011). Panicle, being the top organ, is an

important component in the canopy and is strongly correlated with

spikelet yield (Jia et al., 2019). Thus, investigating the genetic variations

associated with these traits under specific conditions of Bangladesh

would be fundamental to high-yield rice research in this country.

2.2 | Characterization and genotypic data of rice
germplasm

The characterization and breeding of various rice accessions of

Bangladeshi origin were performed over different years at IRRI, Los
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Baños, Philippines (14�N, 121�E, alt. 21 m) (International Rice Gene-

bank Operations Manual, 2021). Genetic stocks for each of the 3,000

rice accessions were generated through one or more rounds of single-

seed descent purification, conducted in field or screen-house settings

(3000 Rice Genomes Project, 2014). Sowing occurred between May

and July. Among the 3K RGP accessions, seeding date information

was available for 29 Bangladeshi rice accessions, sown between

1989–2009 over different years, mainly between May and June (see

Figure S1). To capture diverse morphological and agronomic traits,

characterization was conducted at three growth stages: vegetative,

reproductive, and post-harvest. Leaf angle was measured during the

vegetative stage, while panicle length, leaf length, and leaf width were

measured in the reproductive stage. Grain trait-related information

was collected in the post-harvest stage.

As part of 3K RGP, the 3,010 genomes were sequenced to an

average depth of about 14�, ranging from approximately 4� to over

60�. Aligned with the Os-Nipponbare-Reference-IRGSP-1.0, the

3,010 genomes exhibited an average mapping coverage of 92%

(range: 74.6% to 98.7%) (Wang et al., 2018). SNP distribution varied

widely among chromosomes, with chromosomes 4, 1, and 11 having

the highest count and chromosomes 9, 10, and 5 having the lowest.

Predominantly, SNPs were located in intergenic areas and introns,

with only 18.24% in exons, almost 40% of which were synonymous. A

total of over 29 million SNPs were discovered, with over 27 million

being bi-allelic and exhibiting strong concordance (>96%). Post-

filtering, a core set of about 17 million SNPs was obtained covering

nearly 99.9% of all SNPs with a minor allele frequency exceeding

.25%. Notably, 56% of non-transposable element (NTE) genes and

91% of transposable element (TE)-related genes contained high-effect

SNPs (3000 Rice Genomes Project, 2014).

2.3 | Data analysis

Various statistical analyses of the yield-related traits were performed

using R (RR Core Team, 2013). We used raw phenotypic values for

these statistical analyses. We computed broad-sense heritability, H2.

The Shannon diversity index for traits was computed with the vegan

package in R (Dixon, 2003).

To address the impact of covariates like environment, subpopula-

tion, and seeding date on trait phenotypic values, we applied the Best

Linear Unbiased Prediction (BLUP) model using the lmer4 package in

R (Bates et al., 2014). Given the multi-environmental nature of the

data used in our GWA studies, we attempted to account for potential

confounding factors by including subpopulation and seeding date as

covariates in the model to adjust the phenotypic values of

Bangladeshi rice varieties. Our model treated rice varieties as fixed

effects, while subpopulation and seeding date were considered ran-

dom effects, thereby providing adjusted phenotypic values for our

analysis. We used the following model where (1 s) denotes random

intercepts for each unique level of the factor s. Y and X indicate the

adjusted phenotypic BLUP value and raw phenotypic value of the rice

varieties, respectively.

Y¼ X� 1jrice varietyð Þð Þþ 1jsubpopulationð Þþ 1jseeding dateð Þ
þ 1jrice variety : subpopulationð Þþ 1jrice variety : seeding dateð Þ

To understand the genetic diversity within Bangladeshi rice varie-

ties and the diversity compared to the 3K RGP panel, we calculated

minor allele frequency (MAF), nucleotide diversity π, and Tajima’s D in

the 3K RG 404 K CoreSNP dataset (snp-seek.irri.org). In the 3K RGP

dataset, 404 K core SNPs were filtered using a two-step linkage dis-

equilibrium (LD) to limit the number of markers with MAF > .01 and a

call rate of .8. We used PLINK (freq) to calculate the MAF (Purcell

et al., 2007). Nucleotide diversity π and Tajima’s D were calculated

with VCFtools (Danecek et al., 2011). We used sliding windows of

1,000 and 100 kb for calculating the nucleotide diversity π and

Tajima’s D, respectively, within the Bangladeshi rice varieties

and compared to the 3K RGP panel.

For GWAS, the 3K RG 29mio biallelic SNPs dataset was

processed using PLINK. Filtering SNPs (missing rate < 50% and

MAF > .05) to reduce the false-positive rate resulted in 39,40,165

SNPs. A Hardy–Weinberg equilibrium filter (p < 10�6) was applied to

exclude markers that deviate from Hardy–Weinberg equilibrium and

to account for genotyping error, and exclusion of samples with

kinship coefficient > .177 was applied to account for the population

stratification effects (i.e., to remove first-degree relationships of the

rice varieties). After excluding first-degree relationships, sample

counts were 151 (GL, GW), 154 (GWT), 139 (LL), 143 (LW), 74 (LA),

and 129 (PL).

To address linkage disequilibrium (LD), we pruned variants using

PLINK. LD was computed within 1,500-SNP windows, and LD > .6

(GL, GW, LW, LA) or > .7 (GWT, PL, LL) resulted in SNP exclusion.

Principal Component Analyses (PCA) were then performed to explore

population structure. This process yielded 420,519 SNPs for GL and

GW, 514,640 for GWT, 258,323 for LL, 420,375 for LW, 407,435 for

LA, and 178,543 for PL.

The quantitative association test function of PLINK (�glm) was

used to get the P values of significant SNPs. To correct for population

structure, normalized PC1 and PC2 were included as covariates in the

association tests. The genomic inflation factor (λ) was computed using

the glm function for each GWAS feature, which quantifies the amount

of the bulk inflation as well as the excess false positive rate, with

values ranging from 1 to 1.10, indicating no evidence of inflation

(Williams et al., 2021). A significant threshold of log10 P was set,

where P = 1, with n being the total number of markers used (Yang

et al., 2019; Zhang et al., 2019).

Considering that GWAS hits are often not causative, but rather

SNPs in LD with them, we performed genome-wide LD analysis on

datasets that are not LD-pruned prior to association tests. LD decay

in cultivated rice is typically between 100–200 kb (Lu et al., 2015).

For GL, we extracted SNPs within 100 kb of GWAS hits, for other

traits, 50 kb. PLINK was used to extract SNPs around GWAS hits and

Haploview for genome-wide LD analysis (Barrett et al., 2005). LD

plots were created using the R package LDheatmap (Shin et al., 2006).

Annotation analysis utilized SnpEff results of 3K RGP 29mio biallelic
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SNPs from 3K RGP (3000 Rice Genomes Project, 2014) (snp-seek.irri.

org), while candidate gene information was sourced from the Michi-

gan State University (MSU) Rice Genome Annotation Project Data-

base (Kawahara et al., 2013). Data visualization was done using the

Tidyverse package in R (Wickham et al., 2019).

3 | RESULTS AND DISCUSSION

3.1 | Phenotypic diversity of the traits

Statistical analyses of the phenotypic diversity in the yield-related

traits are shown in Table 1. The minimum and maximum GL in this

population are 4.7 and 10.2, respectively, having a mean GL of 8.28

with 9.48% coefficient of variation. The CV values of various grain

shape related traits range from 9.48% to 16.4%, and those of leaf and

panicle traits range from 11.67% to 57.7%. These analyses suggest

that this group of rice varieties represents significant variations in

grain shape and other yield-related traits.

The distribution of these traits and the correlations between

them are depicted in Figure 1. It suggests that these traits are nor-

mally distributed and GL, GW, and GWT are positively correlated with

each other, especially GW and GWT are strongly correlated with each

other. To account for the impact of various factors such as environ-

ment, subpopulation, and seeding date, we adjusted the data using

BLUP. The distribution of the BLUP-adjusted data is presented in the

supporting information. The linear relationship between the adjusted

phenotypic values and the raw phenotypic values (presented in

Figures S11 and S12) suggests that we can utilize the adjusted pheno-

typic values for our GWAS analysis.

We also calculated broad sense heritability, H2, and Shannon

diversity index of the traits analyzed in this study. The values are

shown in Table 1. The heritability values indicate that these traits

are highly heritable and genetic influence is moderately high. The heri-

tability of these traits, reported in previous studies (Kristamtini

et al., 2020; Roy & Shil, 2020), appears to be higher than what we

observed in our study of Bangladeshi rice varieties. This suggests a

significant influence of environmental and other factors on these

T AB L E 1 Statistical analyses of the yield-related traits

Trait Min Max Mean SD CV (%) Heritability Shannon diversity index

GL (mm) 4.7 10.2 8.28 .78 9.48 .47 1.3

GW (mm) 2.1 3.9 3.05 .33 1.8 .44 1.3

GWT (gm) 1.2 3.5 2.4 .4 16.4 .52 1.3

LL (cm) 2 5 3.26 .63 19.41 .68 1.3

LW (cm) .8 2.3 1.29 .24 19.26 .73 1.32

LA (rd) 1 9 3.39 1.96 57.7 .49 1.45

PL (cm) 18 32 24.89 2.90 11.67 .42 1.3

Note: We show the minimum (Min), maximum (Max), mean, standard deviation (SD), coefficient of variation (CV), heritability and Shannon diversity index

for each of the seven traits.

F I G U R E 1 Statistical analyses of the
grain shape related traits. We show the
distribution and correlation scatter matrix
of these three traits. GL and GW are
shown in millimeter (mm), and GWT is
shown in gram (gm). The blue lines in the
scatter plots indicate the correlation
trends.
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traits within Bangladeshi rice varieties. The Shannon diversity indices

indicate high diversity in the samples analyzed in this study.

3.2 | Genetic diversity analysis

In Figure 2, we present MAF distributions, comparing the MAF distri-

butions of 3K RGP lines with those of Bangladeshi lines, and among

the subpopulations of Bangladeshi varieties. Notably, 3K RGP lines

show a higher density of low-frequency allele variation compared to

Bangladeshi lines (Figure 2a). Moreover, 3K RGP lines exhibit a higher

distribution of variants with a frequency of .5. Figure 2b highlights

ARO as having the highest prevalence of low-frequency allele varia-

tion among Bangladeshi subpopulations, followed by AUS. Both

ADMIX and IND subpopulations show similar, albeit lower, densities

of low-frequency allele variation compared to ARO and AUS. Notably,

ADMIX and ARO subpopulations exhibit distinct peaks in the minor

allele distribution plot, suggesting unique genetic variants at specific

loci, which is not observed in AUS and IND subpopulations.

Figure 3 shows a comparative analysis of nucleotide diversity (π)

between the 3K Rice Genome Project and Bangladeshi rice lines.

Nucleotide diversity is computed along the length of each

F I GU R E 2 Density distribution of minor allele frequencies in rice populations. (a) The distribution of minor allele frequencies of the 3K RGP
lines (excluding Bangladeshi varieties) with all the Bangladeshi lines. (b) The distribution of minor allele frequencies among the Bangladeshi lines

F I GU R E 3 Nucleotide diversity (π) across rice chromosomes for 3K RGP and Bangladeshi lines

ROY ET AL. 5 of 16



chromosome, measured in megabases (Mb). While the overall

chromosome-wide nucleotide diversity trends are akin between the

3K RGP and Bangladeshi lines, Chr 10 exhibits notably less diversity

in the Bangladeshi lines in contrast to the 3K RGP lines. This may

suggest that Chr 10 is more conserved in the Bangladeshi lines.

Examining specific regions, such as those near 15, 25, 40 Mb in Chr

1; 5 Mb in Chr 2; 5, 20, 30 Mb in Chr 3; 2, 15, 20 Mb in Chr 4;

15 Mb in Chr 5; 1, 10, 24 Mb in Chr 6; 21, 28 Mb in Chr 7;

10, 18 Mb in Chr 8; 12 Mb in Chr 9; 22 Mb in Chr 11; 17 Mb in Chr

12, reveals higher nucleotide diversity in 3K RGP lines compared to

Bangladeshi lines. This suggests a lower level of variation in these

regions within the Bangladeshi lines. Conversely, regions near

25 Mb in Chr 2; 15, 35 Mb in Chr 3; 22, 32 Mb in Chr 4; 1 Mb in Chr

5; 18, 30 Mb in Chr 6; 15, 22 Mb in Chr 7; 8, 30 Mb in Chr 8; 7 Mb

in Chr 9; 20 Mb in Chr 20 exhibit higher nucleotide diversity in

Bangladeshi lines, implying possible diversity in Bangladeshi rice

varieties in these regions.

Figure S2 illustrates the nucleotide diversity across chromosomes

in different subpopulations of Bangladeshi rice. Chromosomes 2, 4,

11, and 12 show similar nucleotide diversity patterns among subpopu-

lations, indicating uniform allelic variations within these chromo-

somes. However, specific regions, such as those near 1–10,

20, 30 Mb in Chr 2; 7, 12 Mb in Chr 4; 8, 25 Mb in Chr 11; 5–10,

22 Mb in Chr 12, exhibit variations in nucleotide diversity among sub-

populations. In contrast, other chromosomes display varying nucleo-

tide diversity patterns. Specifically, regions near 30 Mb in Chr 1; 15–

30 Mb in Chr 3; 0–10 Mb in Chr 5; 8, 12, 22 Mb in Chr 6; 20 Mb in.

Chr 7; 0–5, 8–15, 18, 28 Mb in Chr 8; 10, 12–30 Mb in Chr 9; 3–

18 Mb in Chr 10 exhibit distinct nucleotide diversity among

subpopulations.

Additionally, we computed genome-wide Tajima’s D to identify

and compare selection signatures between 3K RGP and Bangladeshi

lines (Figure S3). A notable divergence in selection patterns was

observed in Chr 5, specifically in the 8–14 Mb region. Here, 3K RGP

lines showed an excess of rare alleles (Tajima’s D < 0), while

Bangladeshi lines demonstrated a scarcity of rare alleles (Tajima’s

D > 0). Further investigation within Bangladeshi lines revealed distinc-

tive selection patterns among subpopulations (Figure S3b), notably in

regions near 8–15 Mb in chromosome 2 and 10–15 Mb in

chromosome 8.

3.3 | Population structure

Principal component analysis (PCA) was performed based on

39,40,165 SNPs in 183 rice varieties. The first and second PCs cap-

tured 35% and 23% of the total variation respectively, indicating its

highly structured nature. PCA plot of the first two principal compo-

nents is shown in Figure 4, which suggests three major subgroups:

indica (IND), aus (AUS), and aromatic (ARO). The principal components

representing the IND samples are located in the lower left, the ARO

samples are located in the upper right, and the AUS samples are

located in the lower right part. There are a few ad-mixed (intermediate

type) varieties as well. We also show the genome stratification based

on SNP markers using multidimensional scaling (MDS) plot (see

Figure S4).

Since population stratification is observed in the samples, we

adjust for population stratification while testing for associations

between the SNPs and the phenotypes. We observed that the first

two principal components capture 58% of the variation as well as

F I GU R E 4 Population structure analysis using PCA. We show the PCA plot of the first two principal components of 183 rice varieties
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the three main subgroups of rice varieties in our samples. So we use

the first two axes of variation as covariates in the P-value

calculation.

3.4 | Relative kinship among the rice varieties

The kinship matrix was calculated using a centered IBS (identity by

state) method (Endelman & Jannink, 2012) in TASSEL (Bradbury

et al., 2007). Notably, most of the kinship estimates were zero

(or close to zero), and only a few kinship values were above .5. It sug-

gests that these varieties are reasonably unrelated and that there is a

lower possibility of any spurious relationships confounding GWAS

outcomes (Zhang et al., 2019). Figure 5 shows the kinship matrix as

well as histograms of the realized relationship coefficients. The distri-

butions of off-diagonal and diagonal elements (Figures 5b,c) indicate a

highly structured rice population which was also supported by our

PCA analyses reported in Section 3.3.

3.5 | GWAS on grain shape related traits

A total of 168 rice varieties (out of 183 Bangladeshi varieties collected

from the 3K RGP) had GL, GW, and GWT values associated with

them, and we used these 168 varieties for our association studies. To

delineate genetic determinants of various traits in rice, we identified

significant SNPs from Manhattan plots. The genomic inflation factor

was calculated to test the accuracy of the GWAS models and to

mitigate false positives. In addition, Q-Q (quantile-quantile) plots were

used to check whether the p values are inflated. As GWAS hits may

not necessarily be within the causal genes, we executed a genome-

wide linkage disequilibrium (LD) analysis for the candidate peak

regions to characterize regions harboring putative candidate genes

(Porcu et al., 2019). LD analyses were done with the datasets that are

not LD pruned, while GWAS analyses were done with LD pruned

data. These candidate peak regions (SNPs that are in LD with GWAS

hits) are provided as supporting information (S4–S10). We have con-

centrated our LD analyses on SNPs that are correlated with GWAS

hits and possess functional annotations affecting the traits we are

interested in.

3.5.1 | GWAS for grain length

The Manhattan plot shown in Figure 6 reveals three noteworthy SNPs

harbored in chromosomes 3, 7, and 10, corresponding to genes LOC

Os03g38850, LOC Os07g11640, and LOC Os10g22620, respectively

(see Table 2). Notably, these three genes encode retrotransposon pro-

teins, a class of transposable elements known for their ability to mobi-

lize within and across genomes, thereby contributing to genomic

diversity and size variation. In the realm of plant biology, long terminal

repeat (LTR) retrotransposons, a subtype of retrotransposons, have

been recognized as significant contributors to genome evolution

(Orozco-Arias et al., 2019). LTR retrotransposons are not only impor-

tant for gene regulation but also play a crucial role in plant heat

response (Papolu et al., 2022).

F I GU R E 5 Relative kinship among 183 rice varieties. (a) A heatmap representing the kinship coefficients. (b, c) Histograms of the realized
relationship coefficients, where we show the frequencies of the off-diagonal and diagonal elements in the kinship matrix, respectively

ROY ET AL. 7 of 16



F I GU R E 6 GWAS on grain length using 168 rice varieties. We show the Manhattan plots, Q-Q plots, local Manhattan plots, and LD heatmap
plots. The blue lines indicate the genome-wide significant threshold. For QQ plots, the horizontal axis shows the log10-transformed expected P
values, and the vertical axis indicates log10-transformed observed P values. We color the LD heatmaps with a color gradient, which varies
continuously from yellow to red with increasing r2 values.
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While the specific involvement of retrotransposon proteins in

grain length remains implicit in the previous studies, the broader liter-

ature underscores their impact on rice grain-related traits. A notewor-

thy example is the association of LTR retrotransposons with grain

width, leading to the development of extra-large grains and a substan-

tial increase in rice yield (Akakpo et al., 2020). Thus, their potential

implications for key agronomic traits, including grain length, cannot be

overlooked.

In our LD analysis aimed at exploring additional alleles proximal

to the significant genes, an array of genes associated with grain

length regulation was identified. Notably, LOC Os03g38710 (har-

bored in chromosome 3) was identified as encoding a serine-

threonine protein kinase, suggesting potential involvement in signal-

ing pathways pivotal to the regulation of grain length. Additionally, a

cluster of genes—LOC Os03g38830, LOC Os03g38840, LOC

Os03g38850, LOC Os03g38880, and LOC Os03g38890—was found

to encode retrotransposon proteins, suggesting significant impact on

grain lengths other grain traits in rice (Kim et al., 2014). Another

noteworthy gene is LOC Os03g38930, which encodes a protein fea-

turing a signal peptide. Previous studies suggest that signal peptides

such as epidermal Pattering Factor-Like2 (EPFL2) regulate grain

number, grain length, and awn development in rice (Jin et al., 2016;

Xiong et al., 2022).

Our analysis also revealed a series of genes harbored in chromo-

some 10—LOC Os10g22550, LOC Os10g22540, LOC Os10g22620,

LOC Os10g22640, LOC Os10g22650, LOC Os10g22760, and LOC

Os10g22800—that are known to encode retrotransposon proteins.

The gene LOC Os10g22560 encodes a peptide transporter

PTR2n, which is involved in the transport of nitrogen-containing sub-

strates (Kitamura et al., 2012). Although not directly linked to grain

length, nitrogen transport and metabolism can indirectly influence

grain development and size. In rice, the PTR gene family to which

LOC Os10g22560 belongs is involved in nitrate uptake and transport

(Yang et al., 2020). The expression profiles of 96 PTR genes in rice

have been analyzed, showing their potential role in nitrogen use effi-

ciency (NUE) and nitrogen metabolism pathways (Yang et al., 2020).

Therefore, while not directly linked to grain length, the gene LOC

Os10g22560 and the PTR gene family are important for nitrogen

transport and metabolism, which can influence grain development

and size.

Further exploration of chromosome 7 revealed LOC

Os07g11500, LOC Os07g11640, LOC Os07g11650,

LOC Os07g11670, LOC Os07g11700, LOC Os07g11720, LOC

Os07g11790, and LOC Os07g11800 were found to encode retrotran-

sposon proteins, aligning with their potential impact on grain length

and other grain traits in rice (Takano-Kai et al., 2009).

Our GWAS study supports previous findings as well as reveals

additional chromosomal regions associated with GL. Yang et al. (2019)

identified eight SNP loci in four chromosomes (3, 5, 6, and 7) to be in

close association with grain length, and—among these four

chromosomes—our study identified chromosomes 3 and 7 to harbor

two significant loci. Similarly, Zhang et al. (2015) identified 10 SNP loci

in choromosomes 3, 5, 6, 7, 8, 10, and 12, which were significantly

associated with GL. A study on basmati rice of Indian origin (Singh

F I GU R E 7 GWAS on grain width and weight using 168 rice varieties. We show the Manhattan plots and Q-Q plots for (a) grain width and
(b) grain weight.
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F I GU R E 8 GWAS on leaf and panicle traits. We show the Manhattan and Q-Q plots for (a) LL, (b) LW, (c) LA, and (c) PL.
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et al., 2012) also revealed chromosomal region 7 to be associated with

GL, and an SSR (simple sequence repeat) analysis in Pakistan (Aslam &

Arif, 2014) identified chromosomal regions in 3 and 7 to be in close

association with grain length.

3.5.2 | GWAS on grain width (GW)

GWAS on GW revealed a triad of significant SNPs on chromosomes

1, 10, and 11, aligning with genes LOC Os01g49860, LOC

Os10g10020, and LOC Os11g40610, respectively, as depicted in

the Manhattan plots of Figure 7a. The gene LOC Os11g40610 in

chromosome 11, encoding an early flowering protein, emerged as

the most important candidate for grain width trait as early-morning

flowering in rice influences grain yield (Ishimaru et al., 2022). When

we looked at the other two GWAS hits in chromosomes 1 and 10 in

the Rice Genome Annotation project (http://rice.uga.edu/), we

observed that these are conserved proteins and transposon proteins

respectively.

The local Manhattan plots and LD heatmaps are presented in

Figure S5. LD analysis near the GWAS hit of chromosome 1 revealed

zinc finger associated gene LOC Os01g49770. Zinc finger proteins

are known to control cytokinin levels in the inflorescence meristem,

which influences grain production (Li et al., 2013). We also observed

genes nearby to the GWAS hit of chromosome 1 such as LOC

Os01g49820, LOC Os01g49830, LOC Os01g49920,

LOC Os01g49920, and LOC Os01g49900 are highly expressed in

inflorescence meristem. Another interesting gene we found in that

region is LOC Os01g49870 which encodes a transposon.

Exploring the SNPs near the GWAS hit of chromosome 10, we

found LOC Os10g09990, which encodes cytokinin-

O-glucosyltransferase 3 (CGT), and previous GWA studies have

shown that CGT genes have significance in grain maturity (Dauda

et al., 2022). Other notable genes in that region are LOC Os10g10080

(exostosin family domain), LOC Os10g10040 (cytochrome P450), and

LOC Os10g10030 (OsWAK receptor-like protein kinase) as previous

studies have shown their involvement in grain yield (Chen et al., 2017;

Qilin et al., 2017; Usman et al., 2020). Moreover, we found a few ret-

rotransposon proteins in this GWAS hit region (LOC Os10g09970,

LOC Os10g09960, LOC Os10g09940, LOC Os10g09950, LOC

Os10g09960, and LOC Os10g09950).

In chromosome 11, near the GWAS hit site, we found LOC

Os11g40550 (receptor kinase), and there is evidence that Mini Seed

2 (MIS2) gene encodes a receptor-like kinase, which controls grain size

and shape in rice (Chun et al., 2020). Furthermore, LOC Os11g40680

encodes BTB (broad-complex, tramtrack, and bric-`a-brac) protein com-

plex that regulates the final grain size (Shalmani et al., 2023).

Zhang et al. (2015) found chromosomes 1, 2, 3, 5, 6, 7, 10, 11,

and 12 to harbor significant SNPs associated with GW. Yang et al.

(2019) identified various regions in chromosomes 4, 5, 6, 8, 9, and

11 to be associated with GW. Zhang et al. (2019) discovered GS2 loci

in chromosome 2 in close association with GW. Thus, our association

study on GW shows similarities in chromosomal level (chromosomal

regions 1, 10, and 11) with prior studies, in addition to revealing new

loci-level associations.

3.5.3 | GWAS on grain weight (GWT)

Our study identified significantly associated SNPs harbored in chro-

mosomes 10 and 11, suggesting two potential candidate genes LOC

Os10g37050 and LOC Os11g20590 (Figure 7b and Table 2). These

genes encode transposon proteins. Notably, we observed significant

associations with transposon gene families for GL as well.

Our LD analysis (see Figure S6) near the GWAS hit of chromosome

11 revealed a cluster of genes such as LOC Os11g20510, LOC

Os11g20610, LOC Os11g20520, LOC Os11g20570, and

LOC Os11g20590, encoding retrotransposon and transposon proteins.

Our study identified gene LOC Os10g36924 near the GWAS hit

on chromosome 10, which encodes an aquaporin protein. Aquaporins

play crucial roles in water transport and plant physiological processes.

While direct links to grain weight are not evident, aquaporins’ involve-

ment in water transport suggests a potential indirect influence on grain

weight by regulating plant hydration and nutrient uptake (Hayashi

et al., 2015). Additionally, LOC Os10g37034 encodes a cytochrome

P450 protein, known to impact grain development (Usman et al., 2020).

We also noted the presence of a cytochrome gene (LOC Os10g10040)

near the GWAS hit on chromosome 10 for the grain width trait.

As was observed for grain length and grain width, our association

study on grain weight presents some congruent results with respect

to the previous studies (Kinoshita et al., 2017; Li et al., 2020), in addi-

tion to revealing new chromosomal regions associated with grain

weight.

3.6 | Results on leaf and panicle traits

We performed association studies on four other yield-related traits:

panicle length and three leaf traits (leaf length [LL], leaf width [LW],

and leaf angle [LA]). The Manhattan and Q-Q plots on these traits are

shown in Figure 8. The LD heatmap and local Manhattan plots

are shown in Figures S7–S10.

We find that two SNPs in chromosomes 8 and 12 are significantly

associated with LL. Regarding LW, we see that three SNPs exceed the

threshold line, located on chromosomes 1, 5, and 8, respectively.

Three SNPs, harbored in chromosomes 1, 5, and 7, are observed to be

significantly associated with LA. Finally, two SNPs in chromosomes

2 and 6 are found to be associated with PL. Details of the GWAS hits

for these traits are shown in Table 2, SNPs that are in LD with the

GWAS hits are in the supporting information (S7–S10).

4 | CONCLUSIONS

Production of high-yield strains is crucial for meeting the continuously

increasing food demand of the world population. Hybrid rice has been

12 of 16 ROY ET AL.
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an effective way to meet this ever-increasing food demand in

Bangladesh. Despite a significant success in rice production,

Bangladesh faces many challenges in the agricultural sector as it is

becoming more densely populated day by day. In addition, climate

change impacts like temperature rise, uncertain weather, prolonged

dry season, irregular rainfall, frequent cyclones, sea-level rise, and

floods are already being felt in Bangladesh. Therefore, understanding

the genetic architecture underlying yield related traits as well as the

impact of environmental factors is fundamental to the advancement

of rice cultivars as the performance of various rice varieties vary with

varying conditions of cultivation (Sreedhar et al., 2011).

We presented genome-wide associated studies on seven impor-

tant yield-related traits using 183 rice varieties in Bangladesh. These

GWASs are especially targeted for the Bangladeshi rice varieties and

thus consider the interactions between genetic variations underlying

yield-related traits and the particular ecological environment of

Bangladesh. The GWA studies for grain related traits (GL, GW, and

GWT) yielded significant insights into the genetic determinants of

these important agronomic traits. For grain length, significantly associ-

ated SNPs were identified on chromosomes 3, 7, and 10, correspond-

ing to genes encoding retrotransposon proteins, known for their role

in genome evolution. Similarly, GWAS for grain width revealed signifi-

cant SNPs on chromosomes 1, 10, and 11, with candidate genes

including a flowering and transposon proteins. The LD analysis near

the GWAS hits provided further insights into the potential regulatory

mechanisms, with zinc finger associated genes, highly expressed

genes in inflorescence meristem, and BTB protein complex identified

as candidates. Moreover, for grain weight, significant SNPs were

found on chromosomes 10 and 11, with candidate genes encoding

transposon proteins and aquaporin and cytochrome P450 proteins.

Notably, the involvement of transposon gene families was observed

across all three traits, suggesting a potential shared genetic basis.

This result could partially explain the genetic basis of correlation

among the three grain-related traits (as demonstrated in Figure 1) and

provide useful information for genetic improvement of these traits by

marker-assisted selection (MAS) (Jena & Mackill, 2008; Steele

et al., 2006; Zhang et al., 2014). As we discussed in our results section,

there is discordance among the significant loci identified by various

association studies performed on the same traits. Differences in sam-

ple sizes and various types of rice varieties considered in different

studies may be attributed to this disagreement. Another crucial factor

is the ecological environment where the considered rice varieties

were grown. Therefore, this study advances the state-of-the-art in

rice research in Bangladesh. However, this study is limited in scope

and can be extended in various directions. We have leveraged the

data from the 3K RGP project. Future studies need to collect rice

materials, planted in various regions of Bangladesh under adverse eco-

logical conditions to better elucidate the impact of specific environ-

mental factors in genotype–phenotype association. Follow-up studies

also need to investigate the candidate genes through functional geno-

mics approach (Huang et al., 2010; Zhang et al., 2008). This study is

limited to seven yield-related traits. However, more information will

be gained through GWAS of rice landraces as additional phenotypes

are evaluated, especially the ones that are related to the adverse eco-

logical environments of Bangladesh. To name a few, tolerance to pro-

longed flood, submergence, salinity, drought, and cold are special

features for various rice varieties in Bangladesh. As such, future stud-

ies need to sample a larger number of broadly representative varieties

with special traits. For example, Rayada—a distinctive group of deep-

water rice, totally endemic to certain area of Bangladesh and have

multiple physiological features distinctly different from typical deep-

water rice—could be potential resources of abiotic stress tolerance

traits like flood, cold, and drought (Bin Rahman & Zhang, 2013;

Glaszmann, 1987; Perez & Nasiruddin, 1974). Thus, we believe that

this study will stimulate related future studies and will help identify

beneficial genetic variations—which will enable the agricultural scien-

tists to direct their efforts in developing elite varieties with desirable

genetic compositions.
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