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Abstract: Iron and ascorbic acid (vitamin C) are essential nutrients for the normal growth and
development of humans, and their deficiency can result in serious diseases. Their interaction is of
nutritional, physiological, pharmacological and toxicological interest, with major implications in
health and disease. Millions of people are using pharmaceutical and nutraceutical preparations of
these two nutrients, including ferrous ascorbate for the treatment of iron deficiency anaemia and
ascorbate combination with deferoxamine for increasing iron excretion in iron overload. The main
function and use of vitamin C is its antioxidant activity against reactive oxygen species, which are
implicated in many diseases of free radical pathology, including biomolecular-, cellular- and tissue
damage-related diseases, as well as cancer and ageing. Ascorbic acid and its metabolites, including
the ascorbate anion and oxalate, have metal binding capacity and bind iron, copper and other metals.
The biological roles of ascorbate as a vitamin are affected by metal complexation, in particular
following binding with iron and copper. Ascorbate forms a complex with Fe3+ followed by reduction
to Fe2+, which may potentiate free radical production. The biological and clinical activities of iron,
ascorbate and the ascorbate–iron complex can also be affected by many nutrients and pharmaceutical
preparations. Optimal therapeutic strategies of improved efficacy and lower toxicity could be
designed for the use of ascorbate, iron and the iron–ascorbate complex in different clinical conditions
based on their absorption, distribution, metabolism, excretion, toxicity (ADMET), pharmacokinetic,
redox and other properties. Similar strategies could also be designed in relation to their interactions
with food components and pharmaceuticals, as well as in relation to other aspects concerning
personalized medicine.

Keywords: ascorbic acid; vitamin C; iron; chelation; nutrients; reactive oxygen species; antioxidants;
therapeutics

1. Introduction

Iron and ascorbic acid or vitamin C, are two of the most essential nutrients that are required for
normal growth and development in humans. The daily acquisition of sufficient quantities of these
nutrients is important for normal physiological function and activity, and their absence or reduced
body intake and tissue distribution could result in serious diseases. There are common pathways
and interactions between iron and ascorbic acid metabolism, some of which could have an impact on
normal living and in disease states. Similarly, since both nutrients are likely to be in the same daily
meals, their chemical interactions are also of nutritional significance and interest.
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Iron is essential for all living organisms, including microbes and cancer cells. There are many
iron-containing proteins and metabolic pathways, which play an important role in cellular and
physiological functions. There is also operational effective homeostatic control of the metabolic
pathways associated with iron absorption, utilization, recycling and possibly excretion [1–4].
The continuous production and timely turnover of iron-containing proteins ensures normal biological
and physiological activity. In this context, any abnormalities in the production of iron-containing
proteins, the iron metabolic pathways and associated processes, could lead to different diseases [3–6].

Iron metabolic imbalance is generally associated with a number of serious conditions, such as iron
deficiency anaemia, which affects about a third to a quarter of the world’s population [7]. In contrast,
many hundreds of thousands of patients with chronic haematological and malignant diseases, including
thalassaemia, sickle cell anaemia, haematopoietic stem cell transplantation, aplastic anaemia and
cancer, are affected by iron overload due to multiple red blood cell transfusions for the treatment
of the refractory anaemia [8–11]. Similarly, iron overload caused by increased gastrointestinal iron
absorption in the inherited disease idiopathic haemochromatosis affects thousands of people, especially
populations of Caucasian origin [12,13].

The regulation of iron absorption, transport, storage and utilization in humans is primarily
controlled by a number of specific regulatory proteins and transcription factors [1–5,14]. Similar to
other essential metal ions, iron has, under normal conditions, a specific metabolic route, biomolecular
sites of interaction, specific tissues of deposition and storage and specific pathways of transport in
blood and in cells. In this context, the body fluids and organs of normal individuals contain iron levels
within a certain range, which reflect the requirements for normal bodily functions and the balance
of dietary intake and excretion [4–6]. In general, the distribution of iron in the body of a 70–75 kg
man is mainly in the form of haem-iron (Fe2+) in haemoglobin (2.3–2.6 g) in red blood cells, and of
myoglobin (0.32–0.40 g) in muscle. Non haem-iron such as stored iron (Fe3+) is found in ferritin (0.7 g)
and haemosiderin (0.3 g), and also non-haem enzymes (0.1 g), totaling to 1.1–1.5 g in liver, spleen,
muscle and bone marrow. Smaller amounts of iron are found in mitochondrial cytochromes (17 mg),
catalase (5 mg) and transferrin (4 mg) [1,4].

Iron metabolic balance can be disturbed and affected by genetic, environmental, nutritional,
iatrogenic and other factors, and may also be associated with other changes such as organ damage,
inflammation, disease, trauma, sport activities, dietary habits, pregnancy, etc. [4–6,13,14].

A major area affecting health and disease, which involves iron and ascorbic acid, is free radical
pathology. Increased production of free radicals (FR) and reactive oxygen species (ROS) has been
implicated in almost all diseases, including those associated with tissue damage, as well as in cancer
and ageing [15–20]. In almost all biological systems, the catalysis of FR production, including the effects
leading to oxidative stress toxicity, is carried out by iron, copper and enzymes containing these metals.
In general, many organic compounds can influence the rate of FR production, including reducing
agents and or chelators, such as ascorbic acid [16,20].

Ascorbic acid is the most common vitamin, which is widely used as a nutraceutical supplement
throughout the world. It is one of the most important compounds in the human diet derived from
plants and is found in most fruits and vegetables. The essential need for ascorbic acid in humans
seems to stem from the inability to biosynthesize this molecule in the body. This inability, which is also
shared by other primates, is due to a mutation that causes a lack of production of l-gulono-1,4-lactone
oxidase, an important enzyme in the metabolic route of ascorbic acid biosynthesis.

Ascorbic acid (AscH2) is mainly found in acidic conditions, e.g., the stomach environment, but the
ascorbate anion (AscH−) predominates at physiological pH. Two other oxidation products of ascorbic
acid, the ascorbyl radical (AscH•) and dehydroascorbate (DHA), are also found in the body in smaller
quantities (Figure 1).

In addition to its nutritional value, ascorbic acid is also used in medical practice and in clinical trials
for the treatment of many different conditions, including critically ill patients with hypovitaminosis
C, in severe pneumonia, severe acute respiratory failure, multiple myeloma, metastatic colorectal
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carcinoma, metastatic melanoma, coronary artery disease, Type 2 diabetes, dementia, Alzheimer’s
disease and COVID-19 [21–30].
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Figure 1. The structures of ascorbic acid (AscH2), ascorbate anion (AscH−) and its main
oxidation products: ascorbyl radical in protonated and deprotonated forms (AscH• or Asc•−) and
dehydroascorbate (DHA) [31,32]. The metal binding site of ascorbic acid consists of the two –OH
groups (one, 2-OH on the right hand site and the other 3-OH on the left hand site of the ring structure
of AscH2) [32].

The biological functions of ascorbic acid include antioxidant, chelating and coenzyme
activities [33–35]. It is involved in tissue repair, the production of neurotransmitters, and is also
important in the function of the immune system. The main property of ascorbic acid is its function as
an antioxidant, and its antioxidant activity is usually associated with its ability to trap free radicals
(R•), as shown in the reaction below:

AscH2 (or AscH−) + R•→ AscH• (or Asc• −) + RH
As a powerful water soluble antioxidant, ascorbic acid acts as a scavenger of FR and provides

effective protection to cell membranes, proteins and other biomolecules against oxidation by many
ROS, including superoxide (O2

•−), hydrogen peroxide (H2O2), hydroxyl radical (•OH), peroxyl
radical (•OOH) and singlet oxygen (1O2) [16–18,36,37]. AscH− donates a hydrogen atom (H• or H+

+ e−) to an oxidizing radical to produce the resonance-stabilized tricarbonyl ascorbate free radical
(AscH•). However, AscH• has a pKa of –0.86, and therefore is not protonated in physiological
conditions and exists as Asc•−. The rate constants (k) for this reaction with the most common oxidants
have been previously determined [38]. For example, the estimated k value for the tocopheroxyl
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radical (TO•) in a biological membrane at pH 7.4 is 2 × 105 M−1s−1, and for hydroxyl radical (•OH),
k = 1.1 × 1010 M−1s−1. AscH2 (or AscH−) reacts rapidly with TO•, •OH and similar oxidants, making
it an outstanding antioxidant.

In contrast to its antioxidant use and effects, ascorbic acid under certain conditions can also act as a
pro-oxidant and a source of FR [39–43]. The nature of the pro-oxidant activity of ascorbic acid is related
to its ability to reduce ferric iron via chelate complex formation, which is followed by the formation of
ferrous iron and ascorbic radical. Since ferrous iron is involved in the process of ROS generation via
the Fenton reaction, the reduction of ferric to ferrous iron will turn on the cyclic oxidation process.
As a result, a significant increase in the oxidation rate of various organic compounds, including many
biomolecules, through the Fenton reaction can be detected in the presence of ascorbic acid. In this
context, the role of ascorbic acid in various diseases caused by iron and copper overloading conditions
has been widely discussed [44–46]. Furthermore, there has been a heightened interest in the possibility
of using ascorbic acid as a pro-oxidant for the treatment of cancer in combination with other anticancer
agents, in high dose protocols of oral and intravenous administration [47–58].

Overall, there is continuous debate in the medical literature regarding the importance of iron and
ascorbic acid and their effects and interactions, especially in relation to the treatment of many diseases.
In this context, some of the molecular characteristics and interactions of iron and ascorbic acid are
reviewed, with emphasis on the therapeutic implications in many categories of diseases affecting
billions of patients. Major emphasis is also placed on the chemical mechanisms of the metabolic
interactions between ascorbic acid and iron, in relation to the generation and inhibition of FR and ROS,
as well as other metabolic aspects affecting their therapeutic applications and also their toxicity [15–20].

2. Historical Perspective of Ascorbic Acid

Ascorbic acid is found in various foods originating mainly from plants. The name “ascorbic
acid” means “without scurvy”. It is used to prevent and treat scurvy, the disease caused by vitamin C
deficiency. Scurvy was known to be a main killer of sailors during the long sea voyages, with apparent
symptoms of skin bleeding, gum disease, hair changes, fatigue and anemia. Lind in 1753 in his Treatise
on the Scurvy described how citrus fruits prevented the disease [59,60].

Ascorbic acid was discovered in 1912, and later in 1933 Haworth chemically identified the
compound as l-hexuronic acid, proving this by chemical synthesis. Haworth and Szent-Györgyi
proposed to name l-hexuronic acid as a-scorbic acid, and chemically l-ascorbic acid, in honor of
its activity against scurvy. Szent-Györgyi and Haworth were awarded the 1937 Nobel Prizes in
“Physiology and Medicine” and “Chemistry” respectively. The crystal structure of ascorbic acid was
uncovered by Hvoslef only in the 1960s by neutron diffraction and X-ray spectroscopy [61,62].

In spite of the simplicity of this molecule (Figure 1), its biological role is still poorly understood
due to its very complicated redox chemistry. The most intriguing property of ascorbic acid is its ability
to interact with metal ions [20,63].

Ascorbic acid can be found in the World Health Organization’s List of Essential Medicines, as the
safest and most effective medicine needed in a health system, and is available as an inexpensive
synthetic or natural vitamin [64]. However, its multi-faceted role in human life and especially the
molecular mechanisms of its biological activity are still under investigation, and the subject of many
controversies and debates [65].

3. The Biological Redox and Toxic Effects of Iron

Iron is an essential element and important for human life due to its role in many cellular processes,
including oxygen transport, energy transaction, DNA synthesis, and many metabolic processes
involving iron-containing enzymes [1–6,16,39]. The catalytic activity of iron is related to its redox
properties, namely the ability to alternate mainly between the two oxidation states Fe3+ and Fe2+,
acting as an electron donor or acceptor [39,43].
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Under normal conditions, there is a very low concentration of free, non-protein-bound iron in the
human body. Iron (Fe3+) is transported in blood by plasma transferrin, which can bind and transport
a maximum of two molecules of iron and deliver it to all cells of the body via transferrin receptors
present at the cell surface [1–3,39]. All cells store iron using the intracellular storage protein ferritin,
each molecule of which can store up to 4500 molecules of iron (Fe3+) in a polynuclear oxohydroxide
complex formation. A low molecular weight iron pool is present intracellularly, which is composed of
different natural chelators, including ascorbic acid, and is utilized for the exchange of iron between
the different sites of uptake, removal and reuse [19]. Different mechanisms have also been suggested
regarding the role of ascorbic acid in iron uptake and release from proteins of iron metabolism,
including transferrin and ferritin [39,66,67].

Iron homeostasis is important for normal, healthy living [1–3]. The presence of excess iron is toxic
to cells due to the involvement of high concentrations of free labile iron in various redox reactions,
and the production of ROS via the Fenton type reactions, which can cause biomolecular, subcellular,
cellular and tissue damage [68]. This is why the presence of excess iron is a negative prognostic factor,
and can result in tissue damage in various diseases such as thalassaemia and other transfusional iron
overload conditions, age-related neurodegenerative diseases and cancer [68–74].

Iron chelation therapy is widely used to prevent toxicity arising from the excess deposition
of iron in tissues by removing the excess, toxic forms of iron, and preventing associated damage.
Iron chelation therapy is carried out mainly by three widely used chelating drugs, deferoxamine,
deferiprone and deferasirox, which have the ability to seek and bind excess iron and remove it from
the body (Figure 2) [39,68–77].
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The mode of action of the chelating drugs and other chelators and the mechanisms involved is the
subject of many investigations. In particular, some very important questions have been raised in recent
studies as to how the redox activity of iron changes in chelate complexes [20,75,78–81]. As an example,
we have recently demonstrated the inhibition of iron- and copper-induced hydroxyl radical production
by the water soluble chelator deferiprone (Figure 2) [81,82]. Deferiprone was discovered as an effective
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orally active iron-chelating drug developed for the treatment of iron overload toxicity in thalassaemia
and other iron-related toxicity conditions [83–85]. It has also been demonstrated that deferiprone is an
effective antioxidant that prevents oxidative stress and biomolecular, sub-cellular, cellular and tissue
damage, caused mostly by iron- and copper-induced free radicals formation in vivo [85].

4. Iron Coordination and Redox Chemistry of Ascorbic Acid

The metal coordination chemistry of ascorbic acid has been thoroughly studied in connection with
its high redox activity and participation in various biologically important redox processes [32,86–91].
In contrast to strong chelators, like the chelating drugs, which are used in iron overloading conditions
for removing excess iron, ascorbic acid is generally considered as a weak chelating agent and cannot
form strong iron complexes or be used effectively in iron removal. Being a weak dibasic acid (pKa1 = 4.1
and pKa2 = 11.79), ascorbic acid at physiological conditions exists as a monoanion (AscH−) with
deprotonation of the 3-OH group (see Figure 1). This form is quite stable due to the delocalization of
the negative charge among the oxygen atoms in the first and third positions. It has been previously
suggested that the interaction of ascorbic acid with iron or other metal ions occurs by chelation via
the O(3) and O(2) nuclei following hydrogen displacement from the 3-OH and the 2-OH groups
(Figure 1) [32].

The chelate complexes of ascorbic acid with iron have been studied using different methods,
including Mössbauer spectroscopy and time-resolved stopped-flow spectrophotometry techniques,
where evidence for the presence of blue intermediates in the iron reduction pathway were observed
during the reaction [86,92]. Furthermore, it has been demonstrated that the reaction proceeded in
a millisecond time scale through an inner-sphere mechanism involving an Fe3+-chelate complex
followed by the formation of an oxidation product, dehydroascorbic acid (DHA), in a number of
steps (Figure 1) [86,92]. In these, as well as other investigations that followed, a fast reduction of
Fe3+ via intramolecular electron transfer, with simultaneous production of ascorbyl radical, has been
observed [80–92]. It has also been suggested that an iron chelate complex structure with stoichiometry
1:2 has been formed based on NMR data. A yellow Fe2+ chelate complex from methanol solution has
also been isolated [93]. The data also provided evidence that the Fe2+ center in the chelate complex
was in a distorted octahedral environment, realized in a polymeric structure, in which the ascorbate
dianions used all their oxygen atoms as donor atoms. Further studies have also reported the formation
of the mixed valence (Fe2+ and Fe3+) iron–ascorbate complexes [94].

Some of the main questions in relation to the formation of ferrous–ascorbate and ferric–ascorbate
complexes are whether these complexes are redox active, and also whether there are any biological
implications from such redox activity. In both cases, the initiation of a cascade of redox reactions with
the formation of ROS is indicated, which is due to the ability of ascorbic acid to reduce Fe3+ via an
intermediate chelate complex, producing a stable ascorbyl radical and the redox active Fe2+ which can
lead to such activity (Figure 3).
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The resultant resonance-stabilized ascorbate radical is stable, and it is eliminated by its interaction
with reducing enzymes in order to regenerate the active form.

There are many examples describing the redox activity implications of a mixture of ascorbic acid
with Fe2+ in the Fenton reaction [30,95–98]. For example, the oxidation of benzoic acid by the Fenton
reaction occurs more effectively in the presence of ascorbic acid [96]. It appears that the starting reaction
rate of the ferrous–ascorbate complex with hydrogen peroxide is the same as free Fe2+. However,
after Fe2+ was oxidized to Fe3+, the reaction rate decreased by about one order. It was concluded that
in the presence of ascorbic acid the starting reaction rate is kept high due, to the fast reduction of
Fe3+ [96].

Similar redox-cycling behavior has been described earlier in previous studies, where the
carotenoids beta-carotene and zeaxanthin, as well as anticancer quinine derivatives, were able
to initiate the cycle of ROS generation in the presence of Fe3+ [97,98]. In general, it appears that redox
cycling requires that iron in the form of an iron complex must first be reduced, and then oxidized
by hydrogen peroxide. The thermodynamic rules for such redox-cycling have been formulated and
proposed such that, for a metal-chelate to be an effective catalyst, it should have a reduction potential
between E◦(O2/O2

•–) = −0.33 V and E◦(H2O2, H+/HO•, H2O) = 0.46 V [99], or E◦(H2O2, H+/HO•,
H2O) = 0.39 V, as estimated and revised recently [100].

There is a lot of interest in redox cycling by metal chelates including iron chelate complexes in
biological conditions and within cells. In this context, low molecular weight intracellular iron in a
“transit pool” is considered to be bound and form complexes with low molecular weight naturally
occurring endogenous chelators, such as amino acids, ATP, glutathione, citric acid, oxalic acid and
dietary chelators such as ascorbic acid, polyphenols, etc. [29,39]. Considering that the iron concentration
of the intracellular pool was estimated to be in the range of 1 µM, the formation of redox active
complexes under certain conditions could be possible [101].

Redox active iron complexes could also be formed in vitro with low molecular weight natural
chelators, such as citrate (0.1–0.15 mM, in plasma), in the presence of ascorbic acid and H2O2.
Under these conditions, a mixed ascorbate iron citrate complex with an electrode potential of the
Fe3+/Fe2+ citrate couple of about 0 V was reported, which could be redox active [102]. In contrast,
the electrode potentials of the Fe3+/Fe2+ couple for strong complexes of iron chelators like deferiprone
is near –0.6 V, and such complexes are not redox active [103]. The inhibition of hydroxyl radical
generation in the Fenton reaction by deferiprone, deferoxamine and other chelators has been shown
in much earlier studies, and was recently confirmed using an EPR spin trapping technique [20,81].
In this context, deferiprone and similar strong chelators could prevent oxidative stress toxicity during
chelation therapy. The antioxidant effects of deferiprone in vitro, in vivo and under clinical conditions
have been previously reviewed [85,104].

The transformation of ascorbic acid into several species (Figure 1) under different conditions,
and as a result of redox and other interactions, may have different biochemical, toxicological and other
implications, all of which are concentration-dependent. In this context, it has been suggested that
under normal physiological conditions the plasma concentration of the ascorbate anion was estimated
to be about 0.05 mM, which was much higher than the concentration of the ascorbyl radical [105].
Furthermore, it was also previously demonstrated that the electrode potential under physiological
conditions for the ascorbyl radical/ascorbate anion couple is about +0.1 V, which is less than the
standard potential of +0.28 V [106]. These results suggest that the ascorbate anion is far more likely to
reduce “low molecular weight” chelate iron complexes than superoxide.

Some of the above mechanisms are thought to take place in plants, where iron is delivered to
embryos as ferric complexes with citrate or malate [87]. In this context, it was suggested that embryos
efflux high amounts of ascorbic acid that chemically reduce and liberate Fe3+ from Fe3+ chelate
complexes. Overall, it was concluded that ascorbate ions play a key role in the chemical reduction and
transport of Fe2+ within plant embryos. Similar iron transport mechanisms could be envisaged under
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certain conditions, intracellularly involving the low molecular weight iron pool and also present in
plasma when transferrin is saturated with iron.

5. Biological Implications of the Iron Complexes of Ascorbic Acid

The alpha oxo-hydroxy and di-hydroxy ligands in the chemical structure of ascorbic acid are
suitable for iron and other metal ion binding, as shown in a number of earlier studies on the formation
of chelate complexes with Fe2+ and Fe3+ (Figure 1) [39,63,86,107,108].

There are many biological implications of the interactions of the ascorbate–iron complexes with
cellular and sub-cellular components. In particular, the effect on iron transport through ascorbate–iron
complexes in cells appears to be of physiological and toxicological importance. In this context, it was
suggested that there are several routes of iron accumulation in cells, including the ascorbate-dependent
ferrous iron uptake via the divalent metal transporter (DMT1), plus an independent route for ferric iron
uptake [39,99]. For example, it was previously demonstrated that the reduction of ferric iron by ascorbic
acid provides bioavailable ferrous iron to DMT1, and also directly enhances the uptake of ferric iron into
Caco-2 cells through the formation of an Fe3+–ascorbate complex [109]. The Caco-2 cell line consists
of human epithelial colorectal adenocarcinoma cells, which are generally used as an in vitro model
of the human small intestinal mucosa to predict the absorption of orally administered drugs [109].
Two routes of iron accumulation have also been shown in studies with astrocytes, one involving the
ascorbate-dependent ferrous iron uptake via DMT1, and the other an independent route for ferric iron
uptake [110]. Since DMT1 is not involved in the uptake of ferric iron complexes, it is suspected that
a different transporter system is in operation, similar to the mode of action observed by lipophilic
chelators, which can facilitate the transport of ferric iron across cell membranes as previously shown in
in vitro cell studies [111,112].

The interaction of ascorbic acid with other natural or synthetic chelators for iron and other
metal complex formation is also of pharmacological and metabolic importance. It appears that under
certain conditions, ascorbic acid can form mixed chelate complexes with other chelators. In previous
studies, several examples of experimentally detected mixed ligand iron complexes of ascorbic acid,
e.g., with phenol-amide and deferiprone, were reported [87–89,113]. Most of these mixed ligand
iron complexes were shown to be redox active, but not in the case of deferiprone, which inhibits the
pro-oxidant effects of ascorbate/iron [87–89,113,114]. Most of the redox active complexes appear to
undergo fast interaction with the ascorbate anion to form ternary complexes, in which the ascorbate
anion is bound to the Fe3+ center. Furthermore, these mixed complexes undergo intra-molecular
electron transfer producing Fe2+ and DHA.

Studies of the structures and relative stability of ferric complexes with various chelators, including
EDTA and ascorbic acid, have demonstrated that a neutral octahedral complex containing one iron atom
and three ascorbate anions was found to be the most stable, but was still 92.7 kcal/mol less stable than
the EDTA iron complex [90]. Nevertheless, in a clinical study the acute pro-oxidant effects of ascorbate
during EDTA chelation therapy were detected when patients were administered an EDTA cocktail
solution with 5 g of ascorbate [91]. Similar pro-oxidant effects of the ascorbate/EDTA combination were
identified in earlier in vitro studies, where exacerbation of the breakdown of deoxyribose was observed
in the presence of iron and hydrogen peroxide [20]. However, in other clinical studies, no such toxicity
was observed when using a combination of EDTA and 7 g of ascorbate [115,116]. It should be noted
that millions of patients are using daily combinations of EDTA and ascorbate in alternative medicine
clinics worldwide, despite controversies over potential toxicity [117–119]. Overall, it appears from
in vitro and clinical studies that under certain conditions EDTA may enhance the pro-oxidant and
toxicity effects of ascorbic acid [9,20,118].

In contrast, in some cases the pro-oxidant activity of ascorbic acid can be considered a positive factor
in cancer therapy, especially if used in combination with other anticancer agents such as the redox active
quinone chelators [57,120,121]. The biomedical applications of iron–ascorbate complexes, including
their potential as anti-tumor agents has been highlighted in a number of previous studies [49–58,68].
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In particular, some investigators demonstrated biological plausibility, and are poised to explore the
potential value of ascorbic acid in cancer treatment [54]. However, although not proven by the results
of those studies, in general there is a clinically relevant positive effect of ascorbate supplementation in
cancer patients on overall survival, clinical status, quality of life and performance status.

6. Toxicity Implications of the Interaction of Iron and Ascorbate in Physiological and Iron
Loaded Conditions

The interactions of ascorbic acid, including iron binding, complex formation as well as the
reduction of Fe3+ to Fe2+ in the absence and presence of other biomolecules, are multi-faceted processes,
which are of great physiological and clinical importance. In particular, the interactions of iron with
ascorbic acid in vivo, including the formation of metal complexes, could be affected by many other
factors including the solubility and speciation of iron in physiological conditions.

Under normal physiological conditions, Fe2+ readily becomes oxidized to Fe3+ by atmospheric
oxygen, and Fe3+ is hydrolyzed forming insoluble polymeric ferric oxyhydroxide complexes. Free,
soluble aqueous Fe3+ is almost never found in detectable levels under physiological pH conditions
(10−18 mol/L) in aqueous solutions, because of the high stability constant of the ferric oxyhydroxide
complexes (log K = 38) [122–126]. Furthermore, transferrin can act as a ferroxidase by converting
Fe2+ to Fe3+ and readily mobilizing any free, mononuclear Fe3+ and Fe2+ aqua, citrate, ascorbate
and similar complexes in blood plasma [123,124,126–133]. Similar properties have been observed
in the presence of the iron chelating drugs deferiprone and deferoxamine, and also in the case of
lactoferrin, the sister protein of transferrin found in neutrophils and secretions such as milk, tears,
etc. [20,81,113,124,133–135]. Subsequently to iron uptake, transferrin transfers Fe3+ to cells to be stored
in ferritin or utilized in the production of haemoglobin and other iron-containing proteins, such as the
iron–sulfur proteins [1–3,39,66,67,126,136–140].

There is a lot of debate and controversy regarding the presence, nature and toxicity of the
“low molecular weight”, “labile” intracellular iron pool, and similarly of the non-transferrin-bound
iron (NTBI) found in blood plasma mainly in cases of iron overload [141–144]. Under these conditions,
it is suspected that NTBI is present in oligonuclear iron formation, and is also bound to albumin and to
low molecular weight natural chelators such as citrate, phosphate and cysteine [142–144]. Furthermore,
ascorbate, polyphenols and other dietary natural phytochelators, as well as many drugs with chelating
properties, such as hydroxyurea, tetracyclines, doxorubicin, etc., are also expected to affect and have
interactions with both the low molecular weight intracellular pool and also NTBI [145–147].

Regarding interactions under normal physiological conditions, both ascorbate and citrate have
been suggested as major cofactors in iron metabolic pathways and as regulatory molecules of iron
homeostasis [39,85,104,148,149]. In particular, ascorbate is thought to stimulate ferritin synthesis,
inhibit lysosomal ferritin degradation, decrease cellular iron efflux and stimulate transferrin iron
uptake synergistically with citrate in cells, via an intracellular reductive mechanism in the endosome
(pH 5.6) [148,149]. Similarly, the biological activities of ascorbate and citrate also appear to play key
roles in the development and progress of diseases related to iron metabolism [39,85,104,148,149].

There are many other biological implications of the interaction of ascorbic acid and iron, such as
the prospect of increased production of ROS and toxicity in iron loading conditions, as well as the
molecular modification and reduction or complete inactivation of other biological functions of ascorbic
acid in its capacity as a major vitamin.

Non-transferrin-bound iron is well documented in iron overloaded diseases like thalassaemia,
where transferrin is fully saturated with iron [70,142–144]. Variable amounts of NTBI are present in
the plasma of iron-loaded thalassaemia patients, which have been previously estimated to be in the
range between 0 and 25 µM [142–144,150,151]. The presence of labile, non-protein-bound iron is also
considered as a source of continuous toxicity, which has been implicated in the pathogenesis of many
other diseases, including atherosclerosis, neurodegenerative and kidney diseases, as well as cancer
and ageing [68,70,144]. It appears that in general, the presence of ascorbic acid can exacerbate the
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toxicity of the intracellular labile “low molecular weight” iron, and of NTBI in the blood plasma of
iron overloaded patients, by promoting the reduction of ferric iron to ferrous iron, which is capable of
participating in the Fenton type redox reactions and which can lead to a vicious circle of molecular,
sub-cellular, cellular and tissue damage [68]. Under these conditions, the extent of the damage caused
by the iron/ascorbate combination depends on the rate of ROS production, but also on the rate and
capacity of the innate antioxidant defenses and repair mechanisms [68].

However, despite the many reports of the toxicity of NTBI in experimental settings, its clinical
significance in thalassaemia and other iron loaded conditions is questioned and is not utilized in clinical
practice. The major concerns in relation to iron overloaded conditions associated with tissue damage,
as well as the overall morbidity and mortality of iron loaded patients in clinical practice, are mostly
associated with the evaluation of the level of excess iron deposition in major organs [10–12,152,153].
In this context, excess deposited iron, mainly in the form of haemosiderin, can be found in organs of
iron loaded patients, including the heart, liver, spleen and pancreas, and monitored using magnetic
resonance imaging (MRI) T2* relaxation times [154–158]. In most cases, organ damage in iron loaded
conditions is directly related to the level of excess iron deposition, such as in the heart and liver of
thalassaemia patients [158]. Similarly, excess iron or ‘focal’ iron deposits identified in the brain by MRI
T2* have been implicated in neurodegenerative diseases, including Friedreich’s Ataxia, pantothenate
kinase-associated neurodegeneration, Parkinson’s and Alzheimer’s diseases [126,159–161].

Different iron load toxicity ranges have been identified for specific organs using MRI T2* relaxation
times [154–158]. For example, patients with cardiac MRI T2* relaxation times of lower than 8 ms are in
the heavy haemosiderosis range and in danger of cardiac failure [158]. The cardiac MRI T2* relaxation
times for patients with moderate cardiac iron overload is 8–12 ms, for mild iron overload 12–20 ms,
and for normal individuals above 20 ms. Similarly, liver iron overload MRI T2* relaxation times of
lower than 1.4 ms are considered to be in the severe hepatic haemosiderosis range, for moderate
1.4–2.7 ms, for mild 2.7–6.3 ms and for normal range above 6.3 ms [158–161].

Overall, it appears that in iron loaded diseases and also other diseases with focal iron deposits,
the excess deposited iron in organs causes substantial damage and reduction in organ function,
which may lead to irreversible damage [72]. In these cases, and also other diseases, the intracellular
labile “low molecular weight” iron levels increase and can cause progressive ROS-related damage.
Furthermore, the damage caused by iron can be potentially exacerbated by the presence of molecules
such as ascorbate, or inhibited by other molecules such as deferiprone and other chelating drugs [20,81].

7. Nutritional and Vitamin C Functional Implications of the Interactions with Iron

The multi-role of vitamin C as an antioxidant at the molecular, sub-cellular, cellular and
tissue level has been widely acknowledged in many studies. It appears that among many other
antioxidant functions, vitamin C contributes to the maintenance of cellular redox homeostasis, protects
the cell membrane from ROS and also protects and regenerates glutathione, vitamins A and E
during oxidative stress. It is also a cofactor for a number of biosynthetic and gene regulatory
enzymes, and participates in many metabolic pathways such as collagen formation, the metabolism
of nor-epinephrine, the transformation of tryptophan to serotonin, the synthesis of carnitine, etc.
Furthermore, vitamin C is involved in intracellular respiration, the reduction of cholesterol in blood,
and the development of bone, teeth and cartilage structures, and also plays a major role in maintaining
healthy immunity [162–166].

The interactions of iron with ascorbic acid, which are likely to affect many of the metabolic
pathways and functions attributed to ascorbate’s role as a major vitamin, have not yet been fully
elucidated. In particular, the structural changes of ascorbate due to oxidation by iron and the formation
of the ascorbate radical and DHA may have general implications for its bioavailability and the reduction
of many of its biological functions and roles. Many biochemical and clinical factors influence the
impact of iron in each case, including the iron load levels, the nutritional status and the requirement
levels for vitamin C, which differ in each individual.
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The daily requirements of vitamin C, for example, vary among individuals and depend on age,
gender, weight, physical activity, habits like smoking, and also general health status. It is estimated
that the daily requirement for women is about 75 mg, for pregnant women 85 mg, for breastfeeding
women 120 mg, for men 90 mg, and for teenage boys and girls 75 mg and 65 mg, respectively.
An additional 35 mg per day is needed for smokers, and also different quantities for patients with
different diseases, including patients with iron overload [164,166–169]. The major food sources of
vitamin C are fruits and vegetables, and the highest amounts can be found in guavas, red peppers,
kiwi, orange, green peppers, grapefruit, strawberries, melon, papaya, broccoli, peas, sweet potato,
tomato, cauliflower and pineapple. The daily requirements for adult men and women can easily be
covered with a few guavas, a large kiwi or an orange [165,168,169].

Vitamin C is readily absorbed from ingested food at large quantities of about 90%, of which about
50% is excreted. Its concentration in blood and bodily fluids does not increase above certain levels,
despite increased intake [169]. In addition to scurvy, vitamin C deficiency can be observed in smokers,
alcoholics, persons exposed to pollutants and radiation, and in many patient groups such as iron loaded
patients, trauma, infectious diseases and cancer patients, where associated metabolic, antioxidant
and physiological functions, including immunity, are affected. Higher consumption of vitamin C is
recommended in these categories of patients for the alleviation of associated symptoms [162,164,165,170].
No major toxic side effects have been identified with high consumption of vitamin C, and the most
common symptoms of excess consumption of about 2 g per day has been associated with gastrointestinal
distress and diarrhea [165,168]. It should be noted that the safety findings of high doses of vitamin C
apply only to different categories of patients with normal iron stores, and not to iron loaded patients,
wherein toxic side effects may be observed due to an increase in oxidative stress from the interaction of
excess iron with ascorbate [15–17].

There are many pathways and mechanisms of iron metabolism, in which ascorbic acid plays an
important role in the maintenance of iron homeostasis, as well as in different interactions involving
iron-containing proteins in health and disease [1–6,20,39,66,67,138,139]. It is estimated that total body
iron in normal adults is about 4–5 g, and most of the iron is conserved and recycled, including the iron
present in haemoglobin, which amounts to more than 60% of the total content. Only a few milligrams
of iron are excreted or lost, and these are replaced from dietary iron sources [4,142,171–173]. The daily
requirements for iron are different in each individual and depend on several parameters, including
gender, age and stage of health [171–175]. For example, in adult men and post-menopause women,
the daily requirement is 8 mg, for adult women 18 mg, for pregnant women 27 mg, for breastfeeding
women 9–18 mg, and for teenage boys and girls 11 and 15 mg, respectively [162,171,174].

The rate of iron absorption in each individual is affected by many factors and their combination,
including the quantity and quality (haem or non-haem) of dietary iron, the erythropoietic activity of the
bone marrow, the presence of other dietary components such as natural chelators or drugs, reducing
agents such as ascorbate, etc. [1–6,171–174]. Normally the absorption of iron in a western diet is about
2 mg/day, and equivalent losses allow the maintenance of body iron balance. Lower levels of absorbable
iron are observed in vegetarian diets, which are mostly low in haem and in general can result in iron
deficiency anemia, a condition widespread in vegetarian populations and malnourished patients [4].

8. Pharmacological Characteristics of Ascorbic Acid and Implications for Iron Metabolism

There are many common metabolic pathways in which iron and ascorbate are involved.
Their interactions, including redox effects, could influence metabolic processes and may also have
implications for health, as well as the causes or treatments of a variety of diseases. In each case the
influence of either iron or ascorbic acid will depend on the mode of action, the specific properties
and the characteristics of both of these nutrients, and their interactions with other molecules. Several
parameters can influence the iron/ascorbate interactions, including their absorption, distribution,
metabolism, excretion and toxicity (ADMET) characteristics, pharmacokinetics, and also other effects
such as pH and concentration at the molecular, cellular and tissue level.
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For example, both ascorbic acid and iron are required for a variety of biosynthetic pathways,
particularly those involving hydroxylation reactions, including collagen biosynthesis, the hydroxylation
of dopamine to nor-epinephrine, prolyl hydroxylation in hypoxic inducible factor (HIF), etc. [176].
Hydroxylases are iron-containing enzymes, and their activity also depends on iron regulation, which is
a target for the treatment of related diseases, including those associated with collagen formation
abnormalities in scurvy [39,177].

The implications of the interaction of the ascorbic acid metabolic by-products with iron are also
concentration-dependent. Several of these ascorbic acid by-products appear to possess metal binding
ligands, and to interact with iron under certain conditions [41,42,169]. The concentration of some of these
chelating by-products appears to increase following excessive consumption or administration of ascorbic
acid at high doses, and this may have an influence on iron and other metal metabolic pathways [169].

Different doses of ascorbic acid are generally used in clinical trials, and also by millions of people
every day for antioxidant protection and other therapeutic effects. In addition to the molecular changes
of ascorbic acid to ascorbate anion, ascorbic radical and DHA following redox reactions (Figure 1),
oxalate is the major degradation, non-enzymatic breakdown product of ascorbic acid following oral
and intravenous administration. The first step of ascorbic acid degradation to oxalate involves the
formation of DHA, the second step the formation of 2,3-diketogulonic acid, and the final step the
further breakdown of 2,3-diketogulonic acid to erythrulose, threosone and oxalic acid (Figure 4) [169].
It is estimated that about 50% of ascorbate is converted to oxalate and exclusively excreted in the urine.
The amount of oxalate produced from ascorbic acid is about twice the amount produced normally
from endogenous sources. It is estimated that the distribution of ascorbic acid and oxalate in a total of
15 L of plasma and extracellular compartments is 150 mg and 2.5 mg, in intracellular compartments of
25 L about 1.5 g and 50 mg, and in urine 20 mg and 30 mg, respectively [169]. Many reports suggest
that particularly high oral or intravenous doses of ascorbic acid may cause oxalate nephropathy as a
result of increased oxalate and oxalate–calcium complex formation [178]. It is also anticipated that
under these conditions of high oxalate concentration, the metabolic pathways related to iron could also
be affected, but no such observations have yet been studied or reported.
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2,3-diketogulonic acid, which is then converted to erythrulose and oxalic acid. 2,3-Diketogulonic
acid can also be converted to threosone and oxalate in the presence of hydrogen peroxide. All the
degradation by-products, with the exception of dehydroascorbate, have ligands with iron and other
metal binding potential. (Adapted from ref. [169]).
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The wide range of oral and intravenous doses of ascorbic acid, and especially of high doses in
clinical trials mainly in cancer patients, is indicative of its high tolerance and safety [47,48,51–53,179–181].
For example, doses of as much as 10 g/day intravenously for 10 days, and thereafter 10 g/day orally for
several months, has been reported [182]. Similarly, in a pharmacokinetic study using doses of 5 to 60 g
of ascorbic acid intravenously in 10 patients with metastatic prostate cancer for four weeks, a peak
plasma concentration of 20.3 mM at the highest dose was observed, with elimination half-life of about
2 h at different doses [183]. The oral administration of different single doses of ascorbic acid in normal
volunteers suggested that at 100 mg, none was excreted; the bioavailability was complete at 200 mg
but declined at 500 mg or higher doses; and the absorbed amount was excreted, with oxalate and uric
acid excretion increased as well, at 1000 mg doses, compared to lower doses [184]. At a dose of about
1200 mg, half was excreted in the urine. It was also estimated for doses of ascorbic acid of 200 mg
and above that the plasma concentration was about 0.075 mM, and the concentration for cells of the
immune system, i.e., neutrophils was 1.3 mM, monocytes 3.5 mM, and lymphocytes 3.2 mM. Decrease
in serum ferritin was also observed during ascorbic acid treatments [184]. In another study ascorbic
acid was found to be absorbed from the small intestine and to cross the blood brain barrier. There
was variable distribution of ascorbic acid in organs and the highest concentration was reported to be
present in the adrenal glands (550 mg/kg), the brain (140 mg/kg) and the liver (125 mg/kg) [185].

In relation to the metabolic and degradation products of ascorbic acid, with the exception of
DHA, all other by-products, including 2,3-diketogulonic acid, erythrulose, threosone and oxalic acid,
have iron chelation properties (Figure 4). Furthermore, despite the fact that DHA is not a chelator,
it can be reverted back to ascorbic acid by reduced glutathione and reducing enzymes in some cells,
like neutrophils and cells of the small intestine. In this context, the presence of ascorbic acid, metabolites
and degradation products possessing chelating properties, not only in plasma but also intracellularly
in blood cells and other cells of different tissues, can potentially affect the low molecular weight iron
pool and many associated iron and redox metabolic processes. Physiological processes could also be
affected under the same conditions, both in normal and disease states [4].

In general, it appears that ascorbate, metabolites and degradation by-products will be in
competition with other natural chelators for iron or other metal complex formations, and will
also participate in the formation of mixed iron and other metal complexes (Figures 1 and 4). The affinity
and concentration of these competing molecules are important parameters in iron complex formation
and redox changes similar to other chelators [147]. For example, citrate (0.10–0.15 mM) in plasma,
glutathione (5 mM) in liver cells and copper will affect redox and complex formation interactions
between iron and ascorbic acid, as well as the ascorbic acid metabolites and by-products [147,186].

9. The Role of Ascorbic Acid in Iron Absorption and Iron Excretion

Ascorbic acid has been widely used as an antioxidant in many clinical trials in cancer and other
diseases, such as sepsis and acute respiratory failure [21–30,47,48,51–53,179–181,187,188]. In most of
these clinical studies, the implications of the molecular interactions of iron with ascorbic acid have
not yet been fully characterized. However, most of the clinical evidence concerning the effects of
the molecular interactions of iron and ascorbic acid can be obtained from the use of ascorbic acid in
the treatment of diseases associated with iron metabolic imbalance, and in particular iron deficiency
anaemia and iron overload.

There are several cases where the molecular interactions of ascorbic acid and iron have been
utilized in medical practice. Of particular interest is ferrous ascorbate, which is the drug of choice for
the treatment of iron deficiency anaemia, especially in developing countries like India. For example,
doses of 3–6 mg/kg/day of ferrous ascorbate for 12 weeks in children have led to substantial increases
in haemoglobin levels of about 4–5 g/dL, which was thus more efficient than other iron formulations
including iron polymaltose and ferrous sulfate [189–192].

In contrast to iron deficiency, ascorbic acid is considered as a standard adjuvant therapy, widely
used with iron chelation therapy in thalassaemia patients for increasing iron excretion, especially in
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combination with deferoxamine [193–196]. In general, ascorbate status is considered a major factor
determining the route and level of iron excretion, and many related studies have demonstrated
substantial increases in iron excretion following administration of the combination [193–196]. In one
study in thalassaemia patients, ascorbic acid therapy was invariably associated with increased iron
excretion after subcutaneous deferoxamine ranging from 24% to 245% [194]. Similar effects were
observed in idiopathic haemochromatosis patients, where increasing doses of 0.2 to 2.0 g of ascorbic
acid were shown to cause progressive increases in iron excretion. Furthermore, it was also confirmed
that ascorbic acid is not effective in increasing iron excretion without the use of deferoxamine [197].
Current protocols for the optimization of iron excretion caused by deferoxamine in thalassaemia and
other transfusional iron loaded conditions involve the oral administration of a total of 400 mg; 200 mg
before and 200 mg during the subcutaneous infusion of deferoxamine.

Different mechanisms are involved in the ascorbic acid-induced changes of facilitated iron
absorption in comparison to iron excretion. The promotion of non-haem iron gastrointestinal absorption
by ascorbic acid seems to involve the partial reduction of Fe3+ to Fe2+, and the increased iron
solubility of both Fe2+ and Fe3+ due to complex formations followed by enterocyte uptake. Only a
partial intake of available iron is accomplished, because of factors including competition from other
nutrients with chelating properties, and also other metals such as copper and zinc [147,198]. In this
context, interference in iron absorption promoted by ascorbic acid can be influenced by many food
components with metal binding ligands, including phytochelators such as polyphenols, phytic acid
and tannins [39,199–202]. Furthermore, food components, similar to those above-mentioned, can enact
redox activities in interactions with iron, which can also influence the absorption of iron promoted
by ascorbic acid [97,98,110,203–207]. Under these conditions and influences, the optimization of iron
absorption by ascorbic acid can be achieved by administration on an empty stomach, and preferably
before meal intake.

The effect of ascorbic acid on the increase of Fe3+ absorption requires further investigation,
considering the new developments in the area and in particular following the regulatory approval
of ferric maltol (Feraccru) for the treatment of iron deficiency anaemia [6,39,198,207]. The original
investigations and proposal for the use of ferric maltol in the treatment of iron deficiency anemia was
reported almost 40 years ago [124].

10. Drug Interactions with Ascorbic Acid and Iron

There are many drug interactions between ascorbic acid and iron which go beyond the treatment
of iron overload and iron deficiency anemia. In addition to interactions with food constituents,
both ascorbic acid and iron can interact with different drugs, such as those with metal binding potential
and redox activity, and also drug formulations containing metal ions [146]. In this context, redox,
chelation and other forms of interactions between ascorbate and iron will apply, as previously discussed.
These interactions will depend on the concentration of each component, the pharmacokinetic and other
parameters of the drugs, and also other factors [4,6,83].

The ascorbic acid interactions with different oral, intramuscular and intravenous iron formulations
are of pharmacological, toxicological and clinical importance [205,206]. There are many ferrous and
ferric iron formulations available, such as oral ferrous sulfate, ferrous gluconate, ferric fumarate,
ferric polymaltose, ferric maltol, ferric iron dextran, ferric iron sucrose, ferric gluconate, ferric saccharate,
etc., used for treating many categories of iron-deficient patients [190–192,207]. While oral iron
formulations may be beneficial for patients given the increase of iron absorption in the presence
of ascorbic acid, there is no advantage to using vitamin C during intramuscular and intravenous
administration of different iron formulations, given the increasing prospects of pro-oxidant and other
toxicity [208,209]. Similarly, the biological and clinical implications of such an interaction, including
vitamin C deficiency side effects, are expected to increase in iron loaded patients and other patient
categories receiving iron formulations [194–196].
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The interactions of iron, ascorbic acid and their combination are anticipated to affect the
pharmacological and toxicological effects of other drugs shown to be associated with iron and ascorbic
acid metabolism. In this context, the co-administration of iron, vitamin C and their combination is
likely to affect the treatment of thousands of patients receiving drugs such as tetracycline, hydroxyurea,
doxorubicin, aspirin, etc. [146,147]. Many such pharmacological and toxicological effects can be avoided
or minimized by hetero-chronic administration of the individual drugs involved in the interactions.
Furthermore, chelators such as deferiprone and deferoxamine can be used as antidotes for preventing
the pro-oxidant effects of ascorbic acid [20,81,113].

11. Future Therapeutic Strategies and Health Implications of the Use of Vitamin C and Iron

New findings are continuously being presented, in addition to the thousands of investigations
already reported in relation to ascorbate, iron and their interactions. The essentiality of both of these
nutrients, and the implications of their interactions for health and disease states, has not yet been
fully determined. Within this context, many patients of different ages and genders are still found to
suffer from “scurvy”-related symptoms, including iron metabolism changes, both in developed and
developing countries [210–212]. Similarly, many patients in developed and developing countries have
been diagnosed with iron deficiency of varying etiologies, and are treated with different types of iron
formulations, including iron ascorbate, in order to identify the optimal therapy [213,214].

There are many other areas wherein the role of ascorbate could be investigated in relation
to iron metabolism, which may have possible implications in the treatment of related diseases.
In this context, the interactions between the proteins and pathways of iron metabolism, involved
with innate metabolic controls associated with the absorption, distribution and excretion of iron,
warrant further investigation [1–5]. For example, in addition to the interactions with iron-containing
proteins, such as transferrin and ferritin, the effects of ascorbate on several other regulatory proteins,
including erythropoietin, caeruloplasmin, ferroportin and hepcidin, which do not bind or carry
iron but are key regulators in the movement of iron in and out of cells, should also be thoroughly
investigated [1–5,215–220]. In particular, the effects of ascorbate and the ascorbate–iron complex on
the function of hepcidin, a peptide hormone produced in the liver playing a central role in mammalian
iron homeostasis by mediating the effects of erythropoiesis, hypoxia, inflammation and iron load on
the levels of circulating iron, would be of great interest. Furthermore, the involvement and impact of
ascorbate and the ascorbate–iron complex with regards to the new emerging therapies and strategies for
iron metabolic disorders that have been proposed based on hepcidin agonists, antagonists and modified
structural products, may help to identify optimal therapies for different categories of patients [221–223].

The role of ascorbate in the high incidence of infections, and also in the increase of iron excretion
in combination with deferoxamine in iron loaded patients, needs to be further explored and optimized,
especially considering that ascorbic acid is oxidized to oxalate by excess iron in heavily iron loaded
patients [9,10,193–196,224]. Although the current consensus suggests that iron excretion is not
regulated, there are several observations that need to be further re-evaluated in order to identify related
mechanisms. These include observational studies asserting that iron losses, including urinary iron
excretion, are substantially reduced in iron-deficient individuals, and are substantially increased in iron
loaded patients in comparison to normal individuals [150,195,225,226]. Similar questions have arisen
as to how iron loaded transplanted thalassaemia patients could achieve steady reductions in body
iron, and in some cases have even achieved normal iron body levels several years after transplantation,
without the use of chelation therapy or venesection [4,11,227–229].

Vitamin C is widely utilized by the general public as a powerful antioxidant for the prevention
of cancer and other diseases, and millions of people buy and take different formulations every day.
The investigations into vitamin C as an anticancer agent continue in a variety of cancer patient categories,
mainly by using high doses in combination with other anticancer drugs, showing encouraging results
in some cases [24–26,47–53,179–183]. Another branch of investigations into anticancer activity includes
the pro-oxidant iron and copper complexes of vitamin C— qualities previously shown with other
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chelator metal complexes [69,74,230–233]. In this context, the combination of vitamin C with chelators
such as omadine, thiosemicarbazones and triapine may enhance their anticancer potential, and also
reduce their overall toxicity [74,230–233].

Studies into the many factors that can influence the biological and clinical activity of ascorbic
acid, iron and their complex are also under study. It appears that many of the interactions of iron and
ascorbic acid, including complex formation and antioxidant and pro-oxidant effects, can be influenced
by other metal ions such as copper and zinc, as well as natural organic compounds such as polyphenols,
most of which have iron chelating and or redox active properties [39,199,201,232–235]. In such cases,
the interactions may affect the efficacy and toxicity of monotherapy and combination therapies of
vitamin C. Similar influences can be exerted by chelating drugs such as deferiprone, and also many
other drugs with metal binding ligands but with weaker affinities for metals such as tetracycline and
hydroxyurea. In each of these cases, the influences of other molecules may have positive or negative
effects, e.g., the pro-oxidant activity of ascorbate with iron in the presence of hydrogen peroxide can be
inhibited by deferiprone, and exacerbated by EDTA [20,91,236].

A major unexplored area of biological and clinical interest in relation to the physiological and
therapeutic activity of ascorbic acid, which affects iron interactions, is the chemical structure/activity
correlation of ascorbic acid metabolites and their biological and clinical implications. For example,
the interactions of ascorbic acid, which is the predominant species with a neutral charge in the acidic
conditions of the stomach, are different from those of ascorbate, an anion, negatively charged under
the physiological conditions of neutral pH. Similarly, the other vitamin C metabolites, which are also
formed under physiological conditions, such as DHA and degradation by-products such as oxalate,
may have other actions including causing toxic side effects at high concentrations [178]. In this context,
the concentration and reactivity of each metabolite will affect iron binding, iron metabolism, and also
other related biological and clinical activities.

It is envisaged that in general, optimized therapeutic protocols could be designed to be used in
each clinical condition based on the ADMET, pharmacokinetic and other characteristics of ascorbate,
iron and iron–ascorbate complexes, as well as other aspects concerning personalized medicine.
However, the prospects of carrying out such investigations are not in most cases feasible, since the
development of such therapeutic strategies related to personalized medicine is based on commercial,
as opposed to ethical or academic criteria [237,238].

12. Conclusions

Iron and ascorbic acid are two of the most common essential nutrients, which under normal
conditions are in daily contact due to their occurrence in different foods and in most meals, as well as
in their use as nutraceutical supplements and in many drug formulations used by millions of people.
There are some common pathways in the metabolisms of vitamin C and iron, as well as different
interactions between them at the molecular, sub-cellular and cellular level. Some of these interactions
may have therapeutic and toxicity implications, which can affect millions of patients.

One of the main interactions of iron and ascorbic acid is the formation of weak Fe2+ and Fe3+

complexes, and the initiation of redox reactions. The redox changes resulting from the presence of iron
can cause a reduction in the antioxidant capacity of ascorbic acid, and also promote its pro-oxidant
effects. In this case, iron not only compromises the antioxidant activity of vitamin C, but under certain
conditions and especially in the presence of hydrogen peroxide can initiate through the Fenton reaction
the increased production of FR and ROS, which can lead to oxidative stress and a vicious circle of
bio-molecular, sub-cellular, cellular and tissue damage. This toxicity bears the hallmark of free radical
pathology, which has been identified in the tissue damage of almost all pathological conditions affecting
major organs, and also cancer and ageing. Strong chelators, like deferiprone, can be used as antidotes,
and in most cases inhibit this form of FR and ROS toxicity as well as preventing associated damage.

The major mode of action of vitamin C as an antioxidant is widely exploited in many circumstances,
including enhancing immunity and preventing, as well as inhibiting, the proliferation of cancer cells.
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Despite the fact that the anticancer activity of vitamin C has not been proven, even when used at high
doses, the toxic side effects still remain negligible.

Among the established clinical uses of vitamin C is its activity in relation to iron metabolic
disorders. There are different therapeutic approaches and uses of ascorbate in relation to conditions
involving iron, for example in the treatment of patients with iron deficiency anemia and iron overload.
In this context, the use of the Fe2+ ascorbate complex appears to promote the gastrointestinal absorption
of iron, and is widely used in many countries for the treatment of iron deficiency anemia. In contrast,
oral ascorbate in combination with subcutaneous deferoxamine appears to cause an increase in
the level of iron excretion in iron loaded patients, and is therefore widely used as an adjuvant in
chelation therapy in thalassaemia and other iron loaded patients. The monitoring of ascorbate levels
is recommended for different categories of patients, such as the iron and copper overload, cancer
chemotherapy and radiotherapy, immunocompromised and infectious disease groups of patients, etc.,
wherein suboptimal levels of ascorbate may affect the outcome of different treatments. The monitoring
of oxalate levels is also recommended for patients receiving high doses of ascorbate to avoid possible
excess oxalate-related toxic side effects.

The wide use of ascorbate and iron as nutraceutical supplements by millions of people, without
therapeutic protocols or any clear guidelines concerning the possible negative interactions between
these two nutrients, may lead to sub-optimal clinical effects and also toxic side effects. In this
context, special recommendations apply to different categories of users of these nutrients, such as the
recommended co-administration for increasing iron absorption, the avoidance of multi vitamin and
mineral formulations where other metals may interfere with iron absorption, and the hetero-chronic
administration of iron and ascorbate for optimizing the antioxidant activity of ascorbate.

Further work is recommended in order to optimize the therapeutic potential and minimize the
possible toxicity implications of the use of ascorbate, iron and their combination in different diseases.
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121. Jabłońska-Trypuć, A.; Świderski, G.; Krętowski, R.; Lewandowski, W. Newly Synthesized Doxorubicin
Complexes with Selected Metals-Synthesis, Structure and Anti-Breast Cancer Activity. Molecules 2017, 22,
1106. [CrossRef] [PubMed]

122. Hiller, M.C.; Anderson, W.F. Development of Iron Chelators for Clinical Use; Anderson, W.F., Hiller, M.C., Eds.;
Bethesda, Md.: U.S. Department of Health, Education, and Welfare, Public Health Service, National Institutes
of Health, National Institute of Arthritis, Metabolism, and Digestive Diseases: Maryland, WA, USA, 1975;
pp. 1–277.

123. Aisen, P. Some Physicochemical Aspects of Iron Metabolism. Ciba Found. Symp. 1976, 51, 1–17.
124. Kontoghiorghes, G. The Design of Orally Active Iron Chelators for the Treatment of Thalassaemia; University of

Essex: Colchester, UK, 1982; Available online: https://www.pri.ac.cy/files/KGJ_thesis_1982.pdf (accessed on
28 July 2020).

125. Kontoghiorghes, G.; Pattichis, K.; Neocleous, K.; Kolnagou, A. The Design and Development of Deferiprone
(L1) and Other Iron Chelators for Clinical Use: Targeting Methods and Application Prospects. Curr. Med.
Chem. 2004, 11, 2161–2183. [CrossRef] [PubMed]

126. Kontoghiorghes, G.J.; Kontoghiorghe, C.N. Iron and Chelation in Biochemistry and Medicine:
New Approaches to Controlling Iron Metabolism and Treating Related Diseases. Cells 2020, 9, 1456.
[CrossRef] [PubMed]

127. Bates, G.W.; Workman, E.F.; Schlabach, M.R. Does Transferrin Exhibit Ferroxidase Activity? Biochem. Biophys.
Res. Commun. 1973, 50, 84–90. [CrossRef]

128. Huebers, H.A.; Josephson, B.; Huebers, E.; Csiba, E.; Finch, C.A. Occupancy of the Iron Binding Sites of
Human Transferrin. Proc. Natl. Acad. Sci. USA 1984, 81, 4326–4330. [CrossRef]

129. Kontoghiorghes, G.J. The Study of Iron Mobilisation from Transferrin Using α-ketohydroxy Heteroaromatic
Chelators. Biochim. Biophys. Acta (BBA)/Protein Struct. Mol. 1986, 869, 141–146. [CrossRef]

130. Baldwin, D.A.; Jenny, E.R.; Aisen, P. The Effect of Human Serum Transferrin and Milk Lactoferrin on
Hydroxyl Radical Formation from Superoxide and Hydrogen Peroxide. J. Biol. Chem. 1984, 259, 13391–13394.

131. Huebers, H.A.; Huebers, E.; Csiba, E.; Finch, C.A. Iron Uptake from Rat Plasma Transferrin by Rat
Reticulocytes. J. Clin. Invest. 1978, 62, 944–951. [CrossRef]

132. Matias, C.; Belnap, D.W.; Smith, M.T.; Stewart, M.G.; Torres, I.F.; Gross, A.J.; Watt, R.K. Citrate and Albumin
Facilitate Transferrin Iron Loading in the Presence of Phosphate. J. Inorg. Biochem. 2017, 168, 107–113.
[CrossRef] [PubMed]

133. Klebanoff, S.J.; Waltersdorph, A.M. Prooxidant Activity of Transferrin and Lactoferrin. J. Exp. Med. 1990,
172, 1293–1303. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.jinorgbio.2010.07.012
http://dx.doi.org/10.1161/CIRCOUTCOMES.113.000663
http://dx.doi.org/10.1016/j.ahj.2014.02.012
http://dx.doi.org/10.3109/15376516.2012.730562
http://dx.doi.org/10.1016/j.ccr.2014.04.023
http://dx.doi.org/10.1007/s11886-015-0690-9
http://dx.doi.org/10.1089/ars.2017.7406
http://www.ncbi.nlm.nih.gov/pubmed/29161882
http://dx.doi.org/10.3390/molecules22071106
http://www.ncbi.nlm.nih.gov/pubmed/28677642
https://www.pri.ac.cy/files/KGJ_thesis_1982.pdf
http://dx.doi.org/10.2174/0929867043364685
http://www.ncbi.nlm.nih.gov/pubmed/15279556
http://dx.doi.org/10.3390/cells9061456
http://www.ncbi.nlm.nih.gov/pubmed/32545424
http://dx.doi.org/10.1016/0006-291X(73)91067-X
http://dx.doi.org/10.1073/pnas.81.14.4326
http://dx.doi.org/10.1016/0167-4838(86)90288-8
http://dx.doi.org/10.1172/JCI109223
http://dx.doi.org/10.1016/j.jinorgbio.2016.12.010
http://www.ncbi.nlm.nih.gov/pubmed/28110161
http://dx.doi.org/10.1084/jem.172.5.1293
http://www.ncbi.nlm.nih.gov/pubmed/2230644


Medicines 2020, 7, 45 24 of 28

134. Kontoghiorghes, G.J. Iron Mobilisation from Lactoferrin by Chelators at Physiological pH. BBA Gen. Subj.
1986, 882, 267–270. [CrossRef]

135. Gutteridge, J.M.C.; Paterson, S.K.; Segal, A.W.; Halliwell, B. Inhibition of Lipid Peroxidation by the
Iron-Binding Protein Lactoferrin. Biochem. J. 1981, 199, 259–261. [CrossRef] [PubMed]

136. Ciofi-Baffoni, S.; Nasta, V.; Banci, L. Protein Networks in the Maturation of Human Iron-Sulfur Proteins.
Metallomics 2018, 10, 49–72. [CrossRef]

137. Sargent, P.; Farnaud, S.; Evans, R. Structure/Function Overview of Proteins Involved in Iron Storage and
Transport. Curr. Med. Chem. 2005, 12, 2683–2693. [CrossRef]

138. Mehlenbacher, M.; Poli, M.; Arosio, P.; Santambrogio, P.; Levi, S.; Chasteen, N.D.; Bou-Abdallah, F. Iron
Oxidation and Core Formation in Recombinant Heteropolymeric Human Ferritins. Biochemistry 2017, 56,
3900–3912. [CrossRef]

139. Theil, E.C. Ferritin: The Protein Nanocage and Iron Biomineral in Health and in Disease. Inorg. Chem. 2013,
52, 12223–12233. [CrossRef]

140. Beinert, H.; Holm, R.H.; Münck, E. Iron-Sulfur Clusters: Nature’s Modular, Multipurpose Structures. Science
1997, 277, 653–659. [CrossRef]

141. Jacobs, A. An Intracellular Transit Iron Pool. Ciba Found. Symp. 1976, 51, 91–106.
142. Hershko, C.; Graham, G.; Bates, G.W.; Rachmilewitz, E.A. Non-Specific Serum Iron in Thalassaemia:

An Abnormal Serum Iron Fraction of Potential Toxicity. Br. J. Haematol. 1978, 40, 255–263. [CrossRef]
[PubMed]

143. Kontoghiorghe, C.N.; Kolnagou, A.; Kontoghiorghes, G.J. Potential Clinical Applications of Chelating Drugs
in Diseases Targeting Transferrin-Bound Iron and Other Metals. Expert Opin. Investig. Drugs 2013, 22,
591–618. [CrossRef] [PubMed]

144. Kontoghiorghes, G. Iron Mobilization from Transferrin and Non-Transferrin-Bound-Iron by Deferiprone.
Implications in the Treatment of Thalassemia, Anemia of Chronic Disease, Cancer and Other Conditions.
Hemoglobin 2006, 30, 183–200. [CrossRef] [PubMed]

145. Djaldetti, M.; Fishman, P.; Notti, I.; Bessler, H. The Effect of Tetracycline Administration on Iron Absorption
in Mice. Biomedicine 1981, 35, 150–152.

146. Konstantinou, E.; Pashalidis, I.; Kolnagou, A.; Kontoghiorghes, G.J. Interactions of Hydroxycarbamide
(Hydroxyurea) with Iron and Copper: Implications on Toxicity and Therapeutic Strategies. Hemoglobin 2011,
35, 237–246. [CrossRef]

147. Sheppard, L.N.; Kontoghiorghes, G.J. Competition between Deferiprone, Desferrioxamine and Other
Chelators for Iron and the Effect of Other Metals. Drug Res. (Stuttg). 1993, 43, 659–663.

148. Lane, D.J.R.; Richardson, D.R. The Active Role of Vitamin C in Mammalian Iron Metabolism: Much More
Than Just Enhanced Iron Absorption! Free Radic. Biol. Med. 2014, 75, 69–83. [CrossRef]

149. Levina, A.; Lay, P.A. Transferrin Cycle and Clinical Roles of Citrate and Ascorbate in Improved Iron
Metabolism. ACS Chem. Biol. 2019, 14, 893–900. [CrossRef]

150. Kontoghiorghes, G.J.; Graham Goddard, J.; Bardett, A.N.; Sheppard, L. Pharmacokinetic Studies in Humans
with the Oral Iron Chelator 1, 2-Dimethyl-3-Hydroxypyrid-4-One. Clin. Pharmacol. Ther. 1990, 48, 255–261.
[CrossRef]

151. Al-Refaie, F.N.; Wickens, D.G.; Wonke, B.; Kontoghiorghes, G.J.; Hoffbrand, A.V. Serum Non-Transferrin-
Bound Iron in Beta-Thalassaemia Major Patients Treated with Desferrioxamine and L1. Br. J. Haematol. 1992,
82, 431–436. [CrossRef]

152. Iancu, T.C.; Deugnier, Y.; Halliday, J.W.; Powell, L.W.; Brissot, P. Ultrastructural Sequences during Liver Iron
Overload in Genetic Hemochromatosis. J. Hepatol. 1997, 27, 628–638. [CrossRef]

153. Kyriacou, K.; Michaelides, Y.; Senkus, R.; Simamonian, K.; Pavlides, N.; Antoniades, L.; Zambartas, C.
Ultrastructural Pathology of the Heart in Patients with β-Thalassaemia Major. Ultrastruct. Pathol. 2000, 24,
75–81. [CrossRef] [PubMed]

154. Iancu, T.C. Ferritin and Hemosiderin in Pathological Tissues. Electron. Microsc. Rev. 1992, 5, 209–229. [CrossRef]
155. Papakonstantinou, O.; Alexopoulou, E.; Economopoulos, N.; Benekos, O.; Kattamis, A.; Kostaridou, S.;

Ladis, V.; Efstathopoulos, E.; Gouliamos, A.; Kelekis, N.L. Assessment of Iron Distribution between Liver,
Spleen, Pancreas, Bone Marrow, and Myocardium By Means of R2 Relaxometry with Mri in Patients with
β-Thalassemia Major. J. Magn. Reson. Imaging 2009, 29, 853–859. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/0304-4165(86)90164-9
http://dx.doi.org/10.1042/bj1990259
http://www.ncbi.nlm.nih.gov/pubmed/7337708
http://dx.doi.org/10.1039/C7MT00269F
http://dx.doi.org/10.2174/092986705774462969
http://dx.doi.org/10.1021/acs.biochem.7b00024
http://dx.doi.org/10.1021/ic400484n
http://dx.doi.org/10.1126/science.277.5326.653
http://dx.doi.org/10.1111/j.1365-2141.1978.tb03662.x
http://www.ncbi.nlm.nih.gov/pubmed/708645
http://dx.doi.org/10.1517/13543784.2013.787408
http://www.ncbi.nlm.nih.gov/pubmed/23586878
http://dx.doi.org/10.1080/03630260600642450
http://www.ncbi.nlm.nih.gov/pubmed/16798643
http://dx.doi.org/10.3109/03630269.2011.578950
http://dx.doi.org/10.1016/j.freeradbiomed.2014.07.007
http://dx.doi.org/10.1021/acschembio.8b01100
http://dx.doi.org/10.1038/clpt.1990.147
http://dx.doi.org/10.1111/j.1365-2141.1992.tb06441.x
http://dx.doi.org/10.1016/S0168-8278(97)80079-7
http://dx.doi.org/10.1080/01913120050118549
http://www.ncbi.nlm.nih.gov/pubmed/10808552
http://dx.doi.org/10.1016/0892-0354(92)90011-E
http://dx.doi.org/10.1002/jmri.21707
http://www.ncbi.nlm.nih.gov/pubmed/19306409


Medicines 2020, 7, 45 25 of 28

156. Kolnagou, A.; Natsiopoulos, K.; Kleanthous, M.; Ioannou, A.; Kontoghiorghes, G.J. Liver iron and Serum
Ferritin Levels Are Misleading for Estimating Cardiac, Pancreatic, Splenic and Total Body Iron Load in
Thalassemia Patients: Factors Influencing the Heterogenic Distribution of Excess Storage Iron in Organs as
Identified by MRI T2. Toxicol. Mech. Methods 2013, 23, 48–56. [CrossRef] [PubMed]

157. Kolnagou, A.; Michaelides, Y.; Kontos, C.; Kyriacou, K.; Kontoghiorghes, G.J. Myocyte Damage and Loss of
Myofibers Is the Potential Mechanism of Iron Overload Toxicity in Congestive Cardiac Failure in Thalassemia.
Complete Reversal of the Cardiomyopathy and Normalization of Iron Load by Deferiprone. Hemoglobin
2008, 32, 17–28. [CrossRef]

158. Pennell, D.J. T2* Magnetic Resonance and Myocardial Iron in Thalassemia. Ann. N. Y. Acad. Sci. 2005, 1054,
373–378. [CrossRef]

159. Boddaert, N.; Sang, K.H.L.Q.; Rötig, A.; Leroy-Willig, A.; Gallet, S.; Brunelle, F.; Sidi, D.; Thalabard, J.C.;
Munnich, A.; Cabantchik, Z.I. Selective Iron Chelation in Friedreich Ataxia: Biologic and Clinical Implications.
Blood 2007, 110, 401–408. [CrossRef]

160. Martin-Bastida, A.; Ward, R.J.; Newbould, R.; Piccini, P.; Sharp, D.; Kabba, C.; Patel, M.C.; Spino, M.;
Connelly, J.; Tricta, F.; et al. Brain Iron Chelation by Deferiprone in a Phase 2 Randomised Double-Blinded
Placebo Controlled Clinical Trial in Parkinson’s Disease. Sci. Rep. 2017, 7, 1398. [CrossRef]

161. Zorzi, G.; Zibordi, F.; Chiapparini, L.; Bertini, E.; Russo, L.; Piga, A.; Longo, F.; Garavaglia, B.;
Aquino, D.; Savoiardo, M.; et al. Iron-Related MRI Images in Patients with Pantothenate Kinase-Associated
Neurodegeneration (PKAN) Treated with Deferiprone: Results of a Phase II Pilot Trial. Mov. Disord. 2011,
26, 1756–1759. [CrossRef]

162. Gombart, A.F.; Pierre, A.; Maggini, S. A Review of Micronutrients and the Immune System—Working in
Harmony to Reduce the Risk of Infection. Nutrients 2020, 12, 236. [CrossRef] [PubMed]

163. Tardy, A.L.; Pouteau, E.; Marquez, D.; Yilmaz, C.; Scholey, A. Vitamins and Minerals for Energy, Fatigue and
Cognition: A Narrative Review of the Biochemical and Clinical Evidence. Nutrients 2020, 12, 228. [CrossRef]
[PubMed]

164. Carr, A.C.; Maggini, S. Vitamin C and Immune Function. Nutrients 2017, 9, 1211. [CrossRef]
165. Bozonet, S.M.; Carr, A.C. The Role of physiological Vitamin C Concentrations on Key Functions of Neutrophils

Isolated from Healthy Individuals. Nutrients 2019, 11, 1363. [CrossRef] [PubMed]
166. Elste, V.; Troesch, B.; Eggersdorfer, M.; Weber, P. Emerging Evidence on Neutrophil Motility Supporting Its

Usefulness to Define Vitamin C Intake Requirements. Nutrients 2017, 9, 503. [CrossRef] [PubMed]
167. Lykkesfeldt, J.; Michels, A.J.; Frei, B. Vitamin C. Adv. Nutr. Int. Rev. J. 2014, 5, 16–18. [CrossRef]
168. Traber, M.G.; Buettner, G.R.; Bruno, R.S. The Relationship between Vitamin C Status, the Gut-Liver Axis,

and Metabolic Syndrome. Redox Biol. 2019, 21, 101091. [CrossRef]
169. Knight, J.; Madduma-Liyanage, K.; Mobley, J.A.; Assimos, D.G.; Holmes, R.P. Ascorbic Acid Intake and

Oxalate Synthesis. Urolithiasis 2016, 44, 289–297. [CrossRef]
170. Carr, A.C.; McCall, C. The Role of Vitamin C in the Treatment of Pain: New Insights. J. Transl. Med. 2017, 15,

77. [CrossRef]
171. Moustarah, F.; Mohiuddin, S.S. Dietary Iron; StatPearls: Treasure Island, FL, USA, 2019.
172. Kobayashi, M.; Suhara, T.; Baba, Y.; Kawasaki, N.K.; Higa, J.K.; Matsui, T. Pathological Roles of Iron in

Cardiovascular Disease. Curr. Drug Targets 2018, 19, 1068–1076. [CrossRef]
173. Man, C.D.; Maideen, S.F.K.; Rashid, A. Knowledge, Attitude and Practice Towards Dietary Iron Among

Patients with Thalassemia and Their Caregivers in Peninsular Malaysia. Med. J. Malays. 2019, 74, 365–371.
174. Wessells, K.R.; Young, R.R.; Ferguson, E.L.; Ouédraogo, C.T.; Faye, M.T.; Hess, S.Y. Assessment of Dietary

Intake and Nutrient Gaps, and Development of Food-Based Recommendations, Among Pregnant and
Lactating Women in Zinder, Niger: An Optifood Linear Programming Analysis. Nutrients 2019, 11, 72.
[CrossRef] [PubMed]

175. Zhang, C.; Rawal, S. Dietary Iron Intake, Iron Status, and Gestational Diabetes. Am. J. Clin. Nutr. 2017, 106,
1672–1680. [CrossRef] [PubMed]

176. Du, J.; Cullen, J.J.; Buettner, G.R. Ascorbic Acid: Chemistry, Biology and the Treatment of Cancer.
Biochim. Biophys. Acta-Rev. Cancer 2012, 1826, 443–457. [CrossRef]

177. Vasta, J.D.; Raines, R.T. Human Collagen Prolyl 4-Hydroxylase Is Activated by Ligands for Its Iron Center.
Biochemistry 2016, 55, 3224–3233. [CrossRef]

http://dx.doi.org/10.3109/15376516.2012.727198
http://www.ncbi.nlm.nih.gov/pubmed/22943064
http://dx.doi.org/10.1080/03630260701726491
http://dx.doi.org/10.1196/annals.1345.045
http://dx.doi.org/10.1182/blood-2006-12-065433
http://dx.doi.org/10.1038/s41598-017-01402-2
http://dx.doi.org/10.1002/mds.23751
http://dx.doi.org/10.3390/nu12010236
http://www.ncbi.nlm.nih.gov/pubmed/31963293
http://dx.doi.org/10.3390/nu12010228
http://www.ncbi.nlm.nih.gov/pubmed/31963141
http://dx.doi.org/10.3390/nu9111211
http://dx.doi.org/10.3390/nu11061363
http://www.ncbi.nlm.nih.gov/pubmed/31212992
http://dx.doi.org/10.3390/nu9050503
http://www.ncbi.nlm.nih.gov/pubmed/28509882
http://dx.doi.org/10.3945/an.113.005157
http://dx.doi.org/10.1016/j.redox.2018.101091
http://dx.doi.org/10.1007/s00240-016-0868-7
http://dx.doi.org/10.1186/s12967-017-1179-7
http://dx.doi.org/10.2174/1389450119666180605112235
http://dx.doi.org/10.3390/nu11010072
http://www.ncbi.nlm.nih.gov/pubmed/30609695
http://dx.doi.org/10.3945/ajcn.117.156034
http://www.ncbi.nlm.nih.gov/pubmed/29070554
http://dx.doi.org/10.1016/j.bbcan.2012.06.003
http://dx.doi.org/10.1021/acs.biochem.6b00251


Medicines 2020, 7, 45 26 of 28

178. Nasr, S.H.; Kashtanova, Y.; Levchuk, V.; Markowitz, G.S. Secondary Oxalosis Due to Excess Vitamin C Intake.
Kidney Int. 2006, 70, 1672. [CrossRef]

179. Mikirova, N.; Casciari, J.; Rogers, A.; Taylor, P. Effect of High-Dose Intravenous Vitamin C on Inflammation
in Cancer Patients. J. Transl. Med. 2012, 10, 189. [CrossRef]

180. Wang, L.; Sesso, H.D.; Glynn, R.J.; Christen, W.G.; Bubes, V.; Manson, J.A.E.; Buring, J.E.; Gaziano, J.M.
Vitamin E and C Supplementation and Risk of Cancer in Men: Posttrial Follow-Up in the Physicians’ Health
Study II randomized Trial. Am. J. Clin. Nutr. 2014, 100, 915–923. [CrossRef]

181. Vance, T.M.; Su, J.; Fontham, E.T.H.; Koo, S.I.; Chun, O.K. Dietary Antioxidants and Prostate Cancer:
A Review. Nutr. Cancer 2013, 65, 793–801. [CrossRef]

182. Ohno, S.; Ohno, Y.; Suzuki, N.; Soma, G.I.; Inoue, M. High-Dose Vitamin C (Ascorbic Acid) Therapy in the
Treatment of Patients with Advanced Cancer. Anticancer Res. 2009, 29, 809–815.

183. Nielsen, T.K.; Højgaard, M.; Andersen, J.T.; Poulsen, H.E.; Lykkesfeldt, J.; Mikines, K.J. Elimination of
Ascorbic Acid after High-Dose Infusion in Prostate Cancer Patients: A Pharmacokinetic Evaluation. Basic Clin.
Pharmacol. Toxicol. 2015, 116, 343–348. [CrossRef] [PubMed]

184. Levine, M.; Conry-Cantilena, C.; Wang, Y.; Welch, R.W.; Washko, P.W.; Dhariwal, K.R.; Park, J.B.; Lazarev, A.;
Graumlich, J.F.; King, J.; et al. Vitamin C Pharmacokinetics in Healthy Volunteers: Evidence for a
Recommended Dietary Allowance. Proc. Natl. Acad. Sci. USA 1996, 93, 3704–3709. [CrossRef] [PubMed]

185. Myriam, M.; Sabatier, M.; Steiling, H.; Williamson, G. Skin Bioavailability of Dietary Vitamin E, Carotenoids,
Polyphenols, Vitamin C, Zinc and Selenium. Br. J. Nutr. 2006, 96, 227–238. [CrossRef] [PubMed]

186. Costello, C.L.; Franklin, R.B. Plasma Citrate Homeostasis: How It Is Regulated; And Its Physiological and
Clinical Implications. An Important, But Neglected, Relationship in Medicine. HSOA J. Hum. Endocrinol.
2016, 1, 5. [CrossRef]

187. Marik, P.E. Hydrocortisone, Ascorbic Acid and Thiamine (HAT Therapy) for the Treatment of Sepsis. Focus on
Ascorbic Acid. Nutrients 2018, 10, 1762. [CrossRef]

188. Hager, D.N.; Hinson, J.S.; Rothman, R.E. Vitamin C for Sepsis and Acute Respiratory Failure. JAMA J. Am.
Med. Assoc. 2020, 323, 791–792. [CrossRef]

189. Lynch, S.R.; Cook, J.D. Interaction of Vitamin C and Iron. Ann. N. Y. Acad. Sci. 1980, 355, 32–44. [CrossRef]
190. Patil, P.; Geevarghese, P.; Khaire, P.; Joshi, T.; Suryawanshi, A.; Mundada, S.; Pawar, S.; Farookh, A.

Comparison of Therapeutic Efficacy of Ferrous Ascorbate and Iron Polymaltose Complex in Iron Deficiency
Anemia in Children: A Randomized Controlled Trial. Indian J. Pediatr. 2019, 86, 1112–1117. [CrossRef]

191. Chandra, J. Treating Iron Deficiency Anemia. Indian J. Pediatr. 2019, 86, 1085–1086. [CrossRef]
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