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Muscular dystrophies (MDs) are a heterogeneous group of inherited disorders, in which
progressive muscle wasting and weakness is often associated with exhaustion of muscle
regeneration potential. Although physiological properties of skeletal muscle tissue are now
well known, no treatments are effective for these diseases. Muscle regeneration was
attempted by means transplantation of myogenic cells (from myoblast to embryonic stem
cells) and also by interfering with the malignant processes that originate in pathological
tissues, such as uncontrolled fibrosis and inflammation. Taking into account the advances
in the isolation of new subpopulation of stem cells and in the creation of artificial stem cell
niches, we discuss how these emerging technologies offer great promises for therapeutic
approaches to muscle diseases and muscle wasting associated with aging.
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INTRODUCTION
Skeletal muscle is a highly complex system formed by thousands
of contractile units called muscle fibers. Each muscle fiber is lim-
ited by a plasma membrane called sarcolemma and by a basal
lamina, that are surrounded by an extra cellular matrix con-
stituted of connective tissue (Buckingham et al., 2003). Muscle
remodeling occurs throughout the entire life although at different
rate considering the developmental stages. Starting from embryo
until childhood, protein synthesis is upregulated and satellite cells
(SCs) actively develop new muscle fibers while in adults cel-
lular turnover is strongly reduced (Schiaffino et al., 2007). In
response to exogenous stimuli or to biological factors such as age
or nutrition, the muscle increases its size, the amount of contrac-
tile proteins and consequently force production. The regulation
of muscle cell size is a tightly regulated phenomena, and it is
a balance between muscle proliferation and degradation of pre-
existing proteins. Uncontrolled events, often associated with dis-
eases, lead to hypertrophy or atrophy, respectively (Sandri, 2008).
The complex hierarchy of events that triggers muscle remodeling
is often unbalanced in muscular diseases. For instance, Duchenne
muscular dystrophy (DMD), the most frequent among all the
dystrophies, is characterized by a rapid atrophy in youth, mus-
cular wasting and inability to walk in adolescence and premature
death for cardiorespiratory failure by the age of 30. As the genetic
nature of these pathologies leads to uncontrolled fiber degenera-
tion, different treatments were proven to delay the progression of
the diseases. The main goal was to retard the atrophy and replace
diseased muscle with new healthy and functional muscle fibers by
using myogenic stem cells (Brunelli and Rovere-Querini, 2008).
Unfortunately, the use of stem cell in regenerative medicine is

limited by the poor engraftment and persistence of transplanted
cells and the risk of neoplastic formation (Suuronen et al., 2008;
Kuraitis et al., 2012). Due to these findings, other aspects were
deeply investigated to increase the survival of injected stem cells
into pathological muscle. Modulation of the inflammatory reac-
tion is a key step for stem cell transplantation (Smythe et al.,
2000): myeloid cells (Suzuki et al., 1999; Mcnally et al., 2000),
macrophages (Wehling et al., 2001; Villalta et al., 2009), neu-
trophils (Hodgetts et al., 2006) and eosinophils (Cai et al., 2000)
actively contribute to development of pathogenesis in several
myophaties but only macrophages and sometimes eosinophils
play a role in muscle regeneration (Tidball and Villalta, 2010).
Pathological conditions modify the microenvironment of stem
cells (the so-called niche) preventing the activation of resident
stem cells and reducing the success of exogenous cell therapies.
Tissue engineering technologies may create a novel in vitro niche
allowing the maintenance and propagation of SCs and enhancing
their muscular potential.

In this review, we will describe the efforts that are neces-
sary to design a successful therapeutic approach for muscular
diseases, relating to find a functional stem cell population, to
identify feasible matrix/polymer to engineer stem cells’ niche
and to modulate secondary—but relevant—effects of impaired
muscle regeneration, as fibrosis and inflammation.

MYOGENIC STEM CELLS
EMBRYONIC STEM CELLS (ESCs)
Introduction to ESCs
Embryonic stem cells (ESCs) are pluripotent cells derived from
the early embryo that are characterized by the ability to proliferate
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over prolonged periods of culture remaining undifferentiated and
maintaining a stable karyotype (Amit and Itskovitz-Eldor, 2002;
Carpenter et al., 2003; Hoffman and Carpenter, 2005). ESCs dif-
ferentiate into cells forming all 3 embryonic germ layers, and
are characterized by self-renewal, immortality, and pluripotency
(Strulovici et al., 2007). As ESCs possess the potential to differ-
entiate into all normal tissues, the ability to derive and maintain
these cells in culture opened the possibility to have an unlimited
supply of differentiated cells to replace pathological tissues (Moon
et al., 2006; Skottman et al., 2006).

Markers of ESCs
Cell origins are often defined by one or more cell-surface mark-
ers and intracellular epitopes unique to that particular cell type.
hESCs are maintained in culture on feeder layers of heterologous
cells and then differentiated into specific cell lineages (Takahashi
and Yamanaka, 2006; Conrad et al., 2008). Stage-specific embry-
onic antigen citation(SSEA) markers are used to distinguish early
stages of cell development and to denote pluripotency: hESCs
express SSEA-3 and -4 during pluripotency and only SSEA-
1 upon differentiation (Andrews et al., 1996; Thomson and
Marshall, 1998; Thomson et al., 1998; Reubinoff et al., 2001).
Nanog is a NK-2-type homeodomain gene encoding for a tran-
scription factor that is critically involved in the self-renewal of
stem cells. In 2005, Lin’s group demonstrated that the tumor sup-
pressor p53 binds to the promoter of Nanog, stimulating p53
(Lin et al., 2005). Octamer-binding transcription factor 4 (Oct-4)
down-regulation is observed in differentiating cells (Rosner et al.,
1990). It was suggested that only Oct-4 was necessary for the
maintenance of pluripotency, but its expression level governed
three cell fates once differentiation occurs. Similarly, Xu et al.
published that the catalytic component of telomerase, telomerase
reverse transcriptase (hTERT), was expressed in undifferentiated
cells and down-regulated upon differentiation (Xu et al., 2001).

Limits of ESCs
Although the attentions that received, scientific and medical
issues need to be addressed before hESCs can be considered safe
for clinical applications (Leist et al., 2008). The American fed-
eral government severely restricted access and use of hESCs in
2001 but they were largely overturned by the Obama adminis-
tration. Many organizations and countries have already banned
reproductive cloning of human beings. As this procedure can be
used to generate stem cells for therapeutic purposes, in coun-
tries where this type of cloning is legal, such as Australia and
the United Kingdom, the created embryos must be destroyed
within 14 days. Guidelines in using ESCs were proposed by the
International Society of Stem Cell Research citation (http://www.

isscr.org/guidelines/index.htm).

Myogenic potential of ESCs
Several lineages (blood, cardiac muscle and endothelial cells) were
obtained by in vitro differentiation of ESCs, however for skele-
tal muscle several drawbacks arose, especially for the difficulty
to identify a temporal expression of myogenic regulatory factors
(Rohwedel et al., 1994). This way, in 2005 Bhagavati et al. co-
cultured ESCs derived from normal mice with a preparation from

mouse muscle enriched for myogenic stem and precursor cells.
They transplanted ESCs into dystrophic mdx mice but unfor-
tunately newly-formed muscle was occasionally seen (Bhagavati
and Xu, 2005). Similarly, Barberi et al. described a stroma-free
induction system to derive mesenchymal precursors and skele-
tal myoblast from hESCs. Following in vitro maturation, these
cells were injected into tibialis anterior of immunodeficient scid
mice and it was observed a long-term myoblast engraftment and
the lack of teratomas (Barberi et al., 2007). As it was suggested
that the lack of myogenic differentiation of ESCs was due to the
impairment of myogenic signals in the mesoderm (Darabi et al.,
2008a), Darabi et al. transiently expressed paired box 3 (Pax3)
and paired box 7 (Pax7) during early mesoderm development and
obtained several early embryonic skeletal myogenic progenitors
(Darabi et al., 2008b, 2011). These cells were also implanted into
mdx mice and gave rise to large numbers of skeletal muscle fibers
and SCs, so that muscle force was ameliorated (Darabi et al., 2009,
2011). More recently, Sakurai et al. described that the elimina-
tion of bone morphogenetic protein 4 (BMP4) from serum-free
ESC cultures together with the implementation of lithium chlo-
ride (LiCl) allowed the differentiation of these cells to myogenic
progenitors cells. hESCs-derived progenitors showed a notable
capacity of differentiation into skeletal muscle cells (Sakurai et al.,
2009).

INDUCED PLURIPOTENT STEM CELLS (iPSCs)
Generation of iPSCs
Recent advances in the understanding of ESC biology included
the identification of several master regulators of ESC pluripotency
and differentiation (Takahashi and Yamanaka, 2006). Intensive
study of ESC growth conditions has not yet produced a com-
plete picture of the unique transcriptional and epigenetic state
that is responsible for pluripotency and self-renewal in ESCs.
Yamanaka’s group identified four factors (Oct3/4, Klf4, Sox2, and
c-myc) whose expression is sufficient to produce cells similar to
ESCs, called induced pluripotent stem cells (iPSCs). The same
factors were used to reprogram human fibroblasts to an ESC-like
pluripotent state.

The new era of iPSCs
Now that embryonic tissue is no longer required to make a
pluripotent cell, investigators have the ability to create tissue-
based models of human disease based on cells derived from indi-
vidual patients (Dimos et al., 2008; Park et al., 2008; Ebert et al.,
2009; Soldner et al., 2009). Accordingly, iPSCs were efficiently
used in murine models of sickle cells anemia and Parkinson’s
disease. Even if these cells were showed to be suitable for cell
therapy, it has to be yet demonstrated the possibility to generate
human iPSCs without introduction of DNA into the genome (to
avoid oncogenic potential of undifferentiated iPSCs following the
unsafe reintroduction of these genes), to ameliorate the efficiency
of manipulation of human iPSCs and the capacity to obtain any
desired cell types.

iPSCs and human disease
Since the work of Yamanaka was published, reprogramming of
cells provided a realistic way not only to obtain lines from patients
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with incurable pathologies to investigate disease mechanisms and
drug screening but to generate sufficient numbers of patient-
specific pluripotent stem cells (Egawa et al., 2012). The generation
of patient-specific iPSCs has the advantage of avoiding many of
the ethical concerns associated with the use of embryonic or
foetal material, and have no risk of immune rejection. Many
cell types like motor neurons (Dimos et al., 2008), hepatocytes
(Song et al., 2009), pancreatic insulin producing cells (Zhang
et al., 2006), hematopoietic cells (Hanna et al., 2007), retinal cells
(Carr et al., 2009), cardiomyocyte (Zwi et al., 2009) and mes-
enchymal stem cells (Lian et al., 2010), have been successfully
derived from human iPSCs. Nelson et al. reported the use of
iPSCs for myocardial repair in animal models of acute myocardial
infarction (Nelson et al., 2009) while Ye used iPSCs in different
hematological disorders (Ye et al., 2009).

Myogenic potential of iPSCs
As described above, to be used for clinical applications, iPSCs
need to be generated in large amount in safety; this way, proto-
cols to isolate and characterize these cells were largely improved.
Mizuno et al. identified iPS-derived satellite-like cells by means
the expression of the SM/C-2.6 antibody (Mizuno et al., 2010)
while Darabi purified PDGFαR+Flk−1− murine iPS cells that
expressed the myogenic factor Pax7 (Darabi et al., 2008a, 2011).
In fact, the group of Perlingeiro recently isolated large quan-
tity of Pax7+ human iPSCs (and ESCs) that, transplanted into
dystrophic mice, engrafted well producing high amount of dys-
trophin and replenishing the satellite cell compartment (Darabi
et al., 2012). Similarly, the expression of MyoD and Myf5 allowed
the purification of myogenic iPS cells (Iacovino et al., 2011;
Goudenege et al., 2012). Filareto et al. successfully obtained iPSCs
from fibroblast of dystrophin/utrophin double knockout mice
and engineered them with the micro-dystrophin gene. Injected
into dystrophic mice, these cells engrafted well and improved
muscle strength (Filareto et al., 2013). In parallel, Tedesco et al.
generated mesoangioblast/mesenchymal-like cells from iPSCs of
healthy and dystrophic patients: these cells were also modified to
express constitutively the MyoD gene. Transplanted into model
mice of LGMD-2A, iPSCs cells ameliorated their dystrophic phe-
notype (Tedesco et al., 2012).

SATELLITE CELLS (SCs)
SCs are small progenitor cells originating from somites that lie
between the basement membrane and sarcolemma of individual
muscle fibers (Shi and Garry, 2006; Sambasivan and Tajbakhsh,
2007). SCs are normally present in healthy adult mammalian
muscle as quiescent cells and are characterized by the expres-
sion of Pax7, that is fundamental for their maintenance and
self-renewal, and by the absence of Myogenic differentiation 1
(MyoD) and myogenin, that conversely are necessary for myo-
genic differentiation. Once activated in response to specific stim-
uli such as oxidative stress, SCs up-regulate the expression of
Myf5 to start their proliferation so that they differentiate into
new myofibers, driven by specific factors such as MyoD, myo-
genin and myosin heavy chain (Whalen et al., 1990). Since the
work of Montarras and colleagues (Montarras et al., 2005), dif-
ferent techniques for SCs isolation were assessed. Sacco et al.

derived SCs from transplantation of one intact myofiber and
demonstrated that once transplanted into dystrophic mice, SCs
proliferated and contributed to form new muscle fibers (Sacco
et al., 2008). Cerletti et al. isolated the skeletal muscle precursors
(SMPs): injected into animal models, these SC-like cells restored
dystrophin expression and, more importantly, were positioned
into the SC niche, where they regulated the subsequent rounds of
injury and repair (Cerletti et al., 2008). Similarly, the muscle side-
population cells (mSP) isolated by Tanaka et al. engrafted into
host SC niche, giving rise both to SCs and myonuclear population
(Tanaka et al., 2009).

Autologous transplantation of genetically corrected SCs into
patients suffering from muscular diseases could be our ideal
approach (Price et al., 2007): unfortunately, it was demonstrated
that the growth of SCs in vitro significantly reduced their in vivo
myogenic potential, rendering their transplantation an inefficient
technique (Tremblay et al., 1993; Mendell et al., 1995; Gussoni
et al., 1997). To overcome these problems, several studies investi-
gated the SC niches, as described in detail in section Satellite cells
niche.

MUSCLE-DERIVED STEM CELLS (MDSCs)
Besides SCs, muscle-derived stem cells (MDSCs) were isolated
within the muscle, with the capacity of self-renewal and meso-
dermal differentiation. Sarig et al. identified a subpopulation of
MyoD+ stem cells that formed muscle fibers but also osteogenic
and adipogenic cells (Sarig et al., 2006). Tamaki et al. purified a
subpopulation of CD34-CD45- cells that proliferated into myo-
genic, vasculogenic and neural cell lineages (Tamaki et al., 2007).
Sca−1+CD34+ stem cells purified from murine muscle differ-
entiated into myogenic and multimyeloid lineages in vitro and
regenerated muscle in vivo (Torrente et al., 2001). Alessandri et al.
showed that muscle-derived stem cells positive for desmin and
vimentin differentiated in vitro into skeletal muscle fibers and
neurons (Alessandri et al., 2004). Notably, Rouger et al. identi-
fied early myogenic progenitors that originated from SC niche,
the MuStem cells; transplanted into Golden retriever muscular
dystrophy (GRMD) dogs, these cells allowed the re-expression of
dystrophin (Rouger et al., 2011).

MESENCHYMAL STEM CELLS (MSCs)
Mesenchymal stem cells (MSCs) are clonogenic and adherent
cells, isolated from adult and foetal bone marrow and from
other tissues and organs (Alhadlaq and Mao, 2004; Le Blanc
and Pittenger, 2005; Beyer Nardi and Da Silva Meirelles, 2006):
they are able to differentiate into several lineages (Zheng et al.,
2007; Nesti et al., 2008). As MSCs were identified into mus-
cle tissue biopsies, it was suggested that skeletal muscle could
be an important source of MSCs for therapeutic interventions
(Jackson et al., 2010). Transplanted into DMD patients, MSCs
fused with host fibers and enhanced the activity of endogenous
stem cells through the secretion of trophic factors (Ichim et al.,
2010). Interestingly, De Bari et al. described the in vitro myo-
genic potential of MSCs isolated from adult human synovial
membrane (De Bari et al., 2001). Following injection into dys-
trophic mice, these cells formed new myofibers, re-expressed
the dystrophin and contributed to SCs replenishment (De Bari

www.frontiersin.org February 2014 | Volume 5 | Article 48 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Striated_Muscle_Physiology/archive


Meregalli et al. Pathophysiology of skeletal muscle

et al., 2003). Gang et al. showed that MSCs from umbilical cord
blood differentiated into skeletal muscle, expressing late myogenic
markers as MyoD (Gang et al., 2004). Riordan et al. described
that hematopoietic precursors present in the bone marrow were
protected from inflammatory damage by MSCs (Riordan et al.,
2007) while Nemeth et al. demonstrated that MSCs can modulate
the activity of macrophages and consequently inhibit inflamma-
tory processes (Nemeth et al., 2009). The capacity of MSCs to
modulate inflammation could be an important feature in the per-
spective of cell therapy in dystrophic patients as inflammation is
a prominent component of the disease (as reviewed in detail in
section Inflammation and repair mechanisms in skeletal muscle).
Following these evidences, MSCs injection were proven to reduce
inflammation in animal models for several human diseases, such
as autoimmune arthritis and diabetes (Fiorina et al., 2009; Madec
et al., 2009), multiple sclerosis (Constantin et al., 2009; Rafei et al.,
2009a), lupus (Zhou et al., 2008), rheumatoid arthritis (Song
et al., 2010) and autoimmune encephalomyelitis (Rafei et al.,
2009b). Although all these encouraging results, several problems
need to be solved. First of all, more efforts are needed to elucidate
the origin of MSCs; moreover, protocols for isolation of the cells
and their expansion in vivo have to be standardized.

MUSCLE-DERIVED CD133+ STEM CELLS
Torrente et al. isolated stem cells from human normal and DMD
biopsies expressing the glycoprotein CD133. CD133+ stem cells
co-expressed CD34, CD45, and kinase insert domain receptor
(KDR) and differentiated into muscle (Torrente et al., 2007).
Moreover, Negroni et al. found that muscle-derived CD133+
stem cells co-expressed the satellite cell marker CD56 and even-
tually formed myosin heavy chain (MyHC)+ multinucleated
myotubes (Negroni et al., 2009). As Phase I clinic trial demon-
strated that infusion of these cells was safe and feasible (Torrente
et al., 2007), muscle-derived dystrophic CD133+ stem cells were
engineered to express a shorter but still functional dystrophin.
Transplanted into dystrophic mice, CD133+ stem cells allowed
the expression of dystrophin and the formation of new myofibers,
improving murine muscular force. Interestingly, some of injected
CD133+ stem cells were identified beneath the basal lamina, in
SC-like position, thus expressing M-Cadherin (Benchaouir et al.,
2007).

MESOANGIOBLASTS
Physically associated with the embryonic dorsal aorta in avian
and mammalian species, mesoangioblasts are multipotent pro-
genitors of mesodermal tissues, expressing α-smooth muscle
actin (SMA) and retaining myogenic capacity (Tagliafico et al.,
2004). Cossu et al. engineered these cells with human microdys-
trophin and demonstrated that they improved muscle function
after injection into GRMDs (Sampaolesi et al., 2006; Cossu
and Sampaolesi, 2007). In order to ameliorate their ability of
migration, mesoangioblasts were exposed to Stromal cell-derived
factor (SDF)-1 and tumor necrosis factor (TNF)-α so that, fol-
lowing transplantation into α-sarcoglycan KO mice, the large
majority of α-sarcoglycan-expressing myofibers was reconstituted
(Galvez et al., 2006). Similarly, Tedesco et al. transduced mdx-
derived mesoangioblasts with a vector carrying the entire human

dystrophin genetic locus. Injected into scid/mdx mice, these cells
formed several muscle fibers expressing dystrophin and replen-
ished the SC compartments (Tedesco et al., 2011). More recently,
Cossu’s group obtained mesoangioblasts from iPSCs of LGMD-
2D patients that rescued the expression of α-sarcoglycans in
dystrophic mice (Tedesco et al., 2012). According to these evi-
dences, mesoangioblasts seemed to be feasible to treat MDs and
they are currently being utilized in a phase I/II clinical trial
(EudraCT no. 2011-000176-33).

ARTIFICIAL STEM CELL NICHE
SATELLITE CELLS NICHE
SCs behavior is influenced by factors that are secreted by
myofibers. SDF-1 can bind to receptor CXCR4 on the sur-
face of SC activating a migratory response (Sherwood et al.,
2004; Ratajczak et al., 2006) while M-cadherin enhance the
adhesion of SC to myofibers allowing their fusion (Irintchev
et al., 1994). Interestingly, SCs can regulate their own quies-
cence and self-renewal according to the expression of ligands for
the Notch receptor family (Conboy and Rando, 2002; Conboy
et al., 2003; Kuang et al., 2007). Like other stem cells, SCs can
proliferate in a asymmetric manner, giving rise to one stem
cell and one differentiated cell; and in a symmetric manner,
originating two daughter cells retaining full stem cell poten-
tial (Morrison and Kimble, 2006). Asymmetric self-renewal is
preferred in quiescient conditions while the other is typical in
case of injury or disease. Each tissue-specific stem cell is located
inside anatomically-defined microenvironment, called niche, sur-
rounded by extracellular matrix (ECM) composed of a network
of fibrillar proteins, growth factors, chemokines, cytokines and
proteins that are present on the surface of neighboring cells.
According to the interactions with these components, the cell
choose self-renewal or a pathway of differentiation, following spe-
cific stimuli (Lutolf and Hubbell, 2005; Cosgrove et al., 2009).
SCs reside in the niches that are positioned in a compartment
between the myofiber plasma membrane and the basal lamina
that surrounds the myofiber so that in the apical part of the
niche they receive the signals from the myofibers while on their
basal surface they are influenced by basal lamina signals (Collins
et al., 2005; Kuang et al., 2008). SCs express several molecules to
interact with the basal lamina and all its components (collagen,
laminin, fibronectin) (Burkin and Kaufman, 1999). Conversely,
the proteoglycan components of the basal lamina bind growth
factors secreted by SCs such as basic Fibroblast Growth Factors
(bFGF), and Insulin-like growth factor 1 (IGF-1) that regulate
SC survival and proliferation (Golding et al., 2007; Le Grand
et al., 2009). Other factors derived from cells that are not prox-
imal to the niches or from the systemic circulation can influence
SCs, such as myostatin, and wingless-type MMTV integration
site family, member 3a (Wnt3a) (Mccroskery et al., 2003; Brack
and Rando, 2007). These extrinsic factors play a fundamental
role in aging, when the regenerative capacity of skeletal muscle
declines (Grounds, 1987): for example, increased levels of circu-
lating Wnt3a allowed the activation of β-catenin pathway in SCs,
so that muscle regeneration is reduced and fibrosis is enhanced
(Brack et al., 2008). The incredible complexity of niche regulation
is the reason why, after removal from their in vivo localization,
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SCs—and other adult stem cells—rapidly lost their myogenic
ability (Dykstra et al., 2006) so that they cannot be used in clinical
trials (Farini et al., 2009). As Kuang and collaborators suggested,
the balance among the signals deriving from the various compo-
nents of the niche is necessary to maintain the myogenic potential
of the SCs (Kuang et al., 2008).

Recent studies have focused on imitate the regulatory machin-
ery of the in vivo SC niche, as a powerful tool to control stem
cell function. Three dimensional (3-D) matrices are the model
system that mimics the in vivo microenvironment, allowing the
investigation of these physiologic events (Cukierman et al., 2001;
Abbott, 2003). They can derive from cells or tissues while others
can be composed of ECM proteins. Natural ECMs can be formed
by various protein fibrils and fibers interwoven within a hydrated
network of glycosaminoglycan chains, providing a structural scaf-
fold. Fibrils, pores, elastin and collagen can be present and alter
the biophysical properties of ECMs. Moreover, artificial synthetic
materials were produced with similar structure. Polyethylene gly-
col (PEG)-based hydrogels were used for the maintenance of SCs
in vitro (Lutolf and Hubbell, 2005) while, recently, Kloxin and col-
leagues developed PEG hydrogels that controlled matrix stiffness
without toxicity to cells (Kloxin et al., 2009). As these matrices
were able to alter biophysical properties in a non-invasive man-
ner, they were used to investigate the progression of biophysical
changes associated with muscle fibrosis or disease (Engler et al.,
2004). Moreover, Lutolf et al. demonstrated that PEG hydrogels
were suitable for single-stem cell clonal assays and resistant to
non-specific cell adhesion mediated by protein adsorption (Lutolf
et al., 2009a). However, further studies are necessary to define
exactly all the components that constitute the microenvironment
of the SCs and the molecular steps that regulate the transition
between SCs quiescence and proliferation.

TEM CELL FATE IN VITRO
In vitro stem-cell colture is carried out on flat coated with differ-
ent substrates like collagen or laminin, on feeder-cell layers and
within hydrogels synthetized from ECM components (for exam-
ple collagen or Matrigel). Most frequently culture of stem cells was
performed on rigid polystyrene tissue-culture plastic exposing
cells to soluble factors in liquid media (Lutolf et al., 2009b).

These culture conditions are far from resemble the in vivo con-
dition, where cells live in close proximity to each other and in
contact with the ECM. Recently, 3D niche are still being explored
and should be considered. Blau’s group are studying the two-
dimensional (2D) biomaterial culture systems deconstructing
the niche and identifying and assessing the effects of individ-
ual niche components on stem-cell fate (Lutolf et al., 2009b).
Normally, the effects of cell–cell interactions are studied by co-
culturing; this strategy makes it difficult to discriminate the role
of particular molecules.

In vivo, secreted growth factors and cytokines are mostly teth-
ered to ECM components like proteoglycans. At the same time,
receptor ligands are presented to stem cells surface and to nearby
support cells. In both cases, molecule immobilization probably
has the critical role of increasing protein stability, promoting per-
sistent signaling and inducing receptor clustering (Irvine et al.,
2002). A covalent binding of fibroblast growth factor 2 (FGF2)

to a synthetic polymer stabilized the growth factor and increased
its potency 100-fold relative to FGF2 in solution. Similarly, the
epidermal growth factor (EGF) covalently tethered to a biomate-
rial scaffold, was shown to be more effective than its soluble coun-
terpart in inducing mesenchymal stem cells differentiation and
preventing Fas-ligand-induced death (Fan et al., 2007). Natural
and synthetic matrices can be used to create cell-culture sub-
strates with known elastic modulus providing diffusion of soluble
molecules to the basal surface and the apical one, and can be used
to test the relevance of homeostatic and disease related matrix
stiffness to stem-cell behavior. Soluble factors in culture media
used in combination with the tissue-culture matrix affect cell fate.
Human MSCs expressed genes consistent with differentiation into
distinct tissue-specific cell types when exposed to polyacrylamide
gels with a range of stiffness typical of brain, muscle and bone
(Engler et al., 2006). The effects of the physical properties of
culture substrate on stem-cell fate are fully appreciated, culture
platforms based on soft biomaterials are likely to replace, rigid,
tissue-culture plastic. Within the niche, cells dialog with the sur-
rounding ECM during development and in adulthood (Folkman
and Moscona, 1978). Although some of these effects are proba-
bly due to alterations in the adhesive interactions and crosstalk
between the ECM and the cell as they work to define each other,
there is ample evidence suggesting that physical control of cell
shape alone can act as a potent regulator of cell signaling and fate
determination (Wozniak and Chen, 2009).

STEM CELL FATE IN VIVO
Biomaterials technologies offer great opportunities to control the
stem cell fate in vivo, especially in case of tissue damage. Two main
modes of application have been proposed: one in which biomate-
rials are used as carriers for introducing stem cells into damaged,
diseased or aged tissue, and one in which biomaterials are used
to augment endogenous stem-cell function (Lutolf et al., 2009b).
In regenerative medicine, stem cell transplantation has some lim-
itations: survival and engraftment of transplanted stem cells and
the disrupted biological environment characterized by abundant
cell and tissue necrosis. Biomaterials have to be designed to act
as carriers for local delivery of stem cells, supporting cells or
molecular niche cues. Biomaterials may improve the effect of
stem cell transplantation; they may be used as multifunctional
stem-cell microenvironments. They have to increase the deliver-
ing and enhancing the viability of the cells, to function as support
in order to increase the numbers of the cells and stimulate the
function of endogenous stem cells. Moreover, biomaterials can
deliver diffusible cytokines in order to promote the mobilization
of endogenous cells involved in repair, to enhance survival and
to stimulate self-renewal and expansion of the transplanted cells.
Materials would enhance tissue regeneration, tissue function and
overcome the adverse effects of disease or ageing (Conboy et al.,
2005; Adams et al., 2007). Therefore, they could permit local and
specific delivery of bioactive niche components able to inhibit and
stimulate molecules and drugs that have to increase the number
and the functions of transplanted stem cells. In order to obtain
these benefits in vivo, materials have to be achieved by form-
ing a scaffold that deliver biomolecules near the stem-cell niche
or by targeted delivery of soluble microparticles or as carriers of
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such bioactive niche components (Adams et al., 2007). Recently,
Rothenfluh et al. isolated polymer nanoparticles, sufficiently
small to enter the matrix of the targeted tissues; then, they mod-
ified them with a biomolecular ligand for matrix binding. This
way, the modified the matrix into a source of nanoparticles (Gu
et al., 2008; Rothenfluh et al., 2008). Similarly, Gu and co-workers
modified existing nanoparticles so that they were used for differ-
ential delivery and controlled release of drugs (Gu et al., 2008).
Biomaterials aim is not only to create materials to control spatially
and temporally the components of the niche but also to study
microenvironmental regulation of stem cell proliferation and fate
(Conboy et al., 2005). Artificial niches could incorporate appro-
priate “homing” signals that would attract endogenous stem cells
and localize them by means of known cell—cell or cell—matrix
adhesive interactions. Biomaterial research is focused on create
artificial niche where cells could to be exposed to tethered sig-
nals that control stem-cell function and expansion by self-renewal
division.

MUSCLE PATHOPHYSIOLOGY
MUSCLE FIBROSIS
Following injury, a cascade of events starts to repair damaged
tissues. First of all, inflammatory cells phagocyte the cell debris
and secrete growth factors and cytokines that allow the prolif-
eration of other cell types in the site of injury, as described in
details below (see section Inflammation and repair mechanisms
in skeletal muscle). Then, SCs start to proliferate and differ-
entiate, a process which ultimately ends with the formation of
new muscle fibers. Unfortunately, in muscular pathologies, the
deficiency of structural proteins leads to continuous cycles of
myofiber degeneration and regeneration, so that the damaged
muscle fibers cannot be replaced by new fibers, causing myofiber
degeneration, inflammation and fibrosis (Grounds et al., 2005;
Serrano and Munoz-Canoves, 2010). In particular, the inflamma-
tory cells eliminate the basement membranes of necrotic fibers
that cannot be used to build the new fibers: this condition leads
to abnormal muscle fiber arrangement in dystrophic muscles.
Due to the chronic persistence of inflammatory cells, dystrophic
muscles are characterized by higher concentration of growth fac-
tors and cytokines, that induce the massive proliferation and
activation of fibroblasts. Their activity causes the accumulation
of fibrotic elements that are responsible for uncontrolled events
such as remodeling of the basal lamina and formation of col-
lagenous tissues (Serrano and Munoz-Canoves, 2010). Normally,
the events of muscle regeneration are tightly controlled by the
interplay among different molecules. Insulin-like growth factor
(IGF) is a key element in controlling tissue activity: it binds to
cell surface receptors and to IGF-binding proteins, exerting a
fundamental role in modulating myofibroblast and SCs prolifera-
tion. The matrix metallo-proteases (MMPs) have the function to
degrade the ECM and to recruit inflammatory and myogenic cells
in the site of injury while Sca-1 inhibits myoblast proliferation,
preserving the progenitor cells (Serrano and Munoz-Canoves,
2010). Transforming growth factor (TGF)-β is highly expressed
in regenerating muscle and it is a key regulator of fibrosis’
development (Zhou et al., 2006); often, it functions in synergy
with connective tissue growth factor (CTGF), inducing fibrosis

and promoting dedifferentiation of myoblasts (Vial et al., 2008).
CTGF binds to IGF-binding proteins and it is associated with
fibrotic remodeling.

In the case of MDs, especially in DMD, membranes lack-
ing the members of the dystroglycan complex are vulnerable to
mechanical and oxidative stress. Due to myofiber breakdown,
myofibroblasts remained activated: these phenomena are asso-
ciated with altered production of ECM components and the
accumulation of these molecules that lead to muscle cell necrosis
and fibrosis (Klingler et al., 2012). Fibrosis development was con-
sidered a progressive and irreversible pathologic phenomenon,
but recent advances in knowledge of its development steps render
this pathological feature amenable for clinical treatments. A bet-
ter understanding of the factors that participate in fibrosis may
help identify pharmacological targets capable of attenuating the
progression of untreatable muscular diseases.

MUSCULAR HYPERTROPHY AND ATROPHY: TWO OPPOSITES OF THE
SAME PHENOMENON
Skeletal muscle is the most abundant tissue in mammals and
muscle remodeling occurs throughout the entire life. A fine regu-
lated pathway determines the balance between new protein accu-
mulation and degradation of pre-existing ones (Sandri, 2008).
Different stimuli, originated by functional overload or aging, can
modulate this pathway causing a shift in this balance toward one
side. Besides of physiological conditions, this pathway is influ-
enced by lots of inherited and acquired disorders such as MDs,
cancer cachexia and commons drugs as glucocorticoids (Cassano
et al., 2009). Among signals that can produce hypertrophy, IGF1
pathway is one of the best characterized. IGF-1Ec is expressed in
response to mechanical stimuli and cellular damage and promotes
both proliferation and differentiation of satellite cells, while in
adult myofibers it increases DNA content per myofiber and can
influence myosin phenotype (Bamman et al., 2001). The bind-
ing of IGF-1 to its receptor IGF1R, triggers the activation of
several kinases including phosphatidylinositol-3-kinase (PI3K),
the consequent production of PIP3 recruits protein kinase B
(AKT). AKT plays a central role in muscle remodeling: it acts
by either activating positive signal (mTor) or blocking negative
pathway (Myostatin, apoptotic cascade, GSK3β). A trophy results
from degradation of both myofiber number and protein contents,
through calpain system, lysosomal and the ubiquitin-proteasoma
pathways (Voisin et al., 1996; Lecker et al., 1999). Two genes were
found up-regulated in atrophy models: muscle-specific ubiqui-
tin ligase atrogin-1 (MAFbx) and muscle RING-finger protein-1
(MURF1); further studies showed that they were ubiquitin-ligase
expressed only in skeletal and cardiac muscle (Bodine et al.,
2001). Another important factor is nuclear factor kappa-light-
chain-enhancer of activated B cells (NF-kB) which is involved in
inflammatory pathway leading to TNF-α and INF-γ expression
and it can induce the degradation of MyoD. Moreover, knock
out of myostatin, a member of the TGF-β family, can lead to
an enormous enlargement of skeletal muscle mass (Mcpherron
et al., 1997). Myostatin is in fact the most important negative
regulatory element of fiber synthesis and it is strictly regulated
during myogenesis thanks to the presence of E-boxes, MEF2 and
GRE binding sites (Spiller et al., 2002). In particular, myostatin
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is synthesized as a precursor, that is processed by furin proteases
to generate a dimer composed by an N-terminal pro-peptide,
bound to biologically active C-terminal fragment. When the
pro-peptide is cleaved, myostatin is activated and interact with
several proteins, such as follistatin. Interestingly, mice without
the expression of this protein have a reduced body mass (Matzuk
et al., 1995) while follistatin forced expression leads to muscu-
lar hyper-growth (Nakatani et al., 2008). To test whether lack
of myostatin could ameliorate the symptoms of muscular dis-
eases, Whittemore et al. demonstrated that in wild type mice the
blocking of the protein increased muscle mass (Whittemore et al.,
2003) while Bogdanovich et al. showed that this condition in mdx
mice improved myofibers size and muscular force (Bogdanovich
et al., 2002). According to these studies, Wagner et al. described
a phase I/II clinical trial of MYO-029 (a neutralizing antibody
to myostatin) in dystrophic patients. This trial did not demon-
strate any improvement in muscle strength, but no side effects
were assessed, except for hypersensitivity skin reactions. This trial
was originally designed to test safety so that a bigger cohort of
patient or different choice of samples are required to detect arrest
of disease progression or minimal improvements in strength.
Furthermore, results could be explained by the fact that the
patients were selected at late stage of the disease when the regen-
erative response is exhausted and the myostatin substrate was
eliminated (Wagner et al., 2008). Similar studies were conducted
also with animal models of other muscular diseases but oppo-
site results were obtained (Li et al., 2005; Ohsawa et al., 2006).
Further works demonstrated that myostatin not only downreg-
ulates the expression of several myogenic genes (Amthor et al.,
2002; Mcfarlane et al., 2008) but efficiently inhibits the prolif-
eration of muscle progenitor cells (Thomas et al., 2000). The
complexity of mechanism involving muscle growth and regenera-
tion is further increased by the discovery of microRNA. Recently,
skeletal muscle specific microRNAs able to interact with master
regulatory genes in muscle development were found (O’rourke
et al., 2007). As an example, miRNA206 can influence satellite
cells behavior by modulating Pax3 and MET transforming gene
(cMet) (Clop et al., 2006; Mccarthy et al., 2007).

INFLAMMATION AND REPAIR MECHANISMS IN SKELETAL MUSCLE
Injuries affecting skeletal muscle determine the activation of
the immune system and activate a cascade of events that are
required to clean cellular debris and to allow the replacement of
lost fibers with new ones. Furthermore, immune cells promote
regeneration through the release of growth factors (Brunelli and
Rovere-Querini, 2008). After acute muscular damage neutrophils
rapidly appear, followed by phagocytic macrophages which con-
tinue to increase in numbers until about 2 days post-injury. A
second population of macrophages develops at about 4 days post-
injury and it is characterized by a non-phagocytic phenotype
(Tidball and Villalta, 2010). In parallel, myogenic precursors start
to proliferate and differentiate by recapitulating developmental
steps. Firstly, response to injury is mediated by Th1 cytokines
(INFγ and TNFα) which trigger the activation of classic M1 pro-
inflammatory macrophages (Gordon and Taylor, 2005). At a sec-
ond stage, a population of M2 anti-inflammatory macrophages
is predominant thanks to Th2 cytokines stimulation, such as

interleukin (IL)−4, −10, −13. This phenotype-switch is required
to stop inflammation and to permit the differentiation and fusion
of satellite cells. This process is strictly regulated and several sig-
nals are known to be involved (Fadok et al., 2001; Arnold et al.,
2007) but further studies are needed to better understand each
phase. In MDs, skeletal muscles are subjected to chronic injuries
that maintain a continue activation of the immune system. In
fact, inflammatory infiltrates consisting of both macrophages and
lymphocytes are present and elevated serum cytokines levels are
detectable. Furthermore, a partial adaptive response to treatment
with corticosteroid supports a role for the immune system in
exacerbating muscular wasting (Backman and Henriksson, 1995).
Progressive MDs like DMD are characterized by an initial phase
that recapitulates the event observed in acute injury and repair.
A second phase is dominated by chronic inflammation which
triggers fibrosis deposition and atrophy. In fact in adult mdx
mice a transition from M2a macrophages to M2c macrophages
occurs in an attempt to control M1 cytolitic macrophages and
to promote muscle regeneration through the release of IL-10 and
IL-4 (Gordon, 2003; Horsley et al., 2003). M2 macrophages may
also partecipate in activation of cytotoxic T-cells (which promote
muscle damage through perforin-mediate process) and promote
muscle fibrosis through arginase metabolism of arginine (Villalta
et al., 2009; Tidball and Villalta, 2010).

The importance of modulating immune system cells was
proven in different animal model of MDs, for example deple-
tion of macrophages from mdx mice resulted in reduced mus-
cle membrane lysis (Petrof et al., 1993). Furthermore, non-
steroidal anti-inflammatory drug (NSAID) treatment was effec-
tive both in ameliorating muscle morphology and reducing
macrophage infiltration (Serra et al., 2012) and anti-oxidant
drugs (N-acetylcysteine) in mdx mice reduced necrosis by regu-
lating TNF-α level (De Senzi Moraes Pinto et al., 2013). Recently
an important role for acquired immunity in DMD pathogenesis
has been pointed out by (Mendell et al., 1995; Hemmati et al.,
2003; Flanigan et al., 2013) opening new perspectives in treatment
of MDs.

CONCLUSIONS
Skeletal muscle emerged as a promising tissue source for stem
and progenitor cells that can be used in a variety of therapeu-
tic applications. Skeletal muscle constitutes around one third of
body weight in a healthy subjects (Gates et al., 2008). Muscle
has an high capacity to repair itself after injury; this character-
istic suggests that it serves as a reservoir for cells that partic-
ipate in tissue regeneration processes (Usas and Huard, 2007).
Several works described the ability of different muscle-derived
stem cell populations to differentiate into multiple cell types,
including osteoblasts, adipocytes, chondrocytes, myoblasts and
endothelial cells. In addition, these cells showed regenerative,
anti-inflammatory and anti-apoptotic properties. Each of these
cell types is characterized primarily on the basis of their in
vitro characteristics after they have been isolated from the body.
In vivo they exhibited the capacity to migrate through differ-
ent tissues where they are exposed to different extracellular and
environmental signals. While rudimentary models were devel-
oped to describe the in vivo relationship among these stem cell
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populations, substantial additional studies are needed to refine
and verify these relationships.

New approaches using organisms genetically modified and
transgenic mouse models proposed the importance of the
microenvironment—like the niche and the extrinsic factors—to
be a key component in stem cell regulation. Particularly, sig-
nificant progress has been made in understanding how satellite
cells can act as tissue-specific adult stem cells in skeletal mus-
cle. In the same time, many studies investigated the satellite cell
properties in term of efficacy after in vivo transplantation using
novel approaches such as non-invasive bioluminescence imaging.
These tools provided information for assessing not only satellite
cell function but, in general, stem cell function. Investigations on
the molecular nature of stem cell niche signals on in vivo models
and short-term cultures of isolated myofibers, are now on-going.
Bioengineering offers significant tools for the development of
strategies to mimic biochemical and biophysical features of the
in vivo niche microenvironment (Lutolf et al., 2009b). We hope
that the synthesis of biomaterials, micro-fabrication technology
and stem cell biology will provide systems potentially innovative
to better understand how stem cell fate is controlled. The analysis
of the niche and the dynamic responses of stem cells to well-
defined artificial microenvironments, might give us the possibility
to understand the role of specific niche components and niche
architecture in regulating fundamental cellular mechanisms such
as cellular division, self-renewal, and differentiation in vitro and
in vivo. Development of biomaterials able to re-create an in vitro
SCs niche could give rise to novel insights into understanding the
molecular cues, critical for the in vitro maintenance and expan-
sion of muscle stem cells. Above all, these in vitro systems can
well lead to the generation of adequate numbers of stem cells and
the ability to control their differentiation in order to maximize
their utility, not only as cell-based therapeutics for tissue regener-
ation and replacement, but also as the control of inflammation
after muscle damage (Cosgrove et al., 2009). In conclusion, all
these considerations will be important not only to better char-
acterize satellite cell biology and therapeutic approaches to treat
muscle diseases and aging-related muscle wasting, but also to
give necessary information for the study of adult tissue-specific
stem cells.
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