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Nearly all classes of coding and non-coding RNA undergo post-transcriptional
modification, as more than 150 distinct modification types have been reported. Since
RNA modifications were first described over 50 years ago, our understanding of their
functional relevance in cellular control mechanisms and phenotypes has truly progressed
only in the last 15 years due to advancements in detection and experimental techniques.
Specifically, the phenomenon of RNA methylation in the context of ncRNA has emerged
as a novel process in the arena of epitranscriptomics. Methylated ncRNA molecules
may indeed contribute to a potentially vast functional panorama, from regulation of post-
transcriptional gene expression to adaptive cellular responses. Recent discoveries have
uncovered novel dynamic mechanisms and new layers of complexity, paving the way
to a greater understanding of the role of such phenomena within the broader molecular
cellular context of human disease.
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INTRODUCTION

Up until recently, the central dogma (Crick, 1970) had supported primary focus on the molecular
contributions of DNA and protein to human disease. The inability to detect and evaluate RNA with
the necessary molecular resolution and precision has limited our understanding of the spectrum of
RNA modifications that may drive disease.

Following the discovery of pseudouridine (Davis and Allen, 1957), nine additional modifications
were identified in 1965 (Holley et al., 1965b). Finally, modification events in nucleotides of mRNA
molecules were also uncovered in the 1970s (Desrosiers et al., 1974; Adams and Cory, 1975; Dubin
and Taylor, 1975; Perry et al., 1975). Gradually, the “static” interpretation of the cellular role of
RNA started to be challenged (Gilbert, 1986). With the discovery of novel species of non-coding
RNA (ncRNA) and their mechanisms further investigated (Lee et al., 1993; Fire et al., 1998; Eddy,
2001), RNA biology came to the forefront (Todd and Karbstein, 2007). Along with advancements
in experimental and transcriptomics techniques, which enabled a more detailed investigation of
the translational control of cellular responses and phenotypes (Chan et al., 2010), interest in RNA
modifications also grew, resulting in significant progress in the last 15 years. Recent discoveries,
such as the first and second mRNA m6A demethylases FTO (Jia et al., 2011) and ALKBH5 (Zheng
et al., 2013), as well as the identification of the METTL3/METTL14 methyltransferase complex (Liu
et al., 2014), have triggered renewed interest in RNA modifications.

To date, a total of 163 post-transcriptional RNA modifications have been uncovered across
all living organisms (Boccaletto et al., 2017) and are among the most evolutionarily conserved
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properties of RNAs (Li and Mason, 2014), revealing a
“novel,” complex layer of biological regulation known as the
epitranscriptome (Saletore et al., 2012). The functional diversity
provided by these phenomena can indeed affect RNA structure,
play a fundamental role in their interactions with other molecules
and in regulatory networks, such as metabolic changes (Lewis
et al., 2017), thus affecting every aspect of cellular physiology.

RNA modifications have been categorized as reversible
and non-reversible. Among non-reversible modifications, we
find well-studied phenomena such as RNA editing and
pseudouridylation (Meier, 2011). Nonetheless, recent focus has
shifted to reversible modifications, such as cytosine and adenosine
methylations (Klungland et al., 2016). However, this classic
distinction is being reassessed, in light of the discovery of
“erasers” such as FTO and ALKBH5.

The importance of modifications in novel classes of ncRNA
transcripts is also becoming relevant. Well-characterized
chemical modifications in traditional classes of RNAs such as
transfer (tRNAs) and ribosomal (rRNA) RNA, novel detection
technologies and deep sequencing analysis (Veneziano et al.,
2015, 2016), have paved the way for a fuller assessment of these
molecular events also in regulatory ncRNAs, such as microRNA
(Alarcon et al., 2015b) and long ncRNAs (Patil et al., 2016).

RNA METHYLATION

RNA methylation is a reversible, post-transcriptional RNA
modification, affecting several biological processes, such as RNA
stability and mRNA translation (Ji and Chen, 2012; Wang
et al., 2014, 2015; Dev et al., 2017), through a variety of
RNA methyltransferases, often using distinct catalytic strategies.
Furthermore, recent studies have shown how the deregulation
of proteins implicated in these modification phenomena is
associated to disease (Supplementary Table 1A). In this section,
we will review the main types and functions of methylation in
ncRNAs (Figure 1).

N6-Methyladenosine (m6A)
N6-methyladenosine (m6A) is the most abundant internal
modification detected to date in mRNA (Roundtree et al., 2017).
Discovered in the 1970s, its function has been thoroughly
investigated only in the last decade (Rottman et al., 1974;
Wang and He, 2014). This was driven by the recent discovery
and characterization of evolutionarily conserved proteins able
to encode (writers), decode (readers), and remove (erasers)
methylation (Lewis et al., 2017). Since 1994, different writers
have been identified, including METTL3 and METTL14,
proven to regulate the circadian clock, differentiation of
embryonic stem cells and primary miRNA processing
(Dominissini et al., 2012; Wang et al., 2014; Alarcon et al.,
2015b). These enzymes work in complex with proteins
essential to the correct processing of RNA methylation
(Schwartz et al., 2014): Wilms tumor 1-associated protein
(WTAP), RNA-binding motif protein 15 (RBM15) and Protein
virilizer homolog (KIAA1429). Additionally, the discovery of
ALKBH5 and FTO has revealed the dynamic dimension of

this modification phenomenon for cellular metabolism (Jia
et al., 2011; Zheng et al., 2013). Recently, the YTH domain
family proteins (YTHDF1–3) and YTH domain-containing
protein 1 (YTHDC1) have been characterized as m6A readers,
providing the first functional evidence of m6A (Wang et al.,
2014).

The methyl group in m6A does not affect the Watson–
Crick base-pairing (Liu and Jia, 2014), is highly conserved
between human and mice and located in 5′ UTRs, 3′ UTRs,
around stop codons, long internal and alternatively spliced
exons (Dominissini et al., 2016; Li et al., 2016a; Lewis et al.,
2017). It is also found in tRNA, rRNA, and small nuclear
RNA (snRNA) as well as several long non-coding RNA,
such as Xist (Dominissini et al., 2012). While not completely
understood, m6A has been shown to play critical roles in
the biological regulation of mRNA and ncRNA (Liu and Jia,
2014), particularly splicing, stability, turnover, nuclear export,
and mediation of cap-independent translation (Meyer et al.,
2015). Recently, Sun et al. (2016) have integrated all m6A
sequencing data into a novel database, RMBase, identifying
∼200,000 N6-Methyladenosines (m6A) sites in human and
mouse. Finally, Linder et al. (2015) mapped m6A and m6Am at
single-nucleotide resolution and identified small nucleolar RNAs
(snoRNAs) as a new class of m6A-containing non-coding RNAs
(ncRNAs).

N1-Methyladenosine (m1A)
Although the first studies on N1-methyladenosine (m1A) in total
RNA date back more than 50 years (Dunn, 1961), only one
study in the last decade has shed substantial light on function.
m1A is a dynamic methylation event at the N1 position of
adenosine, comprising the addition of a methyl group and a
positive charge in the base, specifically in the Watson–Crick
interface, obviously altering RNA-protein interaction and RNA
secondary structures through electrostatic effects (Roundtree
et al., 2017). m1A is abundant in tRNA and rRNA (El Yacoubi
et al., 2012; Sharma et al., 2013) exercising major influence on
structure and function (Anderson, 2005). Two groups recently
found a strong conservation of the m1A pattern in several
human and murine cell lines as well as in yeast, affirming
the important role of this modification along the evolutionary
chain. In particular, m1A has been shown to have a role in
mRNA translation, via unique localization near the translation
start site and first splice site (Dominissini et al., 2016; Li
et al., 2016a; Roundtree et al., 2017) and by facilitating non-
canonical binding of the exon–exon junction complex (Cenik
et al., 2017).

2′-O-Methylation (2′OMe/Nm)
2′OMe is a very common RNA modification in abundant RNAs
(rRNA, snRNA, tRNA) (Schibler and Perry, 1977; Borges and
Martienssen, 2015; Roundtree et al., 2017) as well as in microRNA
and it is fundamental for the biogenesis and function of these
molecules (Ji and Chen, 2012). It was initially detected at the
second and third nucleotide in many mRNA (Schibler and
Perry, 1977). Further, it was observed that in rRNA, the loss
of an individual modification had no apparent effect, while the
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FIGURE 1 | A schematic representation of the principal methylation modifications in eukaryotic RNA.

deletion of 2–3 modifications in A and P site regions impairs
translation and strongly delays pre-rRNA processing (Liang et al.,
2009).

2′-O-methylation occurs in 3′ termini and is found to be
important in plant biogenesis of small RNA, inter alia miRNA
and siRNAs (Yu et al., 2005). Furthermore 2′-O-methylation
plays an important role in protecting against 3′–5′ degradation
and 3′ uridylation of some small RNAs as piRNAs in animals and
Ago2-associated small RNAs in Drosophila (Ji and Chen, 2012).
It has been found to be catalyzed by HUA-ENHANCER-1/piwi-
methyltransferase (HEN1/piMET) enzyme.

5-Methylcytosine (m5C)
5-Methylcytosine (m5C) is an epitranscriptomic modification
that involves the 5th carbon atom of cytosine as a target for
methylation in poly(A) RNA, rRNA, tRNA, snRNA, and lncRNA
(Amort et al., 2013, 2017; Lewis et al., 2017). While some
of the proteins regulating m5C in different RNA have been
identified, the biological function remains unclear (Nachtergaele
and He, 2017). NOL1/NOP2/Sun domain family member 2
(NSUN2) together with DNA methyltransferase-like protein
2 (DNMT2) have been shown to be the writers of m5C,
although to date no erasers or readers have been discovered
(Lewis et al., 2017), though recently, investigators identified
ALYREF as a potential reader of m5C (Yang et al., 2017).
Several roles have been suggested for m5C, from the stabilizing
of tRNA secondary structure and prevention of degradation
or cleavage, to playing a role in translation when in rRNA
and increasing the stability of mRNA transcripts (Esteller and
Pandolfi, 2017).

METHODOLOGIES FOR THE
DETECTION AND PROFILING OF RNA
METHYLATION

The recent advent of more sensitive and robust sequencing
technologies (Li et al., 2016b), coupled with novel biochemical
techniques (Song and Yi, 2017), has greatly improved the
characterization and understanding of RNA modifications (Frye
et al., 2016). This has allowed us to address challenges
such as limitations with reverse transcription (RT) signatures
and low transcript expression, as is the case with mRNA
and lncRNA. Major advances in high-throughput sequencing
methods (Helm and Motorin, 2017) have indeed allowed for
the systematic identification of RNA modifications at single-
nucleotide resolution, effectively distinguishing their distribution
patterns in a transcriptome-wide manner.

Traditional biophysical targeted approaches for the detection
and quantification of RNA modifications have further matured
and provided the foundation for nearly all current high-
throughput techniques (Vandivier and Gregory, 2017). Earlier
methodologies relied on chromatography applied to direct
sequencing, providing the very first evidence of modifications
in RNA (Desrosiers et al., 1974). As these techniques only
allowed detection of global patterns of modification, they were
soon improved with the application of electrophoresis (Gupta
and Randerath, 1979; Sprinzl and Vassilenko, 2005) and mass
spectrometry (McCloskey and Nishimura, 1977; Kowalak et al.,
1993) attaining for the first time base resolution. Recently
other strategies, such as high-resolution melting (Golovina
et al., 2014), have been implemented to narrow resolution.
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Nonetheless, an important strategy on which several high-
throughput techniques were later developed, is based on the
detection of variation in RT signatures (Brownlee and Cartwright,
1977; Motorin et al., 2007). As RNA modifications may
interfere with the RT enzyme, inducing its arrest and/or the
misincorporation of non-complementary deoxyribonucleoside
triphosphates (dNTPs), this provided the foundation to several
current methodologies exclusively RT-based as well as leveraging
on chemical treatment of the RNA pool or the use of
antibodies for the enrichment of modified RNA populations.
Such is the case of techniques employing methyl RIP-seq
(MeRIP-seq) (Mishima et al., 2015; Dominissini et al., 2016;
Li et al., 2016a) coupled with various crosslinking techniques
to improve the resolution window. For instance, in m1A-ID-
seq, employ demethylases to generate a m1A-depleted control
library for validation (Li et al., 2016a). In alternative techniques,
such as m1A-seq, RNA pools undergo Dimroth rearrangement
under alkaline conditions, converting m1A residues to m6A,
thus producing different RT signatures that can validate the
MeRIP data (Dominissini et al., 2016). Indeed, certain RNA
modifications, such as m6A and m5C, are RT-silent. Despite
simple antibody pulldown methods have satisfactorily mapped
m6A sites (Dominissini et al., 2012; Meyer et al., 2012) and
antibodies highly specific to methylated RNA bases have also
been employed (Linder et al., 2015; Li et al., 2016a), most
antibody-based methods do not provide nucleotide resolution.
For this reason, more recent global approaches have paired
antibody binding to covalent crosslinking at specific RNA sites,
resulting in RT signatures able to improve resolution (Linder
et al., 2015). For instance, after transcripts fragmentation in
MeRIP protocols, antibodies forming non-covalent complexes
with modified residues are further cross-linked to reactive
residues nearby via UV light at distinct frequencies according to
the specific techniques (i.e., miCLIP and PA-m6A-seq) for m6A
detection (Chen K. et al., 2015). Such induced covalent crosslinks
are then the sites at which RT stalls, yielding approximate
or precise single-nucleotide resolution. Recently, an innovative
detection technique has precisely elucidated m6A distributions
across unknown regions via an antibody-independent strategy
able to produce abortive cDNA signatures at m6A sites,
greatly increasing resolution (Hong et al., 2018). In the case
of m5C, bisulfite sequencing has yielded satisfactory results,
although posing a few challenges. As unmodified cytosines
are converted to inosines as a result of bisulfite treatment,
m5C residues remain unaffected, providing a signature in
cDNA. While this has been effective for highly abundant
ncRNA populations (i.e., tRNA and rRNA) (Militello et al.,
2014), degradation issues (due to higher pH conditions during
treatment) and read mapping challenges have yielded poor
results for low-abundance RNA species (Squires et al., 2012;
Hussain et al., 2013; Jeltsch et al., 2017). An alternative
approach termed “suicide enzyme trap” has been employed
to characterize substrates of m5C-methyltransferases (m5C -
MTases) NSUN2 and NSUN4 (Metodiev et al., 2014; Van Haute
et al., 2016). By mutating m5C-MTases to form irreversible
covalent bonds with target residues, the resulting stable enzyme–
RNA complexes are suitable for immunoprecipitation and

mapping. Such is also the case of the AZA-seq methodology
formalized by Khoddami and Cairns (2014) in which “suicide
inhibitor” nucleotide analog 5-azacytidine is incorporated into
cellular RNA and “traps” m5C-MTases for pulldown and
sequencing.

Finally, 2′OMe too can be detected at base resolution via
differential RT profiles, with or without chemical treatment.
The RiboMeth-seq methodology (Birkedal et al., 2015; Krogh
et al., 2016; Marchand et al., 2016, 2017) for instance, leverages
on the ability of 2′OMe to preserve adjacent phosphodiester
bonds from alkaline cleavage and produces a high-throughput
coverage profile of under-represented positions at the extremes of
reads. Nonetheless, chemical treatment is not strictly necessary.
Indeed, earlier methods relied on the natural ability of
2′OMe to interrupt RT at low dNTP concentrations (Maden
et al., 1995). Such principle was recently employed in the
development of a high-throughput protocol proven to be
more sensitive and specific than methods based on alkaline
hydrolysis. These methodologies have specifically been assessed
on 2′OMe modifications occurring in ribosomal and transfer
RNA, while not as efficiently identifying such phenomena in
low abundance RNA molecules such as mRNA and several
ncRNAs. To address such deficiency, the recently published Nm-
seq protocol leverages on the ability of 2′OMe to confer resistance
to oxidation by sodium periodate to the ribose backbone of
RNA molecules, thus allowing the enrichment and mapping of
reads originating from RNA fragments whose internal 2′OMe
have been exposed at the 3′ end via the elimination of non-
modified nucleotides. Such technique has provided a sensitive
and precise 2′OMe detection method for rare RNA classes (Dai
et al., 2017).

Due to the time-consuming and labor-intensive nature of
such techniques, many transcriptomes and potentially novel
modifications remain unexplored. For this reason, computational
methods have also been developed for the accurate evaluation
of modifications events (Zhang et al., 2015; Liu et al., 2017).
Moreover, given the error-prone nature of high-throughput
techniques, it is strongly suggested that modification sites
predicted from big data not be considered as candidates if
not validated with at least one additional methodology (Helm
and Motorin, 2017). All methodologies described above are
summarized in Supplementary Table 1B.

ncRNA SPECIES AND RNA
METHYLATION: FUNCTIONAL
ASSOCIATIONS

tRNA
tRNA methylations were first identified concurrently with the
initial sequencing of the clover-shaped molecule (Holley et al.,
1965a). Initially, it was suggested that such phenomena was
probably the result of a network of diverse enzymes (Hurwitz
et al., 1964). It is now clear that tRNA methylation is highly
conserved and that tRNAs are the RNA class containing the
majority of modified nucleosides among all discovered RNA
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species. With a total of more than 90 modified nucleosides
identified (MODOMICS) (Boccaletto et al., 2017), all tRNA
molecules from the three domains of life contain 13 methylated
nucleosides out of 18 shared (Marck and Grosjean, 2002;
Jackman and Alfonzo, 2013). Originally, it was thought that
tRNA modifications in general were a straightforward, static
process occurring on specific sites of distinct tRNA species.
Given the recent characterization of major tRNA modification
pathways, along with their associated tRNA methyltransferase
enzyme families (Hori, 2014), a relevant diversity has emerged
among living organisms. The presence of catalytic interactions,
distinct RNA substrate recognition mechanisms and diverse
chemical processes, all suggest a complex functional panorama.
Generally, four functional categories can be attributed to
tRNA methylation phenomena: preservation of secondary and
tertiary structures (Helm and Attardi, 2004; Voigts-Hoffmann
et al., 2007); thermodynamic stability (Yokoyama et al., 1987);
protection from degradation and rapid tRNA decay (Kadaba
et al., 2004; Alexandrov et al., 2006; Guy et al., 2014); translation
control and fidelity (Anderson et al., 1998, 2000; Chan et al.,
2010, 2012). It is thus evident that tRNA methylation contributes
to RNA quality control systems, cellular localization (Kaneko
et al., 2003), response to stress stimuli (Schaefer et al., 2010;
Becker et al., 2012; Muller et al., 2013), proliferation and many
other processes (Phizicky and Hopper, 2015). Most importantly,
disruption of energy and amino acid metabolism pathways (i.e.,
depletion of methionine, necessary for methylation) can damage
downstream the RNA modification system, resulting in partially
modified tRNAs and thus translational errors (explaining why
living organisms use the methionine codon as the initiation
codon for protein synthesis) (Hori, 2014). Recently, researchers
discovered the first tRNA demethylase, ALKBH1, as a novel
post-transcriptional gene expression regulation mechanism (Liu
et al., 2016). Finally, tRNA methylations and their enzymes may
cooperate collectively in functional networks in order to support
adaptive cellular responses (Chan et al., 2010; Tomikawa et al.,
2010; Ishida et al., 2011).

miRNAs
From transcription to decay, the multi-level process of the
biogenesis of miRNAs is regulated by two main actors: processing
enzymes such as DROSHA, DICER, and AGO proteins (Ha and
Kim, 2014); and post-transcriptional modifications. Established
RNA modifications, such as RNA editing events, have been shown
to dynamically alter the sequence and/or the structure of miRNAs
(Nigita et al., 2015; Nishikura, 2016) and consequently, in some
cases, their function (Kawahara et al., 2007; Nigita et al., 2016).
Recently, this has been also investigated in the context of miRNAs
and RNA methylation.

2′OMe has been detected at the 3′-end of miRNAs (only in
plants) and found to confer stability and protection from 3′-
uridylation and degradation (Backes et al., 2012; Borges and
Martienssen, 2015). m6A within 3′ UTRs has been generally
associated with the presence of miRNA binding sites; roughly
2/3 of mRNAs containing an m6A site within their 3′ UTR
also have at least one microRNA binding site (Meyer et al.,
2012). In another study, Alarcon et al. (2015b) described

how miRNAs can undergo N6-adenosine methylation (m6A)
as a result of the intervention of METTL3 during pri-miRNA
processing. The same authors also showed that m6A marks in pri-
miRNAs allow for the RNA-binding protein DGCR8 to identify
its specific substrates, promoting the beginning of miRNA
biogenesis. Alarcon et al. (2015a) have further hypothesized
that the RNA-binding protein HNRNPA2B1 could function as
nuclear reader of the m6A mark, binding to m6A marks in pri-
miRNAs, thus promoting pri-miRNA processing. Additionally,
the effects of RNA demethylation on miRNA expression have
also been investigated. Berulava et al. (2015) reported significant
miRNA expression dysregulation as a result of knocking down
m6A demethylase FTO, providing indirect evidence of co-
transcriptional processing in the methylation of mRNAs and
miRNAs. Finally, Chen T. et al. (2015) discovered that miRNAs
positively regulate m6A installment on mRNAs via a sequence
pairing mechanism. Methylation events in miRNAs add a new
layer of complexity in the regulation of post-transcriptional gene
expression and warrant future studies in order to fully elucidate
the roles and functions of modified miRNAs.

Long ncRNA
Although the majority of focus has been recently devoted to
modifications in mRNA, 1000s of lncRNA transcripts have
been detected containing a substantial number of modifications
(Shafik et al., 2016). Evidence associating methylation with the
most established lncRNA transcripts are just starting to be
recognized. MALAT1 has been shown to bind with the m6A
writer METTL16 at its 3′-triple-helical RNA stability element
(Brown et al., 2016) specifically in its A-rich portion, after it was
previously proven that MALAT1 can carry m6A (Liu et al., 2013).
The presence of m6A has been further shown to destabilize the
hairpin stems in the transcript, making them more flexible and
solvent-accessible (Zhou et al., 2016) as well as more accessible
for protein binding (Liu et al., 2015). Several putative m5C sites
have also been detected in MALAT1 (Squires et al., 2012), but
no enzymes have been identified. lncRNA HOTAIR (Khoddami
and Cairns, 2013) possesses a specific m5C site which has been
verified with a 100% modification rate (Amort et al., 2013).
Finally, m6A events have been associated to XIST-mediated
transcriptional repression (Patil et al., 2016) while m5C sites
can prevent XIST-protein interactions, although it may not be
a conserved mechanism (Amort et al., 2013). More detailed
information can be found in Jacob et al. (2017).
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