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Abstract
In obesity, persistent low-grade inflammation is considered 

as a major contributor towards the progression to insulin 
resistance and type 2 diabetes while in lean subjects 
the immune environment is non-inflammatory. Massive 
adipose tissue (AT) infiltration by pro-inflammatory 
M1 macrophages and several T cell subsets as obesity 
develops leads to the accumulation - both in the AT and 
systemically - of numerous pro-inflammatory cytokines, 
including interleukin-1β (IL-1β), tumor necrosis factor 
a, IL-17 and IL-6 which are strongly associated with 
the progression of the obese phenotype towards the 
metabolic syndrome. At the same time, anti-inflammatory 
M2 macrophages and Th subsets producing the anti-
inflammatory cytokines IL-10, IL-5 and interferon-γ, 
including Th2 and T-reg cells are correlated to the 
maintenance of AT homeostasis in lean individuals. 
Here, we discuss the basic principles in the control of 
the interaction between the AT and infiltrating immune 
cells both in the lean and the obese condition with a 
special emphasis on the contribution of pro- and anti-
inflammatory cytokines to the establishment of the insulin-
resistant state. In this context, we will discuss the current 
knowledge about alterations in the levels on pro- and anti-
inflammatory cytokines in obesity, insulin resistance and 
type 2 diabetes mellitus, in humans and animal models. 
Finally, we also briefly survey the recent novel therapeutic 
strategies that attempt to alleviate or reverse insulin 
resistance and type 2 diabetes via  the administration of 
recombinant inhibitory antibodies directed towards some 
pro-inflammatory cytokines.
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Core tip: Low-grade inflammation of adipose tissue (AT) 
contributes to insulin resistance and type 2 diabetes in 
obese patients. On the contrary, in lean individuals, the 
immune environment of AT is non-inflammatory. In obesity, 
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AT is infiltrated by pro-inflammatory macrophages and T 
cells leading to the accumulation of interleukin-1β (IL-1β), 
tumor necrosis factor a, IL-17 and IL-6. On the contrary, 
M2 macrophages, Th2 and T-regs cells producing anti-
inflammatory IL-10, IL-5 and interferon-γ, are present in AT 
of lean individuals. Here, we discuss the interaction between 
AT and infiltrating immune cells in the lean vs the obese 
condition, with emphasis on the contribution of pro- and 
anti-inflammatory cytokines to the establishment of insulin 
resistance.
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INTRODUCTION
The steadily increasing incidence of obesity and asso­
ciated morbidities is recognized as a major public health 
problem, reaching epidemics proportions both in indu­
strialized and developing countries.

In obesity, adipose tissue (AT) depots are subjected 
to extensive hypertrophy, with expansion of the visceral 
AT compartments being a strong predictor of the develop­
ment of insulin resistance[1]. The AT of obese individuals 
is in a persistent condition of low-grade inflammation, 
which is dictated by the infiltration within the AT of 
several classes of pro-inflammatory immune cells[2], 
including monocytes, macrophages, natural killer cells, 
and lymphocytes, resulting in secretion of adipokines and 
proinflammatory cytokines by both adipocytes and the 
population of infiltrating immune cells[3]. Here, we discuss 
the multifaceted interplay existing between the AT and 
the immune system with an emphasis on the alterations 
occurring during the transition from the homeostatic 
state of adipose depots in the lean condition to the AT 
accumulation experienced throughout the development of 
obesity.

ANTI-INFLAMMATORY STATE OF 
THE AT: PEACEFUL TIMES DURING 
HOMEOSTASIS
The immune environment in the lean AT is predominantly 
non-inflammatory. In this tissue, eosinophils and innate 
lymphoid cells drive a bias towards a type 2 immune 
response, secreting cytokines such as interleukin-4 (IL-4), 
IL-5 and IL-13, which maintain AT macrophages in an anti-
inflammatory, M2-like state. However, this picture is not 
so simplified. Indeed, IL-10 and IL-33 are also secreted; 
invariant natural killer (NK)-T cells are involved, as well 
as newly identified populations of T and B regulatory cells 
(T-regs and B-regs), some of which appear to be exclusive 
of AT. Adipocytes are also active regulators of immune 

responses by means of their own secreted hormones. 
At the end, research has recently made an intense effort 
to fully comprehend the nature of the healthy AT, in 
pursuance of new pathways to successfully treat and win 
the battle against the expanding epidemic of obesity and 
type 2 diabetes mellitus (T2DM).

Despite a growing body of evidence linking inflam­
mation and metabolism, the cellular sources of inflam­
matory mediators in the AT were still unknown at the 
very beginning of 2000’s. Only in 2003, AT macrophages 
were pointed out as the culprits, increasing significantly 
in number and producing a range of inflammatory 
mediators during obesity[4,5]. In fact, Weisberg et al[4] 
estimated the percentage of macrophages ranging 
from 10% in lean AT to almost 50% in obese mice and 
humans. These infiltrated phagocytes augmented the 
inflammatory environment in the AT and were demon­
strated to be responsible for the increase in local and 
systemic insulin resistance and metabolic abnormalities 
associated with obesity[5,6]. It is well known that visceral 
adipose tissue (VAT) expansion present higher risk for 
the development of metabolic syndrome and insulin 
resistance than subcutaneous adipose tissue (SAT) 
growth[7]. Unsurprisingly, macrophage accumulation in 
obese VAT tissue is greater than in SAT, as are the levels 
of the cytokines/chemokines MCP-1, CCR2 and of CD8+ 
T lymphocytes: These molecules and T cell subsets are 
essentially pro-inflammatory mediators[8].

ROLE OF INFILTRATING MACROPHAGES 
IN LEAN AND OBESE AT
The functional relevance of macrophages and their 
phenotypic changes was established trough loss- and 
gain-of-function experiments[9,10]. Since the discovery of 
the increased infiltration of macrophages in the obese 
AT, the attention of researchers has been focused on the 
inflammatory type of macrophage easily visualized in the 
so-called “crown-like structures” (CLS) present around 
adipocytes and their contribution to metabolic disease. 
These recently recruited, inflammatory macrophages, 
were mostly of the “classically activated”, M1-type[11]. 
However, the role of macrophages in the homeostatic, 
lean AT, has been left mostly unexplored. In lean AT, 
macrophages seem to be the major population of immune 
cells, with most of them belonging to the “alternatively 
activated” class, often classified as the M2-type, with a 
ratio of M2:M1 reported to be approximately 4:1[12,13].

M2 macrophages are immunosuppressive cells with 
a high phagocytic capacity, capable to perform antigen 
presentation and having the ability to secrete extracellular 
matrix compounds, angiogenic and chemotactic factors, 
and anti-inflammatory cytokines. Therefore, they con­
tribute to the resolution of inflammation, tissue repair and 
remodelling[14]. Despite being adopted here, and within 
the literature at large, one must bear in mind that the 
M1/M2 dichotomy seems to be an oversimplification, as 
macrophages with intermediate or different phenotypes 
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may also be found in the AT[15]. Although a definitive 
standard set of markers for the identification of M2 cells 
is not available yet, a group of molecules often reported 
in the literature to be associated with this type of cell 
has been used, since adopting a single marker would 
be unrealistic[16]. Arginase-1 (Arg-1) and CD206 are the 
two most frequently cited markers in AT macrophages 
classified as M2 cells[13]. Arg-1 participates in amino acid 
metabolism, being strongly expressed in macrophages 
exposed to IL-4[16]. Arg-1 metabolizes arginine to ornithine 
and polyamines, thereby inhibiting the production of nitric 
oxide (NO)[17,18]. The mannose C-type 1 lectin receptor, 
CD206, is involved in pathogen recognition by the innate 
immune system[19]. Other regularly cited markers of M2 
macrophages are resistin-like β (Fizz1), CD301, Retnla, 
Dectin-1, MGL-1, peroxisome proliferator activated 
receptor (PPAR)γ and pSTAT6[16]. Also, several cytokines, 
mostly with immunosuppressive characteristics, produced 
by M2 cells, include IL-10, transforming growth factor  
β (TGF-β) and some chemokines (CCL17, 18, 22 and 
24)[16,20,21].

Most, if not all, of the evidence found so far points 
out that resident, M2 macrophages, are the primary 
cells responsible for the homeostatic, anti-inflammatory 
state in lean AT, ultimately avoiding local and systemic 
insulin resistance[13,22]. These cells are frequently found 
in the interstitial spaces between adipocytes in the 
lean AT. In obese AT, M2 cells can expand but not as 
much as the M1-type; some M2 cells are even localized 
in CLS, where their suggested role may involve the 
phagocytosis of dead adipocytes, angiogenesis and 
tissue remodeling[11,18]. Macrophages recruited into the 
tip of the gonadal AT promote vascular development 
during tissue outgrowth[23]. Other functions include a 
possible role in adipogenesis, suggested by the finding 
that lectin-binding CD68+ F4/80+ CD34+ macrophage-
like cells are present in the adipogenic aggregates in the 
developing fat pads of young mice[24]. M2 macrophages, 
expressing high levels of MGL-1 and IL-10, have been 
demonstrated to participate in iron metabolism and 
perhaps, iron homeostasis in AT, since up to 25% of the 
macrophages from lean AT have a twofold increase in 
iron content, making them, basically, ferromagnetic[25]. 
Finally, cold exposure can induce alternative activation 
in macrophages from white AT, promoting tyrosine hy­
droxylase expression and catecholamine production, 
factors required for browning of WAT, with expression of 
uncoupling protein 1 (UCP1) by adipocytes and induction 
of thermogenic metabolism[26].

MOLECULAR MEDIATORS INFLUENCING 
THE M1/M2 BALANCE
Because of their importance to insulin sensitivity and 
AT homeostasis, it is interesting to known about the 
mediators of M2 polarization in AT. Adipokines are sub
stances secreted locally by adipocytes. One of them, 
adiponectin, appears to work mainly via enhancing insulin 

sensitivity, particularly by impairing liver gluconeogenesis, 
increasing fatty acid oxidation and promoting glucose 
uptake[27]. Adiponectin can also drive M2 polarization in 
both human and mouse macrophages by increasing the 
expression of Arg-1, IL-10 and macrophage galactose 
N-acetyl-galactosamine specific lectin-1 (Mgl-1) mo
lecules[28], although its effect on already differentiated 
M1 macrophages is mostly pro-inflammatory[29]. Not­
withstanding, there is ample evidence for the role of 
adiponectin as an anti-inflammatory molecule. Adiponectin 
production is higher in the lean AT and inversely correlated 
with obesity and levels of inflammatory markers such as 
C-reactive protein and IL-6 and can make macrophages 
secrete more IL-10[29]. Recently, Shimizu et al[30] have 
found that adiponectin inhibits the production of high 
mobility group box 1 (HGMB1) proteins, an innate pro-
inflammatory, damage-associated molecular pattern 
(DAMP) molecule, in tumor necrosis factor (TNF)α 
stimulated 3T3 adipocytes[30]. Adiponectin decreases the 
expression of NF-κB, inflammatory factors on endothelial 
cells and diminish monocyte migration to tissues. Through 
its activated receptors AdipoR1 and AdipoR2, adiponectin 
can down-regulate TNFα and MCP-1 gene expression and 
upregulate interleukin-1 receptor antagonist (IL-1Ra), 
respectively[31].

Fatty acids are another class of molecules acting on 
macrophages to switch between the M1/M2 program. 
In general, saturated fatty acids fuel the development 
of M1 cells, while the unsaturated types aid the rise 
of alternatively activated phagocytes. For instance, 
supplementation of mice with dietary fish oils containing 
eicosapentaneoic acid (EPA) and docosahexaenoic acid 
(DHA) can reduce pro-inflammatory gene expression and 
increase anti-inflammatory gene activity and adiponectin 
expression[32]. Long chain omega-3 polyunsaturated fatty 
acids (PUFAs) may induce M2 polarization associated 
with down-regulation of pro-inflammatory mediators in 
inflamed AT from obese mice[33]. In addition, omega-3 
PUFAs can be metabolized into bioactive molecules: 
Resolvins, protectins and maresins. Titos et al[33] 
have also shown that resolvin D1 can decrease IFNγ 
production, while increasing the expression of Arg-1 in 
macrophages from AT[33]. Incubation of macrophages 
in culture with the lipid mediator maresin R1 (MaR1) 
diminishes ROS and pro-inflammatory cytokine [IL-1, 
TNFa, IL-6, interferon-γ (IFNγ)] production and induces 
upregulation of the type 1 mannose receptor mRNA 
expression, a M2 marker[34]. The role of PUFAs as bene
ficial nutrients or therapeutic agents is being actively 
investigated in the prevention/treatment of obesity, 
T2DM and several inflammation-related diseases and is 
discussed elsewhere[32].

IL-4 AND IL-13: KEY CYTOKINES IN THE 
CONTROL OF M2 POLARIZATION
The differentiation and survival of M2 cells are dependent 
upon exposure to IL-4 and IL-13[10]. An important 
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question arises, particularly on the context of lean AT 
surroundings: Where these two cytokines come from? 
Conditioned medium from 3T3 L1 adipocytes contains 
IL-13 but not much IL-4[35]. It is well known that both 
IL-4 and IL-13 are produced by the Th2 lymphocyte, IL-4 
being its hallmark[12]. Nonetheless, the role of Th2 CD4+ 
lymphocytes exerting a protective function and control of 
AT inflammation is under debate[10]. As explained below, 
Th2 cells are not the major producers of IL-4 or IL-10 in 
AT. The major populations expressing the Th2 marker 
GATA‐binding protein 3 in VAT are FoxP3+CD4+ T-reg 
cells and group 2 innate lymphoid cells (ILC2’s)[10,36]. 
Thus, although a Th2-type of response is certainly 
present (see below), more studies must be made to 
ascertain the specific function of CD4+ Th2 cells in the 
lean, homeostatic AT.

Recently, it has been demonstrated that innate immune 
cells such as eosinophils are also a major source of IL-4 
in VAT, with their cell numbers inversely correlated with 
the degree of adiposity[37]. Using Gata1-/- mice (deficient 
in eosinophils) fed a high-fat diet (HFD), these authors 
showed animals with increased visceral adiposity, high 
numbers of M1 macrophages and glucose intolerance/
insulin resistance, while IL-4 transgenic mice (enriched in 
eosinophils) also fed HFD, presented a decrease in these 
parameters[37]. Eosinophils are granulocytes involved in the 
combat to helminth infection and in immunopathological 
processes such as allergies. Not surprisingly, chronic 
infection of HFD mice with the helminth Schistosoma 
mansoni triggered strong increases in eosinophil and 
M2 macrophage numbers in white adipose tissue (WAT) 
together with improved insulin resistance, better glucose 
uptake and WAT insulin sensitivity. More importantly, 
the effects with injections of S. mansoni-soluble egg 
antigens extract (SEA), instead of the entire helminth, 
were similar[38]. Eosinophils are not only helpful in de­
creasing the AT pro-inflammatory milieu and its adverse 
metabolic effects. Uncoupling protein-1 (UCP1) is critical 
for non-shivering thermogenesis since it interrupts the 
mitochondrial electrochemical gradient, creating a proton 
leak where the excess energy expenditure is dissipated 
in the form of heat. Precursor-adipocytes from WAT can 
adopt this cycle, expressing UCP1 and turning into so-
called “beige” adipocytes; and this process can protect 
against obesity[39]. Eosinophil-derived cytokines, signaling 
through STAT6, are required for the activation of adipocyte 
“beiging”, since depletion of eosinophils or knockdown of 
Il4ra in macrophages both result in impaired AT beiging 
in response to a cold challenge[26]. These authors also 
showed that treatment with recombinant IL-4 boosts UCP1 
expression in both VAT and SAT, resulting in weight loss 
and improved glucose tolerance and insulin sensitivity.

Eosinophil differentiation and activation is dependent 
of GM-CSF, IL-3 and IL-5. Moreover, IL-5 is a signal for 
eosinophil migration and survival in ATs with IL-13 helping 
to enhance eosinophil’s chemotaxis[40,41]. To keep eosinophils 
fostering M2 macrophages and an anti-inflammatory milieu 
in the homeostatic AT, a major source of IL-5 and IL-13 
was investigated and zeroed in on a recently discovered 

subset of non-T cells named group 2 innate lymphoid 
cells or ILC2’s[41]. These cells resemble Th2 cells in their 
cytokine production but do not have T-cell receptors. The 
transcription factors retinoic acid receptor‐related orphan 
receptor and GATA‐binding protein 3 are important for 
ILC2’s development. The role of IL-33 has been as
sociated with tissue repair, parasite elimination, asthma 
and allergy[42]. Molofsky et al[41] used mice where IL-5- and 
IL-13-producing cells were eliminated: In this model, they 
observed the disappearance of ILC2’s, eosinophils and anti-
inflammatory macrophages in VAT. Furthermore, ILC2’s 
displayed a lower cell count in VAT from mice under HFD 
and IL-33 was identified as the cytokine able to rapidly 
promote the activation of ILC2’s and the accumulation 
eosinophils and alternatively activated macrophages in 
VAT[41].

ROLES OF ILC’S AND IL-33 IN THE 
MAINTENANCE OF LEAN AT
IL-33 is rapidly acquiring growing importance for the 
maintenance of an anti-inflammatory status in the AT and 
amelioration of obesity-related insulin resistance. Originally 
described as a member of the IL-1 cytokine family, 
IL-33 signals through its receptor, ST2 (suppression 
of tumorigenicity 2), present in several cell types such 
as Th2 lymphocytes, mast cells, CD8+ T cells, natural 
killer (NK) cells and, more importantly, ILC2’s and T-reg 
cells. Both IL-33 and ST2 are strongly expressed in 
AT[43-45]. Administration of IL-33 to obese mice improved 
both adipose-tissue inflammation and systemic insulin 
resistance, attributed by the authors to this cytokine’s 
ability to promote polarization of macrophages to an M2-
like phenotype and to foster the differentiation of Th2 
cells[43]. Furthermore, mice deficient in ST2 and fed HFD 
developed a high body weight and fat mass, glucose 
intolerance and impaired insulin sensitivity. Similarly, 
Il-33-/- mice have aberrant metabolic parameters such 
as elevated AT mass and insulin/glucose disturbances 
even when fed a normal diet[46]. Within the same study, 
Brestoff et al[46] also demonstrated the critical importance 
of IL-33 for the accumulation and maintenance of ILC2’
s in human WAT and went further to show mechanisms 
of IL-33/ILC2’s metabolic regulation of homeostasis, such 
as in vivo beiging of WAT and production of methionine-
enkephalin peptides by ILC2’s that can act directly on 
adipocytes to upregulate the expression of Ucp1[46].

Obesity inversely correlates with the amount of anti-
inflammatory T-regs in the AT. In comparison with their 
lymphoid-tissue counterparts, a unique population of 
resident Foxp3+CD4+ T-reg cells accumulates in VAT of 
lean mice[47-49], and they are highly overrepresented in 
lean individuals (40%-80% vs 5%-15% of the Foxp3-

CD4+ T-cell compartment). These T-regs have a distinct 
transcriptome, particularly the profile of transcripts 
encoding transcription factors, cytokines/chemokines 
and their receptors as well as an atypical expression 
of molecules involved in lipid metabolism. They also 
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have an unusual, clonally expanded, repertoire of T-cell 
antigen receptors. Importantly, in rodents where these 
AT T-regs were experimentally deleted, an increase in 
AT inflammation (represented by high levels of TNFa, 
IL-6 and RANTES) and acutely reduced insulin sensitivity 
was observed[47]. The unique phenotype of this AT T-regs 
population was emphasized as well by their expression 
of PPARγ, a transcription factor usually associated with 
adipocyte differentiation and function[48]. However, PPARγ 
also drives T-regs cell accumulation, phenotype and 
function in visceral AT. The injection of pioglitazone, an 
agonist of PPARγ, could increase the numbers of these 
AT T-regs in VAT and restore insulin sensitivity of mice 
under HFD[48]. Interestingly, Han et al[49] have reported, in 
comparison with other T-regs populations, higher levels 
of the ST2 chain of the IL-33 receptor in most AT T-regs. 
The proportion of these ST2+ T-regs was reduced in obese 
VAT and their numbers could be restored by injections 
of recombinant IL-33, which was also able to reduce VAT 
inflammation and decrease insulin resistance in mice 
under HFD[44,49,50]. Human omental AT T-regs cells also 
showed high ST2 expression, suggesting an evolutionarily 
conserved requirement for IL-33 in VAT-Tregs cell homeo­
stasis[50]. Thus, IL-33 promotes the accumulation and 
function of both ILC2 and T-regs cells. Interestingly, 
although AT T-regs can also respond directly to IL-33, in 
vivo ILC2-intrinsic activation by IL-33 is required before 
VAT T-regs cells accumulation[51].

IL-10 is a classical immunosuppressive cytokine, which 
induces a general anti-inflammatory effect on monocytes/
macrophages, T and B cells, mast cells and NK cells[52]. If 
stimulated with IL-10, macrophages can turn into M2 cells, 
also secreting IL-10[13,16]. VAT T-regs from 30-wk lean 
mice showed upregulated IL-10 expression as compared 
to conventional T-regs. Up to 13.9% of VAT T-regs 
express IL-10 (contrary to 1.8% of conventional T-regs) 
as detected by flow cytometry[47]. The high expression 
of IL-10 by VAT T-regs is altered after HFD since VAT 
T-regs from obese mice display a significant reduction 
in IL-10 production[53]. Because IL-10 is necessary for 
T-reg - mediated suppression of TNFa production from 
macrophages, this obesity-induced change in VAT T-reg 
function most likely contributes to inflammation and 
insulin resistance[53].

THE ROLE OF NUCLEAR RECEPTORS 
IN THE INDUCTION OF M2 
DIFFERENTIATION
M2 cells preferentially use fatty acids and oxidative 
metabolism, while M1 cells utilize glucose[54], which is 
comprehensible since the latter needs increased levels of 
reactive-oxygen species (ROS) and NO to better perform 
their microbicidal activities. Interestingly, pushing oxidative 
metabolism into M1 macrophages seems to change their 
phenotype towards a M2-type[55]. On the other hand, 
after IL-4 stimulation, STAT6 activation on macrophages 
can induce the co-activator protein PPARγ-coactivator-1β 

(PGC1-β), which promotes mitochondrial respiration and 
biogenesis. PGC1-β is considered an important metabolic 
trigger for the switch towards the M2 profile[55]. STAT6 
activation also induces the transcriptional regulators 
PPARγ and PPARδ, both helping in the maintenance of 
the M2 phenotype: PPARδ induces the expression of 
MGL-1, a marker often found on M2 cells[13,55]. In addition, 
knock-down of PPARδ can lead to insulin resistance[56], 
demonstrating that its function is important for the ex­
pression of anti-inflammatory mediators by M2 macro
phages. Another marker of M2 cells, arginase-1, is highly 
responsive to agonists of both PPARγ and PPARδ and the 
arginine metabolism is a relevant feature of M2 cells[55,57]. 
Disruption of PPARγ impairs the maturation of M2 
macrophages and leads mice towards diet-induced obesity, 
glucose intolerance and insulin resistance[58]. Treatment 
of macrophages from ob/ob mice with a thiazolidinedione 
(rosiglitazone), a pharmacological activator of PPARγ, can 
induce anti-inflammatory M2 markers such as Arg1 and 
reduce the number of M1 macrophages even in ob/ob 
mice[59]. Therefore, both PPARγ and PPARδ are important 
activators of M2 differentiation. Another regulator of the 
arginase-1 gene (Arg1), the hypoxia inducible factor-2α 
(HIF-2α), seems an important driver of M2 phenotype[60]. 
However, in this context, the function of HIF-2α still needs 
to be better elucidated since it also induces NF-κB, a 
pro-inflammatory transcription factor[61]. Macrophage 
metabolism seems to be important for insulin sensitivity 
and new investigations on this area will most certainly 
bring a better understanding of the role of macrophages in 
the AT on its homeostatic state.

LOW-GRADE CHRONIC INFLAMMATION 
OF THE AT: T CELLS AT PLAY DURING 
OBESITY
The establishment of a pro-inflammatory phenotype is 
viewed as the link between the development of obesity 
and the evolution of obesity towards insulin resistance 
and ultimately T2DM and its associated cardiovascular 
burden[62].

As discussed above, during the development of obesity, 
hypertrophied AT experiences a stronger infiltration by 
macrophages and other immune cells and, critically, these 
infiltrating immune cells are mainly pro-inflammatory, as 
opposed to the milder infiltration in AT of the lean which 
is chiefly constituted by anti-inflammatory lineages[3]. 
Infiltration of the AT by proinflammatory M1 macrophages 
occurs at an advanced stage of AT hypertrophy, and, 
while being necessary to promote inflammation, can be 
viewed as a secondary event[4,5]. On the contrary, recent 
research promotes the idea that the initial events leading 
to the regulation of obesity-induced inflammation can be 
attributed to T cell lineages[63]. The lean AT is populated by 
resident anti-inflammatory CD4+ Foxp3+ T-regs and Th2 
cells. These T cells secrete IL-10, an anti-inflammatory 
cytokine known to improve adipocyte insulin sensitivity of 
adipocytes[47], but also systemically as mice overexpressing 
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IL-10 in skeletal muscle subjected to a high fat diet did 
not develop insulin resistance albeit becoming markedly 
obese[64]. During the transition from a lean phenotype 
to obesity, infiltrating anti-inflammatory CD4+ decline, 
and pro-inflammatory T lineages Th1 and Th17 become 
predominant. Pro-inflammatory T cell infiltration precedes 
macrophage infiltration and, via the secretion of pro-
inflammatory IL-17 and TNFa drive the expansion of the 
inflammatory state[65]. In addition to this inflammatory 
amplification driven by Th1/Th17 cells and IL-1β-producing 
M1 macrophages, the adipocytes are also secreting several 
pro- and anti- inflammatory adipokines that participate to 
the regulation of metabolic homeostasis. Notably, adipocytes 
of lean individuals mainly secrete anti-inflammatory 
adiponectin, while obese AT secretes pro-inflammatory 
IL-6[66]. Therefore, a crosstalk between adipocytes and the 
immune cell populations infiltrating AT maintains an anti-
inflammatory state in physiological conditions, but can 
switch to a state of sub-clinical inflammation characterized 
by an IL-1β, IL-6 and IL-17- rich environment, a prerequisite 
for insulin resistance, during the development of obesity 
(Table 1).

IL-17: A NOVEL PLAYER IN OBESITY-
INDUCED INSULIN RESISTANCE
The contribution of pro-inflammatory cytokines IL-1β and 
TNFa in mediating insulin-resistance in the obese state 
is now widely accepted and has been comprehensively 
reviewed elsewhere[67,68]. Similarly, IL-6, which is often 
increased in pro-inflammatory settings, is likewise viewed 

as a pro-inflammatory cytokine, although such notion is 
now in part disputed and IL-6 might serve both in pro- 
and anti-inflammatory context depending on the global 
environment and the balance with other pro- or anti-
inflammatory mediators[69,70].

More recent data have also called into action Th17 
cells - and their secreted cytokine IL-17 - in the establish­
ment of inflammation associated to obesity[71]. Studies 
in a mouse model indicated that T-cells derived from 
diet-induced obese mice accumulated the Th17 subset, 
thereby releasing IL-17 in an IL-6-dependent fashion[72].

In a more clinically relevant setting, a 3 to 10-fold 
accumulation of IL-17 and IL-22 secreting Th17 cells was 
observed in AT from insulin-resistant obese subjects[73], 
in VAT from morbidly obese women[74] and in peripheral 
blood from obese children. Also, increased plasmatic levels 
of IL-17 have been observed in obese women[75].

From a mechanistic point of view, several mech­
anisms, perhaps not mutually exclusive, have been 
proposed as participating into the polarization of T cells 
towards the Th17 lineage in obesity. Purinergic signaling 
resulting from the activation of the P2X7 receptor by ATP 
have been shown to promote Th17 polarization within 
the AT microenvironment[76]. Also, co-culture of mature 
adipocytes derived from obese donors with peripheral 
blood mononuclear cells promoted increased release of 
IL-17 and IL-22 by the latter, and this cytokine production 
exacerbated inflammation by amplifying IL-1β secretion by 
macrophages.

The two IL-17 isoforms, IL-17A and IL-17F, are central 
mediators of inflammation and contribute to the develop
ment of multiple autoimmune disorders and are thus 

Table 1  Summary of the key adipose tissue-infiltrating immune cells and secreted cytokines contributing to the pro-inflammatory 
status of adipose tissue in obesity and the anti-inflammatory status in lean individuals

Immune cell lineage Main secreted cytokines Biological activity Lineage-inducing stimulus Ref.

Pro-inflammatory AT in the obese 
condition
M1 macrophages IL-1b Recruited at the advanced stage of AT 

hypertrophy during obesity
Induced by saturated fatty 

acids
[4,5]

Th1 TNFa Induce the recruitment of M1 macrophages 
to the AT

[65]

Th17 IL-17/IL-22 Induce the recruitment of M1 macrophages 
to the AT

Induced by purinergic 
signalling

[65,71,73]

Anti-inflammatory AT in lean 
individuals
M2 macrophages IL-10, TGF-b

Multiple chemokines 
(CCL17, 18, 22)

Secretion of multiple immunosuppressive 
cytokines and chemokines

Phagocytosis of dead adipocytes

Induced by omega-3 
polyunsaturated fatty acids
Induced by IL-4 and IL-13

[16,20,21]

T-regs IL-10 Promote polarization of M2 macrophages Constitutively present in 
the AT of lean individuals

[13,16,47]

Th2 IL-4 and IL-13 Promote polarization of monocytes into 
M2 macrophages

IL-33 [43]

Eosinophils IL-4 Promote “beiging” of adipose tissue. Differentiation and 
activation dependent on 
GM-CSF, IL-3 and IL-5

[26]
Promote UCP1 expression

ILC2’s IL-5 and IL-13 IL-5 and IL-13 secretion by ILC2’s 
promotes eosinophils differentiation 

IL-33 promotes the 
activation of ILC2’s 

[41]

AT: Adipose tissue; ILC2s: Group 2 innate lymphoid cells; UCP1: Uncoupling protein 1; IL: Interleukin; TNF: Tumor necrosis factor; TGF: Transforming 
growth factor.
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attractive therapeutic targets[77]. The IL-17 receptors IL-
17RA and IL-17RC are ubiquitously expressed, explaining 
the large spectrum of activities of these two cytokines[78]. In 
addition to its pro-inflammatory action, IL-17 might affect 
metabolic homeostasis by inhibiting adipogenesis[79]. The 
inhibition of adipogenesis, in the context of an hypercaloric 
diet, would hamper lipid storage in the AT and favor the 
increase in circulating levels of free fatty acids, contributing 
to the worsening of insulin resistance.

TREATING METABOLIC INFLAMMATION 
WITH TARGETED THERAPIES
The current understanding that inflammatory events 
in obesity and T2D are mediated by multiple cytokines, 
including IL-1β, IL-6, TNFa and IL-17 produced by va­
rious cell types within the AT has lent support to the idea 
that inhibition of these cytokines by specifically designed 
inhibitory antibodies might curb the progression of the 
obese phenotype towards insulin resistance and diabetes[80]. 
Several inhibitory antibodies acting on the IL-1 system, 
IL-6 and TNFa[81] have been tested in indications related 
to obesity and the metabolic syndrome[82]. Canakinumab, 
an IL-1β inhibitory antibody, originally used to treat pro­
inflammatory diseases, has more recently been used in 
several clinical trials aiming at treating T2D and has been 
shown to induce mild improvements in glycated hemoglobin 
and beta cell functioning in patients with T2D[83].

Undoubtedly, with the improved understanding of the 
anti- and pro-inflammatory phenomena playing a role 
in the development of obesity and T2D that we tried to 
summarize here, more efforts will be done in the next 
future to try to bring to clinical fruition targeted therapies 
aiming to treat metabolic inflammation via the inhibition 
of pro-inflammatory mediators or the activation of anti-
inflammatory pathways.
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