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Abstract: Insulin-sensitizer treatment with metformin is widely used in polycystic ovary syndrome
(PCOS). However, the treatment effectiveness shows individual differences in PCOS patients. Organic
cation transporter (OCT) 1 and 2 have been reported to mediate metformin transport in the liver
and kidney, respectively. In this study, we investigated the association between the polymorphisms
of OCT1 and OCT2 and the treatment effectiveness of metformin in PCOS patients. The single
nucleotide polymorphisms (SNPs) of OCT1 (rs683369 and rs628031) and OCT2 (rs316019) were
analyzed in 87 PCOS and 113 control women. Oral glucose tolerance tests (OGTTs), which represented
metformin treatment response, were conducted at the start of treatment and after six-month treatment.
The results demonstrated that the SNP frequencies of OCT1 and OCT2 were not associated with PCOS
pathophysiology, and that the polymorphisms of OCT1 and OCT2 were not associated with the OGTT
parameters at baseline. However, PCOS patients with the G allele of OCT1 rs683369 and/or with the
A allele of OCT1 rs628031 had increased insulin sensitivity compared to those with wild-type genotype
after receiving metformin treatment. Moreover, the interactions of metformin*SNP were significant in
both OCT1 rs683369 (p < 0.001) and rs628031 (p = 0.001) during the treatment period. Taken together,
genetic polymorphisms of OCT1 contributed to different metformin treatment responses, and further
study is needed to establish personalized treatment programs using a pharmacogenomic algorithm
approach in PCOS patients.
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1. Introduction

Polycystic ovary syndrome (PCOS) is a complex endocrine condition characterized by
oligo/anovulation, high androgen levels, and polycystic ovaries in about 10% of females. PCOS not
only affects reproduction, but can also contribute to long-term metabolism disturbance, such as
diabetes and heart disease [1]. High androgen levels and insulin resistance result in metabolic and
hormonal dysfunctions in PCOS patients [2], which lead to high comorbidity rates with diabetes
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mellitus [3,4]. Physiologically, ovarian theca cells provide support to the growing follicle, assisting in
mature oocyte generation [5]. Interestingly, ovarian theca cells from PCOS subjects are insulin-sensitive
compared to peripheral tissues, which are insulin-resistant [6,7]. These theca cells in PCOS patients
are hyper-responsive to the stimulatory effects of insulin and cause ovarian hyperthecosis. Insulin
resistance in peripheral tissues amplifies the androgenic potential in the theca cells and further
aggravates the symptoms of PCOS [8]. Additionally, the high sensitivity of theca cells to gonadal
steroid gonadotropin stimulation aids hyperandrogenism in PCOS. Anovulation and menstrual cycle
abnormalities are the frequent symptoms troubling women of reproductive age.

Metformin is an off-label medication used in PCOS patients as an insulin sensitizer [9]. Metformin
can not only lower elevated parameters such as insulin, androgens, and circulating free T levels, but can
also increase levels of sex hormone-binding globulin (SHBG) and insulin-like growth factor-binding
protein (IGFBP) [10]. The well-known action of metformin is to suppress the production of hepatic
glucose. Moreover, metformin has been demonstrated to increase the synthesis of SHBG and to
improve menstrual frequency, ovulation, conception, and live birth rates [11,12]. These findings
suggest a reasonable application of metformin for PCOS patients, and it has been shown to improve
the quality of life in females with PCOS. However, the treatment effectiveness of metformin shows
individual differences in PCOS patients, and 30% of these subjects did not respond to metformin [13].
However, the predictor of the outcome of metformin treatment has not been adequately clarified.

Organic cation transporter (OCT) proteins mediate the transport of organic cations across the
cell membrane. Metformin has been demonstrated to be a substrate of liver-specific OCT1 and
kidney-abundant OCT2 [14,15]. These studies indicate that the pharmacokinetic and pharmacodynamic
profiles of metformin are mediated by the activity of OCT1 and OCT2 [16,17]. In Oct1-deficient mice,
the hepatic metformin concentration in the liver was found to be significantly lower than that in control
mice, and the glucose-lowering effects of metformin were completely abolished [18]. This indicates
that OCT1 expression and activity is essential for the hepatic uptake of metformin [19–21]. However,
the polymorphisms of OCT1 and OCT2 genes may affect the activity of metformin transport and
further influence the treatment response of metformin in individuals.

Therefore, in this study, we investigated the association between the polymorphisms of OCT1
and OCT2, and the treatment effectiveness of metformin in patients with PCOS. Oral glucose tolerance
tests (OGTTs), which were used for identification in PCOS patients, were conducted to evaluate the
treatment effectiveness of metformin. Our findings show the clinical relevance of OCT1 and OCT2 for
predicting treatment outcomes in PCOS patients treated with metformin.

2. Results

A total of 87 patients with PCOS who had a first prescription for metformin and 113 controls
were enrolled. The demographic data and baseline levels of insulin and glucose are listed in Table 1.
Age was significantly different between the controls and PCOS patients. Additionally, women with
PCOS had significantly higher BMIs, systolic blood pressure (SBP), and diastolic blood pressure (DBP),
and frequent disturbances in glucose metabolism and insulin level, compared with the control group,
even after adjustment for age.

Levels of insulin and glucose determined by 2-hr OGTT in PCOS patients before treatment
(baseline) and in those treated with metformin for six months are shown in Table 2. Insulin levels
were significantly reduced after metformin treatment (92.1 to 59.2 µIU/mL, p < 0.001). Additionally,
the glucose/insulin ratio (G/I ratio) was significantly increased after metformin treatment (2.2 to 3.5,
p = 0.001), although glucose levels did not change significantly (116 to 115 mg/dL). Our findings show
clinical benefits for PCOS patients receiving metformin treatment. However, a wide standard deviation
was observed in the PCOS patients, which suggests a great inter-patient variability of clinical response.
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Table 1. Baseline characteristics of the controls and polycystic ovary syndrome (PCOS) patients.

Mean ± SD Controls (n = 113) PCOS Patients (n = 87) p Value Adjusted p Value 1

Age (years) 30 ± 5.9 27.9 ± 5.4 0.009 *
Height (cm) 160.2 ± 5.2 158.7 ± 6 0.063
Weight (kg) 57.4 ± 9.8 67.9 ± 17.9 <0.001 * <0.001 *
BMI (kg/m2) 22.5 ± 4.1 26.9 ± 6.6 <0.001 * <0.001 *
SBP (mmHg) 112.9 ± 12.3 122.7 ± 15.4 <0.001 * <0.001 *
DBP (mmHg) 67.3 ± 10.7 76.3 ± 13.9 <0.001 * <0.001 *

Insulin (µIU/mL) 27 ± 21.7 92.1 ± 67 <0.001 * <0.001 *
Glucose (mg/dL) 94.8 ± 24.9 116 ± 30.8 <0.001 * <0.001 *
1 Adjusted p value: adjusted by age. * p < 0.05. Abbreviations: BMI, body mass index; SBP, systolic blood pressure;
DBP, diastolic blood pressure.

Table 2. Oral glucose tolerance test (OGTT) parameters in all women with PCOS before and after
metformin treatment.

OGTT Parameters Before Metformin After Metformin p Value

2-hr insulin (µIn/mL) 92.1 ± 67.0 59.2 ± 42.7 <0.001 *
2-hr glucose (mg/dL) 116.0 ± 30.8 115.2 ± 35.2 0.777

2-hr G/I ratio 2.2 ± 2.1 3.5 ± 3.7 0.001 *

Abbreviations: G/I ratio, glucose/insulin ratio. * p < 0.05.

To examine the individual differences in patient response, we further investigated the effect
of OCT1 and OCT2 polymorphisms on metformin-treated PCOS patients. The genotypes and allele
frequencies of OCT1 and OCT2 in healthy controls and PCOS patients are shown in Table 3. None of
the polymorphisms of OCT1 and OCT2 genes deviated from the Hardy–Weinberg equilibrium.
Additionally, the frequencies of the polymorphisms of OCT1 and OCT2 were not significantly different
between the control and PCOS patients (Table 3), which indicates that OCT1 and OCT2 were not
associated with PCOS pathophysiology.

Furthermore, to examine the association between genetic polymorphisms and metformin
treatment responses in PCOS, we analyzed the association between genotypes and the levels of
OGTT parameters (Table 4). At baseline, neither the polymorphisms of OCT1 nor those of OCT2 were
associated with the OGTT parameters, including 2-hr glucose, insulin, and 2-hr G/I ratio. However,
the results demonstrated that the changes in OGTT-determined G/I ratio were significantly different
in patients with polymorphisms of OCT1 after metformin treatment (Table 4). Patients with the G
allele of OCT1 rs683369 (4.3 ± 3.8 vs. 3.3 ± 3.0) and/or the A allele of OCT1 rs628031 (3.9 ± 2.9 vs.
3.2 ± 3.2) had higher OGTT-determined G/I ratios than those with wild-type genotype after receiving
metformin treatment. Moreover, the interactions of metformin*single nucleotide polymorphism
(SNP) were significant for both OCT1 rs683369 (p < 0.001) and rs628031 (p = 0.001) (Table 4). Taken
together, the results indicate that treatment response was affected by genetic polymorphisms during
the metformin treatment period.
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Table 3. Genotypes and allele frequencies of organic cation transporter (OCT) 1 and 2 in healthy controls and PCOS patients.

Gene rs Number Alleles Total HE HO WT MAF p Value

(HE/HO/WT) n (%) n (%) n (%)

OCT 1 rs683369 G/C HC 113 32 (28.3) 0 (0) 81 (71.7) G = 0.142 0.524
(GC/GG/CC) PCOS 87 22 (25.3) 1 (1.1) 64 (73.6) G = 0.138

rs628031 A/G HC 113 45 (39.8) 6 (5.3) 62 (54.9) A = 0.252 0.845
(AG/AA/GG) PCOS 87 36 (41.4) 6 (6.9) 45 (51.7) A = 0.276

OCT 2 rs316019 A/C HC 113 27 (23.9) 2 (1.8) 84 (74.3) A = 0.137 0.874
(AC/AA/CC) PCOS 87 23 (26.4) 1 (1.2) 63 (72.4) A = 0.144

Abbreviations: HC, healthy controls; MAF: minor allele frequency; HE, heterogeneous; HO, homogeneous; WT: wild type.

Table 4. Oral glucose tolerance test (OGTT) parameters before and after metformin treatment, subgrouped by genotypes of OCT1 and OCT2.

OCT1 rs683369 (C/G) OCT1 rs628031 (G/A) OCT2 rs316019 (C/A)

CC G Allele p Values p Values a GG A Allele p Values p Values a CC A Allele p Values p Values a

OGTT parameter
2-hr glucose (mg/dL) 0.772 0.464 0.902 0.903 0.865 0.301

Before metformin 117.8 ± 33 111.5 ± 22.1 117 ± 34.3 115.6 ± 27.6 116.5 ± 31.7 114.3 ± 28.4
After metformin 114.2 ± 35.4 116.2 ± 29.8 115.6 ± 36.7 113.5 ± 30.1 112.6 ± 34.3 120.6 ± 32.9

2-hr insulin (µIU/mL) 0.465 0.981 0.211 0.265 0.862 0.631
Before metformin 93.8 ± 65.8 93.4 ± 73.6 86 ± 54.2 96.5 ± 83.2 96.5 ± 67.9 84.1 ± 68.2
After metformin 59.1 ± 42.5 51.4 ± 43.1 62.2 ± 42.7 55.9 ± 43.8 58.7 ± 43.6 60.9 ± 41.5

2-hr G/I ratio <0.001 * <0.001 * 0.047 * 0.001 * 0.565 0.401
Before metformin 2.3 ± 2.4 2.1 ± 1.1 2.3 ± 2.5 2.0 ± 1.9 2.2 ± 2.3 2.2 ± 1.6
After metformin 3.3 ± 3.0 4.3 ± 3.8 3.2 ± 3.2 3.9 ± 2.9 3.9 ± 4.3 2.7 ± 1.5

* p < 0.05; a the interactions of metformin and single nucleotide polymorphism (SNP) on OGTT parameter.
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3. Discussion

In the current prospective clinical study, OCT1 genetic polymorphisms were found to influence
the effectiveness of metformin in PCOS patients. There were great individual differences in the
PCOS patients, although some of these patients receiving metformin treatment experienced clinical
benefits, as shown in previous reports [22,23]. Patients with polymorphisms of OCT1 were found
to have significantly different insulin sensitivity after metformin treatment, while the interactions of
metformin*OCT1 were also found to be significant. Patients with the G allele of OCT1 rs683369 and/or
the A allele of OCT1 rs628031 had higher OGTT-determined G/I ratios than those with wild-type
genotype after receiving metformin treatment. However, the distribution of the SNP frequencies
in OCT1 and OCT2 were not significantly different in PCOS patients compared to controls, and the
genotype frequencies of these polymorphisms in the PCOS and control subjects were similar to
those reported in Asian populations in the 1000 Genome Project. The genotypic distribution of
OCT1 rs683369 and rs628031 in the participants was consistent with that presented in the Ensembl
project (http://asia.ensembl.org) for participants of Asian ethnicity (GC/GG/CC = 20.2/2.9/76.9%
in rs683369, and AG/AA/GG = 28.8/4.8/66.3% in rs628031). The worldwide ethnic distribution of
the frequency of the G allele of OCT1 rs683369 is highly variable (about 2% in Africans, about 10%
in Mixed American, and 15% in Asians), while the distribution of the A allele of OCT1 rs628031 is
similar (about 25% across ethnicities). Additionally, the genotypic distribution of OCT2 rs316019 is
consistent with the Asian group (AC/AA/CC = 19.5/0/80.5%) and is similar to the African Ancestry
population according to the Ensembl project. Furthermore, previous evidence, as well as that provided
by our study, indicate that genetic background, including OCT1 and OCT2, is not associated with
PCOS itself [24]. Taken together, the results indicate that treatment response was affected by OCT1
genetic polymorphisms during the metformin treatment period, and that OCT1 and OCT2 were not
associated with PCOS pathophysiology.

Although the effectiveness of metformin response is important for PCOS patients, 30% of
PCOS patients have a poor response to metformin. Therefore, it is urgently required to develop
and establish clinical predictors for treatment outcome. OCTs are involved in transporting a broad
spectrum of endogenous compounds, such as monoamine neurotransmitters, choline, coenzymes,
and xenobiotics [25,26]. Polymorphisms of OCT1 and OCT2 have been found to be correlated with diseases
such as diabetes mellitus, diabetic nephropathy, primary biliary cirrhosis, and hypertension [27–29].
In order to identify whether polymorphisms of OCT1 and OCT2 contribute to the variability in PCOS
itself and treatment response, a prospective study was conducted in which 150 PCOS patients of
European descent were treated with metformin [24]. The results revealed that the OCT1 genotype was
a determinant of the insulin response to metformin in PCOS patients with no variants or one variant,
although there was lack of the appropriate value for the area under the curve (AUC) of glucose in the
OGTT at baseline and at the end of the treatment. This indicates that polymorphisms in OCT1 are
associated with the variability in the response to metformin in PCOS patients. Other studies have also
suggested that OCT variants are significantly associated with elevated baseline and glucose-induced
C-peptide levels in PCOS subjects after metformin treatment [13,30]. The polymorphism of OCT1
420del reduced the transport activity of metformin [31]. Another genetic variant in OCT2 808G/T also
resulted in an amino acid change, A270S, on the renal elimination of metformin [32], and the plasma
concentrations of metformin in subjects with heterozygous 808G/T or homozygous 808T/T genotypes
were higher than those with the GG genotype. Similarly, in the current study, patients with the G
allele of OCT1 rs683369 and/or with the A allele of OCT1 rs628031 had higher OGTT-determined
G/I ratios than those with wild-type genotype after receiving metformin treatment. To summarize,
polymorphisms of OCT1 and OCT2 have been identified which could influence the hepatic intake
or renal clearance of metformin in vivo and in vitro [18,27,30,31,33–36]. These findings demonstrate
the role of OCT1 and OCT2 polymorphisms in modulating responses to metformin treatment in
PCOS patients.

http://asia.ensembl.org
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In addition to OCT1 and OCT2, the absorption, distribution, and excretion of metformin is also
mediated by OCT3, multidrug and toxin extrusion proteins 1–2 (MATE1-2), and plasma membrane
monoamine transporter (PMAT) [37]. OCT3 is highly expressed on the plasma membranes of skeletal
muscle and liver, which are target tissues for metformin action [21]. Notably, the genetic variants
of OCT3 T44M, T400I, and V423F may modulate metformin uptake. MATE1 is responsible for the
excretion of metformin into bile and urine [38]. The polymorphisms of MATE1 have been found to be
associated with an amplified glucose-lowering effect of metformin in diabetic patients [39]. A MATE2
splice variant, MATE2-K, has also been shown to be a transporter of metformin [40]. Moreover,
promoter polymorphisms of MATE1 (rs2252281) and MATE2 (rs12943590) have been shown to be
important determinants of metformin disposition and response in healthy controls and diabetic
patients [41–43]. Further studies integrated with genetic polymorphisms of OCT3, MATE1, MATE 2,
and PMAT should investigate their potential as predictors of the effectiveness of metformin treatment
in PCOS patients. Such studies will be helpful to establish personalized treatment programs using
a pharmacogenomic algorithm approach.

Although the data were presented carefully, this study has certain limitations. The first limitation
is the relatively small sample size of PCOS patients, and the fact that they were from a single site.
Although the relatively small sample size may limit the interpretation of the results, the association
between polymorphisms of OCT1 and OGTT parameters had a statistical power of 0.8. The second
limitation is the lack of control for some confounding factors such as diet, exercise, and general health
status. The third limitation is that we evaluated metformin treatment response by OGTT-derived
insulin sensitivity. Limited to clinical practice, the fourth limitation is that, although we measured 2-hr
glucose and insulin by OGTT in PCOS patients before and after metformin treatment, the fasting levels
of insulin and glucose were collected only before treatment. Thus, we could not calculate the area under
the curve for insulin and glucose, nor could we calculate the homeostasis model assessment-estimated
insulin resistance (HOMA-IR) in PCOS patients with metformin treatment. The glycemic response
should be validated to further clarify the contribution of the insulin homeostasis of metformin in PCOS
subjects. Further study is also needed to clarify whether the polymorphisms of OCT1 could be useful
clinical indicators for monitoring metformin treatment response in patients with PCOS.

4. Materials and Methods

4.1. Subjects

The research protocol was approved by the Institutional Review Board for the Protection of
Human Subjects at National Cheng Kung University Hospital, Taiwan. All participants signed
written informed consent forms. A total of 200 genetically unrelated women aged between 18 and
45 years, including 87 PCOS patients and 113 control subjects, were recruited from the Obstetrics and
Gynecology clinics of the National Cheng Kung University Hospital. The controls were enrolled from
an infertility clinic prior to entering an in vitro fertilization program due to tubal and/or male factors
without menstrual cycle irregularities, clinical or biochemical hyperandrogenism, polycystic ovaries
on ultrasound examination, or a history of systemic/endocrine disease.

Patients were diagnosed with PCOS during the study period according to the Rotterdam criteria,
in which PCOS was defined by the presence of at least two out of the following three criteria:
(1) oligo-anovulation (a cycle length >35 days or amenorrhoea); (2) clinical hyperandrogenism
(hirsutism recorded as m-FG score ≥ 6 with/without acne or androgenic alopecia) and/or biochemical
hyperandrogenism (total testosterone level of more than 0.95 ng/mL); and (3) polycystic ovaries
(≥12 follicles measuring 2–9 mm in diameter, or ovarian volume >10 mL in at least one ovary).
We further excluded those (1) diagnosed with similar clinical presentations (e.g., congenital adrenal
hyperplasia); (2) diagnosed with diabetes, or with fasting plasma glucose ≥126 mg/dL or 2-hr glucose
determined by OGTT ≥200 mg/dL before PCOS diagnosis; and (3) taking any medications that may
influence insulin level or contraceptive pills three months prior to PCOS diagnosis.
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All PCOS patients were treated with metformin (500 mg, three times a day) once PCOS had
been diagnosed. Patients could be switched to extended-release metformin if they could not tolerate
immediate-release formulation (due to gastrointestinal intolerance side effects).

Each subject underwent an anthropometric evaluation at baseline and after the six months of the
metformin treatment. The body weight and body height of each subject were measured, and BMI
(kg/m2) was calculated accordingly.

4.2. Insulin Sensitivity Analysis

A modified OGTT that used a 75 g glucose load and measured glucose and insulin at a 2-hr
interval has been used in clinical studies. A 2-hr G/I ratio obtained by OGTT has also been
reported to give a reasonably accurate insulin sensitivity. An abnormal ratio of glucose to insulin
was defined as a G/I ratio ≤1.0 at 2-hr in a PCOS population [44]. Blood samples were collected,
and then a 75 g OGTT was performed with blood samples taken after 2-hr for the determination of
glucose and insulin levels. The level of plasma glucose was determined using the glucose oxidase
method (Synchron CX3, Beckman, CA, USA). The serum insulin concentration was measured using
a solid-phase radioimmunoassay method (Diagnostic Products Corporation, Los Angeles, CA, USA).

4.3. Genotyping

Genomic DNA was extracted from each blood sample using a QIAamp DNA blood kit (QIAGEN,
Hilden, Germany) according to the manufacturer’s instructions. The DNA was stored at −80 ◦C
until use. The SNPs of OCT1 (P160L, rs683369; M408V, rs628031) and OCT2 (A270S, rs316019) were
genotyped using commercially-available TaqMan® SNP Genotyping Assays (Applied Biosystems,
Foster City, CA, USA). Amplification and dissociation were carried out using the ABI 7900HT Fast
Real-Time PCR System (Applied Biosystems). The PCR system automatically calculated the negative
derivative of the change in fluorescence. The SNP genotype of each tested sample was determined using
the software program StepOne and was confirmed manually. In case of disagreement, the analysis
would be repeated.

4.4. Statistical Analysis

Data was shown as mean ± SD and frequency. T-test and chi-square analyses were used to
compare demographic and clinical characteristics between groups. The OGTT parameters were
evaluated by repeated measure two-way ANOVA. We examined whether the distribution of
genotypes was consistent with the Hardy–Weinberg equilibrium using the chi-square goodness-of-fit
test. Statistical analyses were performed using the Statistical Package for Social Sciences 16.0 for
Windows software package (SPSS Inc., Chicago, IL, USA). Two-tailed p values <0.05 were considered
statistically significant.

5. Conclusions

In summary, our study indicates that the treatment response of metformin was significantly
different in patients with PCOS. Although OCT1 and OCT2 were not associated with PCOS
pathophysiology, patients with the G allele of OCT1 rs683369 and/or with the A allele of OCT1 rs628031
had increased insulin sensitivity compared to those with wild-type genotype after receiving metformin
treatment. Moreover, the interactions of metformin*SNP were significant in OCT1. Additionally, our
data suggest that a 2-hr G/I ratio obtained by OGTT could be a reasonable method to assess insulin
sensitivity in PCOS patients. Taken together, OCT1 could be important for metformin therapeutic
action, and genetic polymorphisms of OCT1 might contribute to differences in the effectiveness of
metformin treatment in PCOS patients. Further study is needed to establish personalized treatment
programs for PCOS patients using a pharmacogenomic algorithm approach.
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