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ABSTRACT
Acute kidney injury (AKI) and chronic kidney disease (CKD) are posing great threats to global
health within this century. Studies have suggested that estrogen and estrogen receptors (ERs)
play important roles in many physiological processes in the kidney. For instance, they are crucial
in maintaining mitochondrial homeostasis and modulating endothelin-1 (ET-1) system in the kid-
ney. Estrogen takes part in the kidney repair and regeneration via its receptors. Estrogen also
participates in the regulation of phosphorus homeostasis via its receptors in the proximal tubule.
The ERa polymorphisms have been associated with the susceptibilities and outcomes of several
renal diseases. As a consequence, the altered or dysregulated estrogen/ERs signaling pathways
may contribute to a variety of kidney diseases, including various causes-induced AKI, diabetic
kidney disease (DKD), lupus nephritis (LN), IgA nephropathy (IgAN), CKD complications, etc.
Experimental and clinical studies have shown that targeting estrogen/ERs signaling pathways
might have protective effects against certain renal disorders. However, many unsolved problems
still exist in knowledge regarding the roles of estrogen and ERs in distinct kidney diseases.
Further research is needed to shed light on this area and to enable the discovery of pathway-
specific therapies for kidney diseases.
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Introduction

Although estrogen is classically regarded as a reproduct-
ive hormone in mammalian species, it also plays an
important role in many other physiological processes
(e.g., cell growth, development and differentiation, lipid
and glucose homeostasis, renal endocrine function,
immune function, etc.) [1–5]. The effects of estrogen in
physiological and pathophysiological conditions are
mediated by two different structural receptor classes,
namely, estrogen receptor (ER) a/b and G protein-
coupled estrogen receptor (GPER) [6]. Estrogen and its
receptors are implicated in the development and pro-
gression of various diseases, including cancer, osteopor-
osis, endometriosis, neurodegenerative disorders, as well
as cardiovascular, metabolic, and autoimmune dis-
eases [7–12].

Acute kidney injury (AKI) and chronic kidney disease
(CKD) are posing substantial threats to global health. The
interdependent relationship between AKI and CKD further
adds complexity to the clinical picture [13]. Recent experi-
mental and clinical studies have suggested that estrogen
and ERs serve pathophysiological roles in kidney diseases,

including AKI, diabetic kidney disease, lupus nephritis, IgA
nephropathy, complications of CKD, etc. This review
mainly examines the roles of estrogen and its receptors in
certain kidney diseases. We also discuss the structures,
functions, mechanisms, and modulation of ERs, providing
the basis for potential therapeutic interventions.

Structures and functions of ERs

As members of the nuclear receptor family, ERs are
found mainly in the nucleus, but also in the cytoplasm
and mitochondria [14]. The classical ER subfamily
mainly consists of ERa and ERb [15]. Both of them con-
sist of six functional domains A–F. The NH2-terminal A/
B domain contains a ligand-independent transactiva-
tion function-1 (AF-1). It’s noteworthy that the transacti-
vation potency of AF-1 varies in a ligand-, cell type-,
and promoter-specific manner [3]. The C domain (DNA
binding domain) binds to DNA motifs called estrogen
response elements (EREs). It also plays a part, to a minor
extent, in the stability of ER dimerization [3]. The D
domain is a hinge region between the C and E
domains. It is involved in ER conformational changes,
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interaction with other transcription factors, nuclear
translocation, and posttranslational modifications
[16–18]. The E domain is identified as the ligand-bind-
ing domain (LBD) and the principal dimerization inter-
face of the receptor, which contains a ligand-
dependent activation function AF-2 [19,20]. The F
domain is the least conserved region with high variabil-
ity, and many nuclear receptors do not contain such a
region [3]. ERa and ERb share a high degree of conser-
vation in their C and E domains, while the other
domains are more divergent [21]. The synergistic effect
of AF1 and AF2 is required in the transcriptional regula-
tion mediated by both receptors [22,23]. However, it is
still unclear how AF-1 and AF-2 activities are regulated
cooperatively by ligands. Recent studies have shown
that the AF-2 contains an AF-1 suppression function
element and that AF-1 is regulated in an AF-2-depend-
ent manner [24,25].

ERa

In humans, ERa is encoded by the gene ESR1, located on
chromosome 6, locus 6q25.1 [26]. ERa is primarily
expressed in sex organs (breast, uterus and ovary, testes,
epididymis, prostatic stroma), bone, liver, adipose tissue,
cardiovascular, and central nervous system (CNS) [27,28].
The classic full-length 67kDa ERa includes a DNA-binding
domain, a ligand-binding domain, and two transcriptional
activation functions (AF-1 and AF-2) [3]. In addition, two
shorter isoforms (46 kDa ERa46 and 36kDa ERa36) have
been identified. ERa46 lacks the N-terminal region harbor-
ing AF-1, whereas ERa36 lacks both AF-1 and AF-2 and
encodes a unique 29 amino acid sequence [29,30].

The functional role of ERa was first discovered from
a clinical situation where a man bearing a mutation in
the ERa gene developed a premature and severe meta-
bolic syndrome [31]. It is now recognized that ERa is a
key regulator of energy homeostasis and glucose
metabolism and that the ERa pathway might represent
a potential therapeutic target for the prevention or
treatment of insulin resistance, type 2 diabetes mellitus,
and non-alcoholic fatty liver diseases [16,32]. On the
other hand, ERa is linked with a variety of cancers and
metastases, including breast cancer, cervical cancer,
lung carcinoma, and prostate cancer [33–36].

ERb

In humans, ERb is encoded by the gene ESR2, located
on chromosome 14 (14q23–24), and has five isoforms
(ERb1-5) [37]. These five isoforms exist as a result of
alternative splicing of the last coding exon (exon 8). It is

noteworthy that ERb1 is the only full-function isoform
with the native LBD and that the other isoforms do not
have innate activities in their homodimeric forms but
can heterodimerize with ERb1 and enhance ERb1-
induced transactivation in a ligand-dependent manner
[38,39]. ERb and its isoforms have wider tissue distribu-
tion than ERa and they are expressed primarily during
embryonic development and in the prostatic epithe-
lium, bladder, ovary, colon, lung, adipose tissue,
immune system, cardiovascular system, and
CNS [27,40,41].

Similar to ERa, ERb is involved in cellular differenti-
ation, mitochondrial bioenergetics, lipid and glucose
metabolisms, energy expenditure, etc. [42–44]. ERb is
generally thought to be a tumor suppressor gene and
its expression is dysregulated in different cancers
[45–47]. There is an increasing awareness that selective
targeting of ERb signaling pathways might be useful in
the treatment of several inflammatory and proliferative
diseases [48,49]. Studies support the idea that ERb ago-
nists can reasonably be used in hormone replacement
therapy, early stage prostate and colon cancers, sup-
pression of the immune system without negative
effects on bone, and neuroprotection [50].

GPER

In the last decades, studies have suggested that apart
from the classical steroid receptors ERa and ERb, the G
protein-coupled estrogen receptor (GPER, formerly
known as GPR30) also mediates the effect of estrogen
in a rapid signaling pathway [51–53]. As a member of
the G-protein coupled receptor superfamily, GPER is
localized predominately within intracellular membranes
in most cell types [54]. It is widely expressed in numer-
ous tissues and organs, including the vessels, skeletal
muscle, brain, heart, kidney, pancreas, and reproductive
organs [55,56]. Studies have shown that GPER is
involved in many physiological responses, including
maintenance of vascular tonicity and blood pressure,
reproduction, lipid and glucose metabolisms, immune
and inflammatory responses, etc. [57–60]. For instance,
mice lacking GPER exhibited metabolic syndrome, such
as obesity, impaired glucose tolerance, or dyslipidemia
[59,61]. Pharmacological modulation of GPER could pro-
mote pancreatic cell survival and improve glucose toler-
ance [62,63]. The effects of GPER are mediated via
multiple signaling pathways, including the activation of
adenylyl cyclase (AC)/protein kinase A (PKA), epidermal
growth factor receptor (EGFR), PI3 kinases, as well as
extracellular signal-regulated kinase (ERK) pathways
and G protein-coupled pathways [64].

620 H.-Y. MA ET AL.



Mechanisms of estrogen action

The mechanisms of estrogen action are categorized
into classical (genomic) and rapid (non-genomic) ones.
In the classical pathway, estrogen binds to the ERs in
the cytoplasm, leading to ER dimerization and trans-
location to the nucleus, where the estrogen–ER com-
plex interacts with ERE sequences in target genes [16].
This process typically occurs within hours [65]. In recent
decades, however, rapid or ‘non-genomic’ effects of
estrogen (also termed non-nuclear or membrane initi-
ated steroid signaling) has been reported [66]. This
occurs through the ER located in or adjacent to the
plasma membrane, or through other non-ER plasma
membrane-associated estrogen-binding proteins, which
usually takes seconds or minutes [67]. GPER has been
identified as one of the main estrogen-sensitive recep-
tors responsible for the rapid non-genomic action of
estrogen [68]. The classical (genomic) and non-genomic
estrogen signaling pathways are illustrated in Figure
1 [22,69].

Modulation of ERs

Selective estrogen receptor modulators (SERMs) are
antiestrogens designed to compete with estrogen and
modulate ER activity in a tissue-specific manner [70,71].
For instance, tamoxifen can exhibit antagonistic effect

on mammary tissue, whereas it can have agonistic
effects on other tissues such as the uterus, bone, and
heart [72]. Raloxifene acts as an estrogen agonist in
bone and an estrogen antagonist in uterine and breast
tissues [73]. Similarly, bazedoxifene functions as a pure
antagonist in the breast and an agonist in the bone
[74]. Since ERs are nuclear transcription factors involved
in the regulation of a variety of physiological and
pathological processes in humans, modulation of the
receptors either by SERMs or by agonists/antagonists
might be beneficial for the prevention and treatment of
various diseases [27].

Estrogen and ERs in kidney diseases

Acute kidney injury (AKI)

Gender differences in AKI epidemiology
The incidence of AKI has been steadily increasing, par-
ticularly among elderly hospitalized patients [75].
Epidemiological studies suggested that the mortality
rates of AKI patients in hospital settings (including
intensive care units) ranged from 17.5% to 64.7%
[75,76]. As a broad clinical syndrome encompassing dif-
ferent etiologies, AKI is characterized by an abrupt
decline of glomerular filtration rate, which is associated
with high morbidity and mortality [77]. Various etiolo-
gies include pre-renal azotemia, acute tubular necrosis,

Figure 1. Classical (genomic) and non-genomic estrogen signaling pathways. E: estrogen; ERs: estrogen receptors; P: phosphoryl-
ation; ERE: estrogen receptor elements.
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acute glomerular/interstitial nephritis, acute vasculitic
renal diseases, acute post-renal obstructive nephrop-
athy, and mixed forms [78].

Clinical studies have shown that sex disparities might
influence the susceptibility, progression, and thera-
peutic response to AKI [79–81] and that female sex
might have a protective effect on the development of
AKI [79,82]. Though a recent retrospective cohort study
of AKI complicating acute myocardial infarction-related
cardiogenic shock suggested that female sex was inde-
pendently associated with higher in-hospital mortality,
it did mention that women with AKI were older
(74 ± 12 years), which highlighted the potential role of
estrogen in AKI [83]. Another interesting phenomenon
is that compared with females, males were endowed
with lower mitochondrial respiratory capacity and poor
antioxidant defense system, exhibiting fragmented and
smaller mitochondria [84,85]. Given that the disrupted
mitochondrial homeostasis plays a prominent role in
the pathogenesis of AKI [86], this might partially explain
the sex disparities in AKI. The gender dimorphism was
also observed in animal experiments where male mice/
rats exhibited more severe AKI manifestations than
their female counterparts through different mecha-
nisms [87–91].

The role of silent mating type information regulator
2 homolog 1 (SIRT1) in mediating the renoprotective
effects of estrogen on AKI has been systematically
reviewed recently [92]. Experimental studies have indi-
cated that SIRT1 exerts a protective effect against AKI
through regulating oxidative stress, mitochondrial bio-
genesis, energy metabolism, inflammation and apop-
tosis [93–97]. The functional interaction between
estrogen/ER and SIRT1 has been investigated in differ-
ent disease models. Estrogen exerts protective effects
against inflammation and mitochondrial dysfunction via
ERa/SIRT1 pathway [98,99]. SIRT1 acts as an ERa co-acti-
vator and is required for modulation of ERa-signaling
pathways [100]. In this regard, it is proposed that estro-
gen through SIRT1 might protect against AKI [92].

Estrogen and ERs in AKI settings
Renal ischemia–reperfusion injury (IRI). Renal IRI is
characterized by a temporary shortage and subsequent
restoration of blood supply and oxygen delivery to the
kidney, initiating a cascade of deleterious cellular
responses leading to ROS generation, inflammation and
tubular cell death, leading to AKI [101,102]. As one of
the leading causes of AKI, renal IRI often occurs with
kidney transplantation, postoperative hypotension,
traumatic hemorrhage, cardiovascular surgery, cardiac
arrest, and cardiopulmonary resuscitation [103–108].

Clinical studies regarding the association of gender
with kidney allograft outcome have mixed results.
While some clinical observations suggested that female
recipients generally had a better graft function and sur-
vival than male counterparts, others indicated that the
risk of developing graft failure varied in women strati-
fied by age and donor sex [109–112]. Although the
effect of gender disparity in the susceptibility and
pathogenesis of IRI in the transplanted kidney is less
well established in humans, the majority of experimen-
tal studies indicate that females had better outcome of
kidney transplantation than males due to increased IRI
tolerance [113]. This sex-related differences in IRI-
induced AKI might be attributed to the depression of
renal sympathetic nervous system with endogenous
estrogen and the subsequent reduced regional nor-
adrenaline level [89,114,115]. As expected, the supple-
mentation of estrogen prior to the induction of IRI
protected kidney function in female mice and neutered
males. Studies also revealed that estrogen administra-
tion after cardiac arrest and resuscitation ameliorated
AKI in both male and female mice [116,117]. In contrast,
testosterone enhances kidney susceptibility to IRI
through inhibiting the activation of nitric oxide (NO)
synthases and Akt signaling [118]. Notably, renal IRI was
exacerbated in female ERa knockout mice [113].

The roles of estrogen and ERs in the signaling mech-
anisms of IRI-induced AKI have been reported. Estrogen
attenuated renal IRI through the activation of peroxi-
some proliferator-activated receptor c (PPARc), a
nuclear receptor which plays a vital role in the mainten-
ance of renal metabolic homeostasis [119–121]. The
overproduction of renal endothelin-1 (ET-1), which
plays a critical role in the initiation of AKI and the sub-
sequent transition to CKD through its two receptors ETA
and ETB, was suppressed with the administration of
estrogen in rats challenged with IRI [122–125]. This
effect was probably mediated by ERb and GPER1 in the
kidney [126,127]. Estrogen also reduced inflammation
and accelerated injured tubular cell regeneration in
male rats after IRI-induced AKI [128]. In the uninephrec-
tomized rat model of IRI, the renoprotective effect of
estrogen was mediated by the activation of PI3K/Akt
pathway followed by increased endothelial nitric oxide
synthase (eNOS) phosphorylation in the affected kid-
neys [129]. Another mechanism might be estrogen-
mediated antagonism on N-methyl-D-aspartate recep-
tors (NMDAR) that were expressed in nephrons [130].
The activation of GPER1 also protected the kidney from
IRI through enhancing glomerular endothelial barrier
function and regulating the content of NO in renal
interlobular artery smooth muscle and endothelial cells
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[131,132]. Renal Naþ/Kþ-ATPase is a well-recognized
energy-dependent sodium pump which helps maintain
the electrolyte and fluid balance via manipulating the
transport of certain solutes [133,134]. Under the circum-
stance of renal IRI, the impaired activity of Naþ/Kþ-
ATPase contributed to abnormal hydroelectrolyte status
[135,136]. A sex disparity in the alterations of this
enzyme was observed following renal IRI, favoring the
protective role of estrogen in the stability and modula-
tion of Naþ/Kþ-ATPase upon various renal
insults [137,138].

Together, these results demonstrate that there exists
a sex dimorphism in IRI-induced AKI. However, the dis-
crepancy between clinical observations and experimen-
tal findings regarding this aspect remains to be
investigated. Estrogen and ERs might have potential
therapeutic implications in the treatment of renal IRI,
but recent studies have pointed out that the renopro-
tective effect of exogenous estrogen becomes evident
only when administered at a dose above the physio-
logical level [139]. It has also been doubted that
whether the sequelae of renal IRI (i.e., subsequent kid-
ney fibrosis) could actually be brought to a halt by
estrogen. Therefore, the therapeutic effect of estrogen
and its analogues derived from the existing animal
studies needs to be cautiously interpreted when
applied to human patients.

Septic AKI. Sepsis-induced AKI is the leading cause of
AKI in the intensive care unit (ICU) and accounts for
nearly half of all AKI events, which is associated with
increased mortality and morbidity [106,140]. A multi-
center prospective study including 1177 ICU patients
with sepsis in 24 European countries reported a 51.2%
incidence of AKI with a mortality rate of 41.2% [141]. A
multicenter retrospective study of [146,148]. Chinese
hospitalized adults found AKI in 47.1% of sepsis
cases [142].

Studies regarding the role of estrogen in septic AKI
have conflicting results. Feng et al. found that serum
estrogen levels were correlated with the severity of
renal dysfunction and that increased estrogen levels
predicted the development of newly onset AKI within a
month [143]. A recent post-hoc analysis of patients with
sepsis from the Randomized Evaluation of Normal ver-
sus Augmented Level renal replacement therapy
(RENAL) trial suggested that female sex was associated
with improved survival in septic patients with severe
AKI [82]. Trentzsch et al. found that female patients had
lower rates of sepsis and renal failure than males fol-
lowing traumatic injury and hemorrhagic shock [144].
Animal studies also demonstrated that estrogen and its

selective modulator raloxifene had protective effects on
renal function in ovariectomized rats with sepsis
through the activation of autophagy [145,146]. Several
preclinical studies indicated that the activation of ERs
(mainly ERa and ERb) could regulate inflammatory
responses and control sepsis-induced multiorgan dys-
function [147–149].

The exact mechanisms responsible for the roles of
estrogen and ERs in septic AKI remain to be elucidated.
Further studies are needed to uncover the potential
roles of estrogen and ERs in mediating the gender dif-
ferences in septic AKI. Though a majority of experimen-
tal studies have demonstrated the salutary effects of
estrogen and ER agonists on the outcome of sepsis-
induced multiple organ failure including AKI, clinical
investigations have not reached a consensus in this
respect. The remaining gap between the bench and the
bedside prompts us to take into consideration the dif-
ferent clinical study protocols. For example, the hormo-
nal status or the level of estrogen of a patient at the
time of sepsis may have an effect on the clinical out-
come [150,151]. Studies providing information regard-
ing hormonal status (oral contraceptives, menstrual
cycle, and hormone replacement therapy) at the time
of patient enrollment are encouraged. It is important to
note that kidney is just one of the many involved
organs in sepsis and that the overall effects of estrogen
in other organs or systems need addressing. Also, fluid
resuscitation and antibiotics are still the mainstay of
treatment for patients with sepsis and, therefore, estro-
gen-related therapies may be developed for the best
interests of the individual patient.

Drug-induced AKI. Drug-induced AKI accounts for
0.7% to 26% of cases with AKI among hospitalized
patients [152–154]. Various drugs that are metabolized
in the kidney and cleared via glomerular filtration and/
or tubular secretion may induce AKI from a variety of
mechanisms [155]. In the proximal tubules, apical trans-
port of the aminoglycosides and basolateral transport
of cisplatin increase the risk for AKI [156]. Acute intersti-
tial nephritis is another form of drug-induced AKI,
which typically develops from medications that incite
an allergic reaction (e.g., antibiotics, proton pump
inhibitors, non-steroidal anti-inflammatory drugs,
etc.) [157–159].

Studies regarding the sex differences in the suscepti-
bility to drug-induced AKI have conflicting results.
While some suggested that females were more vulner-
able to aminoglycoside- and cisplatin-induced nephro-
toxicity, others found no such gender disparities
[160–162]. At least in the field of drug-induced acute
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interstitial nephritis, epidemiological characteristics
showed a female preponderance [159,163]. This might
be attributed to gender differences in the expression of
drug transporters on proximal renal tubules [164].
However, the issue of gender differences in the suscep-
tibility to nephrotoxins is far more nuanced. There is
actually no impact of gender on the protein levels of
some key drug transporters in human kidney samples,
as revealed by liquid chromatography-tandem mass
spectrometry-based targeted proteomics [165,166]. On
the other hand, sex differences in the expression of kid-
ney genes responsible for the metabolism of certain
drugs have been confirmed in experimental studies
[164,167]. For example, females could better handle
mercuric chloride-induced tubular injury because of
their correspondingly increased renal expression of
organic anion transporter 1/3 (OAT1/3) and multidrug
resistance-associated protein 2, leading to higher excre-
tion of mercury and less likelihood of AKI [168]. A sex-
hormone dependent pattern of the expression of OAT2
was also observed in mouse and rat kidneys (i.e., OAT2
could be upregulated by estrogen and progester-
one) [169].

The roles of estrogen and ERs in drug-induced AKI
have been investigated. Preclinical studies demon-
strated that young females exhibited decreased suscep-
tibility to cisplatin-induced AKI, highlighting the
potential role of estrogen [154,170,171]. Moreover,
estrogen and GPER1 agonist G-1 had protective effects
against human tubular epithelial cell injury induced by
methotrexate [172]. In a rat model of heavy metal-
induced AKI, tamoxifen prevented mercury-induced
toxicity on mitochondrial energy-dependent functions
in the kidney [173]. In contrast, fulvestrant, an ERa
down-regulator, exacerbated kidney injury in rats with
AKI induced by gentamicin [174,175]. Further studies
are warranted to determine the roles of estrogen and
ERs in drug-induced AKI.

It is well established that renal tubules are very sus-
ceptible to various insults including a range of com-
monly used drugs [176]. However, there exist distinct
differences regarding the vulnerability to certain drugs
among different segments of tubules or regions of the
kidney. Whether or not estrogen or ERs confer compre-
hensive protection within the kidney is still unknown.
Besides, drug-induced nephropathy can also be accom-
panied by other organ disorders such as hepatotoxicity
and thrombocytopenia [177,178]. Management of these
comorbidities, therefore, is equally important. A phys-
ician should have a high index of suspicion for the risk
factors associated with drug-induced AKI in that the
underlying health conditions of the patients may have

a great impact on the clinical outcome. Correcting risk
factors and treating underlying diseases should
be emphasized.

Chronic kidney disease (CKD)

Gender differences in CKD epidemiology
According to the 2017 KDIGO guidelines, CKD is defined
as abnormalities of kidney structure or function, present
for more than 3months, with implications for health
[179]. Major causes of CKD include diabetic nephrop-
athy, IgA nephropathy, lupus nephritis, and membran-
ous nephropathy [180,181].

Epidemiological studies suggested that females
experienced slower renal function decline than males,
possibly owing to the protective effect of estrogen or
the damaging effect of testosterone [182,183]. Studies
also revealed that premenopausal women (particularly
those less than 45 years old) who underwent bilateral
oophorectomy were at higher risk of developing CKD
[184], highlighting the renoprotective effect of estrogen
[185,186]. On the other hand, CKD itself is associated
with hypothalamic–pituitary–ovarian dysfunction,
which results in the earlier onset of menopause in
uremic women [187]. The estrogen-based hormone
replacement therapy seems to ameliorate renal dys-
function and delay CKD progression in postmenopausal
patients, which might be partially due to the increased
renal NO production and reduced oxidative stress
[188–190]. Similarly, animal studies also indicated that
the progression of kidney disease was slower
in females.

Estrogen and ERs in CKD settings
Diabetic kidney disease (DKD). As a major micro-
vascular complication of diabetes mellitus, DKD is the
most common cause of end-stage renal disease (ESRD)
in developed countries. DKD has severe individual and
societal consequences, owing to its high morbidity,
mortality, and health-care costs [191]. Clinical studies
regarding the sex-specific differences in the prevalence
and progression of DKD are inconsistent. While some
studies reported a higher incidence of DKD and subse-
quent ESRD in male population, others suggested a
female predominance, or no such differences
[192–194]. Different study protocols (e.g., age, race,
types of diabetes, etc.) and confounding factors might
explain this inconclusive link between sex and DKD
[195]. The role of sex hormones including estrogen in
the setting of DKD has not yet been determined.
Nevertheless, a majority of studies have shown that an
imbalance of sex hormones does exist among both
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male and female patients with diabetes [196,197]. On
the other hand, animal studies supported the concept
of renal protection in DKD with estrogen [198–200].

The roles of estrogen and ERs in DKD have been
investigated. It was reported that the deficiency of
estrogen (ovariectomy) could exacerbate renal patho-
logical manifestations (e.g., glomerulosclerosis and
tubulointerstitial fibrosis) in rats with diabetes induced
by streptozotocin (STZ). The supplementation of estro-
gen or raloxifene attenuated these changes through
reducing lipid peroxidation and oxidative stress
[199,201,202]. Similarly, in male diabetic mice with or
without orchiectomy, estrogen effectively inhibited
DKD progression (e.g., reduced glomerulosclerosis,
albuminuria and glomerular hyperfiltration) [198]. In a
model of spontaneous DKD, the estrogen treatment
attenuated mesangial expansion and glomerular base-
ment membrane (GBM) thickening but failed to ameli-
orate proteinuria and glomerulosclerosis in male
Otsuka-Long-Evans-Tokushima-Fatty rats [203].
Mechanistic studies showed that estrogen exerted its
renoprotective effect on DKD through upregulating
matrix metalloproteinase (MMP)-2 and MMP-9 to accel-
erate the degradation of extracellular matrix (ECM)
[204]. In addition, estrogen attenuated albuminuria and
ECM deposition by regulating the expression of trans-
forming growth factor-b1 (TGF-b1) and its downstream
signaling pathway [205]. Moreover, both estrogen and
raloxifene ameliorated albuminuria and mesangial
expansion in ovariectomized db/db mice, possibly via
inhibiting TGF-b1-induced fibronectin transcription and
activator protein-1 (AP-1) activity [206].

ERa gene polymorphisms have been associated with
the risks of developing CKD with type 2 diabetes melli-
tus in the African American population and of develop-
ing DKD in girls with type 1 diabetes [207,208]. ERa and
its splice variants exhibited protective effects against
DKD induced by STZ in female mice, as evidenced by
reduced glomerular size, hyperfiltration, macrophage
infiltration, and proteinuria [209]. The ERa signaling was
proposed as one of the renal signaling pathways
involved in the pathogenesis of DKD and might be a
promising target for the treatment of nephropathy in
diabetic patients [210].

Since glomerular mesangial cell (MC) and podocyte
injuries are involved in the progression of proteinuria
and DKD, quite a few studies have focused on the
effects of estrogen and ERs on modulating these cellu-
lar processes [211]. Both ERa and ERb are expressed in
human/murine MCs and podocytes [212,213]. It was
demonstrated that estrogen played a protective role in
the regulation of proliferation and apoptosis of these

cells via its receptors. For example, estrogen could
increase the degradation of ECM to slow the progres-
sion of DKD through upregulating MMP-9 in MCs [213].
It also inhibited podocyte apoptosis through binding to
ERb, which was associated with the activation of the
JAK2/STAT3 signaling pathway [214]. Moreover, estro-
gen or tamoxifen could improve albumin excretion,
reduce glomerular size, and decrease matrix accumula-
tion via upregulating the expression of ERb and down-
regulating TGF-b in podocytes from db/db mice [215].
Podocytes isolated from these mice had a higher level
of F-actin and lower level of caspase-9, indicating that
estrogen might protect against podocyte injury in DKD
through regulating both actin cytoskeleton and apop-
tosis [216]. In ERa knockout mice, podocyte injury
(increased desmin and decreased nephrin and Wilms
tumor-1) and apoptosis developed, and the estrogen
treatment could prevent these changes via the activa-
tion of extracellular signal-regulated protein kinase
(ERK) signaling pathway [217,218].

Studies regarding the role of GPER1 in DKD are lim-
ited. GPER1 agonist icariin was reported to exert pro-
tective effects against oxidative stress and fibrosis in
male rats with DKD induced by STZ [219]. GPER1 was
crucial in regulating MC migration and ECM production
in response to TGF-b1 [220]. It was through GPER1 that
icariin reduced the deposition of type IV collagen and
fibronectin induced by high glucose in human/rat MCs
by inhibiting TGF-b/Smad and ERK1/2 signaling path-
ways [221]. The activation of GPER1 also inhibited high
glucose-induced podocyte apoptosis by modulating
Bcl-2 expression and mitochondrial translocation [222].

The altered renin–angiotensin system (RAS) plays a
crucial role in the context of DKD. Male STZ-induced
diabetic mice administered with angiotensin II had
more prominent albuminuria, glomerular hypertrophy
and mesangial expansion than females [223]. Female
rats had lower levels of albuminuria and renal angioten-
sinogen (AOGEN) mRNA compared with male rats in
the development of STZ-induced DKD [224]. This indi-
cates the sex dimorphism regarding RAS in DKD, high-
lighting the potential role of estrogen in this disease.

In brief, a majority of experimental studies back up
the idea that estrogen might play a protective role in
DKD through attenuating glomerular MC and podocyte
injuries via its receptors and through its sex dimorph-
ism in RAS. However, many controversies and questions
remain regarding the roles of sex hormones in the
pathophysiology and progression of DKD. The imbal-
ance of sex steroids (e.g., estrogen versus testosterone)
has been confirmed in the setting of diabetes from clin-
ical trials, which suggests that restoration of hormonal
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homeostasis is far more important than just supplying
estrogen as is done in most of the animal studies.
Diabetes mellitus, especially type 2, is recognized as the
cardiovascular disease equivalent and is associated with
other end-organ complications such as retinopathy and
neuropathy. The potential role of estrogen or ERs in
these aspects has yet to be investigated. Moreover, the
complexity and diversity of signaling networks involved
in diabetes require more drugs developed to specific-
ally target these dysregulated pathways.

Lupus nephritis (LN). As one of the most severe mani-
festations of systemic lupus erythematosus (SLE), LN is
characterized by proteinuria, hematuria and progressive
renal dysfunction. It affects over half of all patients
diagnosed with SLE and is a major risk factor for overall
morbidity and mortality [225]. The female to male inci-
dence of SLE mounts to nine during the fourth decade
of life and declines subsequently until the seventh or
eighth decade, disproportionately affecting women of
reproductive age [226].

The predominance of females among patients with
SLE underlines a pathogenic role for female hormones
including estrogen [227]. Though mixed results exist
regarding whether exogenous estrogen (either oral
contraceptives or hormone replacement therapy) may
increase the risk for SLE, endogenous estrogen and ERs
have been confirmed to be associated with the modula-
tion of both innate and adaptive immune responses in
SLE [228–230]. The development and function of
immune cells such as T/B cells and plasmacytoid den-
dritic cells (DCs), as demonstrated by a large body of lit-
erature, can be directly influenced by estrogen
[231,232]. For instance, estrogen can interfere with the
normal tolerance of naive DNA-reactive B cells and
amplify the activation of autoreactive B cells [233,234].
Clinical studies further revealed that a baseline sex-
biased difference of differentially expressed genes
(DEGs) in B cells existed between healthy females and
males, and that some of the DEGs were relevant to
estrogen-induced type I interferon (IFN)/B cell activator
factor (BAFF) signaling pathway [235,236]. Moreover,
estrogen could stimulate the expression of CD40 ligand,
a molecule involved in the pathogenesis of LN, in per-
ipheral T cells isolated from patients with SLE [232,237].
The detrimental impact of estrogen on SLE was also
confirmed by its inhibitory effect on T cell apoptosis,
thus allowing for the persistence of autoreactive cells
[231]. One randomized controlled trial evaluating the
efficacy of fulvestrant in SLE patients found that select-
ive ERs blocking could reduce disease activity as
revealed by decreased expression of T cell activation

markers and improved SLE disease activity index
(SLEDAI) [238]. Interestingly, studies conducted from
different nations have shown that male SLE patients
had more severe disease patterns and worse prognoses
compared with females. For instance, renal involve-
ment, especially type IV LN with nephrotic syndrome,
was more frequent in males [239–247].

In murine models of lupus, female mice were more
susceptible to the development of glomerulonephritis
[248] and the estrogen treatment accelerated the pro-
gression of LN [249]. This sex discrepancy suggests a
potential role for estrogen in this autoimmune disease.
A majority of animal studies concluded that estrogen
might play a detrimental role in the pathogenesis of
LN. The estrogen treatment could induce a lupus
phenotype with kidney damage in wild-type mice and
resulted in more immune cells expressing ERa (e.g.,
CD4þ and CD8þ T cells, dendritic cells, and macro-
phages) in autoimmune-prone mice [250]. The adminis-
tration of estrogen to lupus-prone mice increased the
levels of BAFF as well as anti-C1q and anti-dsDNA anti-
bodies, and expanded the population of self-reactive
idiotypic B and T cells, thereby accelerating the pro-
gression of glomerulonephritis in lupus [249,251].
Through binding to ERs, environmental estrogens (e.g.,
diethylstilbestrol and bisphenol-A) that mimic estro-
genic activity also enhanced autoantibody production
and IgG immune complex deposition in the kidney in
lupus-prone mice after orchiectomy [252].

Studies of ERs in the pathogenesis of LN and other
immune-mediated glomerular diseases have mixed
results. Those in favor of the detrimental role of ERs
argued that ERa acted in a B cell-intrinsic manner to
promote B cell activation specifically in female lupus-
prone mice, and that its deletion in B cells attenuated
autoantibody production and glomerular immune com-
plexes [253]. Furthermore, ERa knockout female mice
developed less severe nephritis induced by nephrotoxic
serum while manifesting normal autoimmune humoral
response [12]. Similarly, other studies indicated that
ERa deficiency conferred protection against proteinuria
and tubular injury in female lupus-prone mice
[254,255]. However, Scott et al. pointed out that previ-
ously reported ‘ERa knockout mice’ were not in fact
ERa null but expressed an N-terminally truncated ERa
(ERa short, similar to an endogenously expressed ERa46
variant), and that these mice were protected from LN
after ovariectomy only if supplemented with estrogen
[256,257]. This suggested that the ERa short protein
had a protective role in LN and that endogenous ERa
variants might represent a potential therapeutic target.
Likewise, Shim et al. suggested that mice lacking ERa
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rather than lacking ERb developed autoimmune glomer-
ulonephritis, proteinuria, and plasma cell infiltration in the
kidney without antigen challenge [258]. Clinical data have
shown that ERa polymorphism is associated with SLE sus-
ceptibility in the overall and Asian populations as well as
the renal and cutaneous involvements [259–261].

Mechanistic studies regarding the roles of estrogen
and ERs in LN and immune-mediated glomerular injury
are limited. Estrogen was reported to enhance the acti-
vation of conventional DCs through modulating IFN-
dependent and independent pathways in both wild-
type and lupus-prone mice [262]. ERa was required for
Toll like receptor (TLR)-induced inflammation and the
generation of both plasmacytoid DCs and interleukin-
17 (IL-17) producing cells, all of which were implicated
in SLE [263,264]. Another possible mechanism was that
it was through ERa that the estrogen induced the
expression of tumor necrosis factor-like weak inducer of
apoptosis (TWEAK) and aggravated LN [265].

In conclusion, epidemiological studies and the
majority of animal studies highlight the possibility of
the involvement of estrogen/ERs in the pathophysi-
ology of LN. The specific mechanisms underlying its
role require further investigation. A recent study
revealed that aberrant posttranslational modification of
steroid receptors including ERa in T cells contributed to
the gender-bias of SLE and that targeting ERa could
improve the symptoms of lupus patients [266]. Since
there are limited clinical trials investigating the efficacy
of ERa antagonism in these patients, this pioneering
finding may provide a novel molecular basis for future
precision treatment.

IgA nephropathy (IgAN). IgAN is the most common
glomerulonephritis globally leading to ESRD [267].
Mesangial hypercellularity with deposition of IgA-con-
taining immune complexes is one of the key patho-
logical features.

Male gender was an independent risk factor for
developing ESRD in IgAN and male patients presented
with worse clinicopathologic manifestations than
females [268,269]. Consistently, an animal study sug-
gested that trichothecene vomitoxin (VT)-induced IgAN
had a male predilection in B6C3F1 mice and that these
males had more severe disease patterns [270]. To fur-
ther investigate the role of estrogen in IgAN, a study
found that castration of female B6C3F1 mice increased
the severity of VT-induced IgAN, but supplementation
with estrogen did not attenuate this effect but rather
increased disease severity [271].

The polymorphism of ERa gene might be associated
with the pathogenesis of IgAN [272]. Among several

pathways regulating the proliferation of MCs in IgAN,
ERa acted as a hub protein that could affect a set of
proteins and transcription factors involved in the dis-
ease process [273]. A recent study using bioinformatics
analysis based on the Gene Expression Omnibus data-
base found that some of the key genes upregulated in
IgAN were linked with the estrogen signaling pathway
[274]. Another study reported that the expression of
glomerular ERa in IgAN renal tissue decreased with the
increasing severity of disease, proposing ERa as an
independent factor affecting the prognosis of patients
with IgAN [275]. Further studies are needed to elucidate
the roles of estrogen and its receptors in the pathogen-
esis of IgAN.

Other CKD models. In animal models of CKD, estrogen
was reported to exert protective effects against renal
pathologies (e.g., glomerular hypertrophy, atrophic
tubules, loss of podocytes, etc.) through attenuating
oxidative stress and inflammation [276–278]. In the
aging Dahl salt-sensitive (DSS) rats with ovariectomy,
estrogen could attenuate glomerulosclerosis and tubu-
lointerstitial fibrosis [279]. Spontaneously hypertensive
stroke-prone (SHRSP) rats with uninephrectomy treated
with estrogen had reduced albuminuria, glomeruloscle-
rosis, and tubulointerstitial fibrosis [276]. Estrogen also
preserved the contralateral kidney function in rats with
unilateral ureteral obstruction (UUO), as revealed by
reduced expressions of TGF-b and a-smooth muscle
actin (a-SMA) [280]. As a SERM, tamoxifen conferred
protection against kidney fibrosis induced by UUO via
modulation of ERa-mediated TGF-b1/Smad pathway
[281]. Its anti-fibrotic effect was also confirmed in a
model of chronic nephropathy (hypertensive nephro-
sclerosis by chronic inhibition of NO synthesis) where
treated rats had less albuminuria, glomerulosclerosis
and interstitial fibrosis than untreated ones [282].

The role of ERs has also been investigated. In an
adenine-induced CKD model, male rats developed
more severe kidney damage than female ones, which
might be associated with decreased renal expression of
ERa [283]. However, a study using cotton rats to simu-
late the spontaneous CKD in the elderly population
showed that both ERa and ERb were strongly present
in the renal tubules, which correlated with renal cystic
lesions, inflammation and fibrosis [284]. Renal tubular
epithelial cell regeneration and proliferation contribute
to chronic kidney fibrosis, which ultimately leads to
CKD [285,286]. Estrogen participated in the renal tubu-
lar regeneration process by modulating cell prolifer-
ation through the activation of both ERa and GPER1
receptor [287]. The role of ERa in kidney regeneration
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and growth was further confirmed in an animal model,
where ERa knockout female mice exhibited reduced
compensatory kidney growth [288].

Taken together, a majority of the studies suggest
that estrogen might exert protective effects against
CKD through ameliorating renal fibrosis and that SERMs
might be a group of drugs of interest for CKD.
However, pharmacokinetics in CKD should be taken
into account because of the altered renal and non-renal
drug clearance in this population [289]. SERMs such as
tamoxifen and raloxifene have been confirmed to be
associated with the risks of deep vein thrombosis and
pulmonary embolism [290,291]. The long-term safety
and efficacy of these agents need to be investigated.
Besides, little progress has been made regarding the
prevention and reversal of kidney fibrosis up to now.
Whether these drugs confer protection to CKD patients
is still unclear.

Complications of CKD

Chronic kidney disease-mineral and bone disorder
(CKD-MBD)
CKD-MBD is a major complication of CKD characterized
by biochemical abnormalities, bone disorders, and vas-
cular/soft tissue calcification, contributing to cardiovas-
cular disease and mortality [292]. The abnormal
metabolisms of calcium, phosphorus, parathyroid hor-
mone (PTH), and vitamin D are key disturbances in
CKD-MBD [293].

Physiologically, estrogen takes part in the regulation
of phosphorus homeostasis by activating ERa/ERb-
mediated phosphate transporter NaPi-IIa in kidney
proximal tubules [294]. Studies regarding the impact of
estrogen on phosphate metabolism are mainly con-
fined to the general population. The endogenous estro-
gen levels in older men were inversely associated with
serum phosphorus levels [295]. Consistently, postmeno-
pausal women receiving estrogen treatments had lower
serum levels of phosphorus by increasing the urinary
excretion of phosphorus [296]. Another SERM, bazedox-
ifene, could reduce serum phosphorus levels, thereby
improving renal functions in postmenopausal osteopor-
otic women without severe renal insufficiency [297].

CKD-associated osteoporosis is more prominent in
postmenopausal uremic patients, highlighting the
potential role of estrogen in the disease process
[298,299]. For instance, raloxifene was effective in
improving bone mineral density (BMD) in postmeno-
pausal osteoporotic women with CKD [300–303].
Further studies revealed that ERa gene polymorphism
might dictate the different outcomes of BMD in

postmenopausal hemodialysis patients who received
raloxifene [304]. Animal studies showed that the defi-
ciency of estrogen (ovariectomy) contributed to the
impaired fixation of titanium implants in the femurs
and further bone loss in the mandibles of uremic mice
(5/6 nephrectomy) [305,306]. In an animal model of
progressive CKD (male Cy/þ rats with autosomal dom-
inant cystic kidney disease), raloxifene improved skel-
etal material properties (those independent of bone
mass) and structural properties [307]. Mechanistic stud-
ies revealed that estrogen could inhibit PTH-stimulated
osteoclast-like cell formation through blocking both the
cAMP-dependent protein kinase (PKA) and the calcium/
PKC pathway [308,309].

Vascular calcification is highly prevalent in the CKD
population, which is associated with major adverse car-
diovascular events. Hyperphosphatemia and the abnor-
mality of renin–angiotensin–aldosterone system are
contributing factors for this phenomenon [310,311].
Studies focusing on the effects of estrogen on phos-
phate/angiotensin II-induced vascular smooth muscle
cells (VSMCs) proliferation revealed that estrogen and
raloxifene prevented the mineralization of VSMCs [312].
Further analysis revealed that this protective effect was
mediated by the transactivation of growth arrest-spe-
cific gene 6 (Gas6) and upregulation of liver kinase B1
(LKB1) in the presence of ERa [313,314]. A randomized
controlled trial suggested that estrogen, which had a
favorable effect on oxidative stress, might protect
against atherosclerotic cardiovascular disease in post-
menopausal women with ESRD on hemodialysis [315].

In conclusion, these results suggest that estrogen
and SERMs are of clinical significance in the manage-
ment of CKD-MBD through attenuating biochemical
abnormalities, bone disorders, and vascular calcification.
Potential adverse effects of these agents are still to be
alerted, especially in hemodialysis patients. Although
there were no reported breast cancer or thrombo-
embolism associated with the use of raloxifene by the
aforementioned studies, the long-term safety and effi-
cacy of SERMs need to be confirmed by larger prospect-
ive studies with longer follow-ups. Moreover, the
mainstays of therapy for CKD-MBD are dietary phos-
phorus restriction, modification of dialysis prescriptions,
phosphate binders, calcitriol or vitamin D analogs, and
calcimimetics [316]. Parathyroidectomy (PTX) is consid-
ered when patients develop drug resistance or side
effects [317]. Recent studies also confirmed the feasibil-
ity and efficacy of microwave ablation treatment for
patients ineligible for PTX [318,319]. Therefore, more
studies are warranted to evaluate whether there is an
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additional benefit of adding estrogen or SERMs to the
established treatment regimen.

Uremic coagulopathy
Epidemiological studies revealed an increased sus-
ceptibility to major bleeding events in dialysis
patients [320,321]. Potential etiologies include plate-
let dysfunction, dysfunctional von Willebrand factor,
decreased production of thromboxane, uremic tox-
ins, and anemia [322,323]. The bleeding tendency in
uremic patients was further complicated or exacer-
bated by their comorbidities and medications (e.g.,
hypertension, atrial fibrillation with warfarin therapy,
cerebrovascular disease with anticoagulants)
[318,324–326]. For patients who were refractory to
routine interventions for uremic bleeding, conju-
gated estrogens might be another option [327–329].
Overall, there lacks concrete data regarding the effi-
cacy of estrogen in the prevention and treatment of
bleeding in CKD patients. Most of the studies investi-
gating the hemostatic effect of estrogen were con-
fined to the general population, particularly in the
setting of recurrent bleeding from arteriovenous
malformations, and still there were conflicting results
[330,331]. Several case reports have suggested that
estrogen, as part of the hormonal therapy, might be
effective in the management of recurrent bleeding
or hematoma in uremic patients [332–334]. An ani-
mal study suggested that estrogen could shorten the
prolonged bleeding time in uremic rats and that this
hemostatic effect was neutralized by ER antagonists
[335]. A possible hypothesis was that the impaired L-
arginine-NO signaling under uremic conditions led to
acute endogenous deprivation of estrogen and
resulted in inhibited platelet aggregation and adhe-
sion [336–338].

The long-term effects of estrogen as a component of
hormone therapy in postmenopausal women have
been well described by the Women’s Health Initiative
trial and related studies, and a consensus has been
reached that women who start hormone therapy within
10 years of menopause onset may have less risk of
thromboembolic complications [339,340]. However, this
notion should be taken prudently in CKD population, as
suggested by KDOQI guidelines and several studies
[341–343]. CKD is an established risk factor for venous
thromboembolism [344,345]. Patients with CKD are at
high risk for thromboembolic events due to endothelial
dysfunction and retention of indolic solutes [346,347].
Estrogen can cause thrombosis through elevating the
levels of prothrombotic factors and decreasing the lev-
els of protein S and antithrombin [348]. Because of the

altered drug pharmacokinetics in patients with CKD,
exogenous estrogen treatment might be associated
with an increased risk of arteriovenous access throm-
bosis [348–350]. Likewise, an animal study suggested
that the estrogen supplementation in rats with renal
impairments produced thrombotic microangiopathic
lesions in the kidneys [351].

The dual effect of estrogen in uremic coagulopathy
needs further investigation. Clinical application of estro-
genic agents in the treatment of uremic bleeding
requires more explorations. The risk–benefit ratio of
estrogen in postmenopausal women with advanced
CKD is still unknown and clinical trials addressing this
issue are needed.

Conclusions and research gaps

Beyond its conventional role in the reproductive sys-
tem, estrogen also functions in diverse developmental
and physiological processes through its different recep-
tors. Estrogen and ERs are crucial in maintaining mito-
chondrial homeostasis and modulating ET-1 system in
the kidney, which points forward to their indispensable
roles in normal kidney function. In kidney proximal
tubules, estrogen takes part in the regulation of phos-
phorus homeostasis via its receptors. Estrogen and
modulation of ERs have been shown to exert anti-oxi-
dative stress and anti-fibrosis effects in CKD models. On
the other hand, studies have revealed the involvement
of estrogen and ERs signaling pathways in some auto-
immune kidney disorders such as LN.

In light of these findings, the altered or dysregulated
estrogen/ERs signaling pathways contribute to a variety
of diseases (Table 1). Moreover, given the fact that sex
dimorphism exists in certain renal disease entities
revealed by epidemiological studies, the roles of estro-
gen and ERs cannot be overemphasized in the patho-
genesis and prognosis of kidney diseases. Indeed,
clinical and experimental studies have shown that the
level of estrogen or ERa gene polymorphism influences
the susceptibilities or dictates the outcomes of several
renal diseases. Based on the evidence provided in this
review, we propose the concept that targeting estro-
gen/ERs signaling pathways, either by agonizing or by
antagonizing, might works in patients with certain kid-
ney diseases.

However, many gaps exist in knowledge regarding
the roles of estrogen and ERs in distinct kidney diseases
and further research is necessary to address these areas.
The gender differences in the setting of AKI does not
necessarily mean this is the case in every single cause
for AKI. Likewise, the functional role of estrogen or ERs
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confined to one disease entity cannot readily be repli-
cated in another and thus should be analyzed separ-
ately. Besides, evidence regarding the exact roles of
estrogen and ERs is mixed, particularly in some auto-
immune kidney disorders. Although modulation of ERs
or supplementation of estrogen has renoprotective
effects in several experimental models, there is still a
long way to go before it can be applied to clinical trials.
The benefits of SERMs have been witnessed in patients

with CKD, however, adverse events and long-term out-
comes should be assessed.

The therapeutic potential of targeting estrogen/ERs
signaling pathways remains to be tested. Moreover, by
no means does targeting these mechanisms fully tackle
renal disorders, considering the complex signaling net-
works involved. Further experimental and clinical stud-
ies are warranted to comprehensively understand the
roles of estrogen and ERs in different kidney diseases.

Table 1. Summary of key estrogen/ER signaling pathways and potential drugs in kidney diseases.
Kidney diseases Animal/cell models Key estrogen/ER signaling pathways Potential drugs

AKI IRI
AKI after cardiac arrest and

cardiopulmonary resuscitation
Sepsis-associated AKI
Mercury/cisplatin/gentamicin-

induced AKI
Methotrexate-induced tubular

epithelial cell injury

Estrogen-renal sympathetic nervous
system (#)-regional noradrenaline
(#)

Estrogen-PPARc (þ)
Estrogen-ERb/GPER-ET1 (#)
Estrogen-PI3K/Akt (þ)-eNOS

phosphorylation (")
Estrogen-NMDAR (�)
GPER-NO
Estrogen-Naþ/Kþ-ATPase
Estrogen-OAT2 (")

Raloxifene
Tamoxifen

DN STZ-induced DN
db/db mice
Otsuka-Long-Evans-Tokushima-Fatty

rats
High glucose-induced mesangial

cell/podocyte injuries

Estrogen-lipid peroxidation/
oxidative stress (#)

Estrogen-MMP2/9 (þ)-ECM (#)
Estrogen-TGFb1 (�)-FN/AP-1 (�)
Estrogen-ERK (þ)
ERb-JAK2/STAT3 (þ)
GPER1-TGFb/Smad (�)-ERK1/2 (�)

Raloxifene
Tamoxifen
Icariin

LN MRL/lpr mice
NZB/WF1 mice
Chronic GVHD-induced LN

Estrogen-autoreactive B cells (")/T
cell apoptosis (#)

Estrogen/ERa-BAFF (þ)
ERa-TLR (þ)
Estrogen-IFN dependent/

independent pathways
Estrogen/ERa-TWEAK

Fulvestrant

IgAN VT-induced IgAN ERa-MCs proliferation
CKD Aging DSS rats

SHRSP rats with uninephrectomy
UUO-induced kidney fibrosis
Hypertensive nephrosclerosis

induced by inhibition of NO
synthesis

Adenine-induced CKD

Estrogen-renal NO (")-oxidative
stress (#)

Estrogen-TGFb/a-SMA (�)
ERa-TGFb/Smad
ERa/b-cystic lesions/inflammation/

fibrosis
Estrogen-ERa/GPER-kidney

regeneration and growth

Tamoxifen

CKD-MBD 5/6 nephrectomy
Male Cy/þ rats with autosomal

dominant cystic kidney disease
PTH-stimulated osteoclast-like cell

formation
Phosphate/Angiotensin II-induced

VSMC proliferation

Estrogen-ERa/ERb-NaPi-IIa (þ)
Estrogen-cAMP dependent PKA

(�)-calcium/PKC (�)
Estrogen/ERa-ERa-GAS6

(þ)-LKB1 (")

Bazedoxifene
Raloxifene

Uremic coagulopathy Uremic rats Impaired L-arginine-NO signaling !
estrogen (#) ! platelet
aggregation/adhesion (-)

Estrogen-protein S/antithrombin (#)

Conjugated estrogens

AKI: acute kidney injury; IRI: ischemia-reperfusion injury; PPAR: peroxisome proliferator-activated receptor; ET1: endothelin-1; eNOS: endothelial nitric oxide
synthase; NMDAR: N-methyl-D-aspartate receptors; NO: nitric oxide; OAT2: organic anion transporter 2; DN: diabetic nephropathy; STZ: streptozotocin;
MMP: matrix metalloproteinase; ECM: extracellular matrix; TGFb: transforming growth factor b; FN: fibronectin; AP-1: activator protein-1; ERK: extracellular
signal-regulated protein kinase; JAK2/STAT3: Janus kinase 2/signal transducer and activator of transcription 3; LN; lupus nephritis; GVHD: graft-versus-host
disease; BAFF: B cell activating factor; TLR: toll-like receptor; IFN: interferon; TWEAK: tumor necrosis factor-like weak inducer of apoptosis; IgAN: IgA nephr-
opathy; VT: trichothecene vomitoxin; MCs: mesangial cells; CKD: chronic kidney disease; DSS: Dahl salt-sensitive; SHRSP: spontaneously hypertensive
stroke-prone; UUO: unilateral ureteral obstruction; a-SMA: a-smooth muscle actin; CKD-MBD: chronic kidney disease-mineral and bone disorder; PTH: para-
thyroid hormone; VSMC: vascular smooth muscle cell; cAMP: cyclic adenosine monophosphate; PKA: protein kinase A; PKC: protein kinase C; GAS6: growth
arrest-specific gene 6; LKB1: liver kinase B1.
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