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Potentiation of combined p19Arf 
and interferon‑beta cancer gene 
therapy through its association 
with doxorubicin chemotherapy
Ruan F. V. Medrano1,7, Thiago A. Salles2, Rafael Dariolli2,3, Fernanda Antunes1, 
Valker A. Feitosa4,8, Aline Hunger1,9, João P. P. Catani1,10, Samir A. Mendonça1,5, 
Rodrigo E. Tamura1,11, Marlous G. Lana1, Elaine G. Rodrigues6 & Bryan E. Strauss1*

Balancing safety and efficacy is a major consideration for cancer treatments, especially when 
combining cancer immunotherapy with other treatment modalities such as chemotherapy. 
Approaches that induce immunogenic cell death (ICD) are expected to eliminate cancer cells by direct 
cell killing as well as activation of an antitumor immune response. We have developed a gene therapy 
approach based on p19Arf and interferon‑β gene transfer that, similar to conventional inducers of ICD, 
results in  the release of DAMPS and immune activation. Here, aiming to potentiate this response, 
we explore whether association between our approach and treatment with doxorubicin (Dox), a 
known inducer of ICD, could further potentiate treatment efficacy without inducing cardiotoxicity, 
a critical side effect of Dox. Using central composite rotational design analysis, we show that 
cooperation between gene transfer and chemotherapy killed MCA205 and B16F10 cells and permitted 
the application of reduced viral and drug doses. The treatments also cooperated to induce elevated 
levels of ICD markers in MCA205, which correlated with improved efficacy of immunotherapy in vivo. 
Treatment of subcutaneous MCA205 tumors associating gene transfer and low dose (10 mg/kg) 
chemotherapy resulted in inhibition of tumor progression. Moreover, the reduced dose did not cause 
cardiotoxicity as compared to the therapeutic dose of Dox (20 mg/kg). The association of p19Arf/
interferon‑β gene transfer and Dox chemotherapy potentiated antitumor response and minimized 
cardiotoxicity.

Immunogenic chemotherapy relies on several distinct mechanisms to modulate the tumor microenvironment 
(TME) and activate the immune  system1–6, including through the induction of immunogenic cell death (ICD), 
which is characterized by a series of regulated events that mediate the release of danger associated molecular 
patterns (DAMPS) from dying cancer cells to stimulate robust maturation of antigen presenting cells (APCs) and 
effective priming of  CD8+ T  cells7. Such events include secretion of  ATP8, exposure of calreticulin from the endo-
plasmic  reticulum9, as well as the passive release of high-mobility group box 1 (HMGB1)10. Even though these 
classical ICD markers were initially identified as a cellular response to anthracyclines, including doxorubicin 
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(Dox)11, additional chemotherapeutic agents as well as other classes of ICD inducers have been identified, such 
as  radiotherapy10 and hypericin-based photodynamic  therapy12. Importantly, each of these agents differ in the 
induction of DAMPS both in terms of magnitude and the subset of ICD markers emitted from dying  cells13, 
making the association of different ICD inducers an interesting field of investigation.

To this end, we have developed a set of replication deficient adenoviral vectors (serotype 5) that encode the 
 p19Arf (tumor suppressor protein, p53 functional partner) and murine interferon-β (IFNβ, pleiotropic immu-
nomodulatory cytokine) cDNAs under the control of a p53 responsive promoter, named PGTxβ (or simply PG). 
We have shown that adenoviral vector mediated delivery of the  p19Arf and IFNβ (p19Arf/IFNβ) combination to 
tumor cells that harbor wild type p53, such as B16F10, unleashes a cell death program that displays features of 
necroptosis, while mediating the release of bona fide ICD markers as well as immune protection against a second-
ary tumor  challenge14–16. Indeed, in a previous study, we explored a prophylactic vaccine model and observed that 
when injected during the cell death process, B16F10 mouse melanoma cells treated ex vivo with the p19Arf/IFNβ 
combination, elicited a  CD4+ and  CD8+ T cell dependent protection against fresh naive B16F10 cells injected in 
the opposite  flank17. We also explored an in situ gene therapy model and obtained supporting evidence of the 
superior immune stimulatory capability of the p19Arf/IFNβ combination over the single use of IFNβ18.

Here, we propose that the efficacy of our vector-based approach could be further improved through its asso-
ciation with other therapies and investigated potential benefits of associating p19Arf/IFNβ gene therapy with 
Dox immunogenic chemotherapy, a well-known inducer of  ICD11 frequently used for the treatment of sarcoma, 
lung, ovarian and other  cancers19.

Dox is proposed to act by disrupting topoisomerase II-mediated DNA repair and by producing free radicals 
that inflict damage to several cellular  components19. Additionally, as previously reported by our group and others, 
treatment with Dox can lead to the activation of the apoptotic p53 transcriptional  pathway20. Even though it is an 
effective anticancer agent, its use is limited, in part, by the induction of severe cardiotoxicity which, depending 
on the dose, can evolve to chronic cardiomyopathy with a high rate of  mortality21,22.

Our results indicate that the association of p19Arf/IFNβ with Dox (p19Arf/IFNβ + Dox) drastically enhances 
cell death in vitro, allowing the application of a reduced dose of adenovirus and Dox. This association also 
enhances the immunogenicity of treated cells by increasing the secretion of ATP and exposure of HMGB1, 
which in a therapeutic vaccine model resulted in superior antitumor protection when compared to the single 
therapy. Upon i.t treatment of established tumors, this association improved tumor control by our gene therapy, 
matching the survival benefit of the therapeutic, yet cardiotoxic, high dose of Dox. Moreover, pre-treatment 
with p19Arf/IFNβ gene therapy is able to enhance the effect of a sub-therapeutic dose of Dox, performing as 
well as the therapeutic dose while preserving cardiac function. Therefore, use of p19Arf/IFNβ gene therapy in 
association with another ICD inducer such as Dox provides important combinatorial benefits to both therapies 
and warrants further investigation.

Methods
Cell culture and cell lines. The mouse cell lines MCA205 H-2b (MCA, methylcholanthrene derived sar-
coma, provided by Dr. Guido Kromer, France) and B16F10 (B16, melanoma, kindly provided by Dr. Roger 
Chammas, ICESP) were maintained in a humidified incubator at 37 °C with 5%  CO2 and cultivated in Roswell 
Park Memorial Institute (RPMI) medium (Thermo Fisher Scientific, Waltham, MA, USA), supplemented with 
10% fetal bovine serum (Invitrogen) as well as 1X Anti-Anti (Antibiotic–Antimycotic -100X, Thermo Fisher 
Scientific). HEK293 cells were cultivated in Dulbecco’s modified Eagle medium (both from Thermo Fisher Sci-
entific), supplemented and maintained in the same conditions as above.

Here we use the MCA sarcoma cell line and employed an intratumoral (i.t) application model since it was 
demonstrated under these conditions the ability of Dox to unleash ICD and stimulate immune responses 
in vivo11. We also used the B16 cell line, as it was with this model that we revealed the cell death and immune 
stimulatory events of our p19Arf/IFNβ treatment. With regard to the treatment order, we based our approach on 
the work of Fridlender and collaborators (2010) that showed that association of an adenoviral vector encoding 
IFNβ with chemotherapy is more effective when gene transfer is applied  first23.

The MCA-DEVD cell line was generated by transduction with a lentivirus reporter for caspase-3 activity 
and selection for puromycin resistance (0.5 μg/ml). This vector, previously  described24, encodes a constitutively 
expressed luciferase-GFP protein separated from a polyubiquitin domain via a caspase-3 cleavage site and was 
generously provided by Dr. Chuan-Yuan Li (Department of Radiation Oncology, University of Colorado School 
of Medicine, Aurora, CO, USA).

Virus construction, production and titration. Construction and production of AdRGD-PG adenovi-
ral vectors (serotype 5) containing modification with the RGD motif in the fiber as well as the p53-responsive 
promoter (PGTxβ, PG) has been described  previously14. Titration of adenoviral stocks was performed using 
the Adeno-X Rapid Titer Kit (Clontech, Mountain View, CA, USA) and titer yields were: AdRGD-CMV-LacZ 
(3.6 ×  109 IU/mL, infectious units/milliliter), AdRGD-PG-LUC (1 ×  1011 IU/mL), AdRGD-PG-eGFP (5 ×  1010 IU/
mL), AdRGD-PG-p19 (1.3 ×  1010 IU/mL) and Ad-RGD-IFNβ (5 ×  1010 IU/mL). This biological titer was used to 
calculate multipilicity of infection (MOI).

In vitro assays. MCA or B16 cells (1 ×  105) were plated in 6 well plates containing 1 mL of RPMI media 
and transduced with adenovirus at the desired MOI. After an overnight transduction period (12–16 h), 2 mL of 
media was added and cells kept in culture until needed. When combining adenoviral transduction with chemo-
therapy, Dox (doxrubicin hydrochloride, Sigma, St. Louis, MO, USA) was added immediately after the overnight 
transduction using the concentration indicated for each experiment. Importantly, in the Dox single treatment 
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condition, Dox was added at the same moment as in the association group, 12 to 16 h after cell plating. After 
12 h treatment with Dox (1 mg/mL) or Nutlin-3 (10 μM, Sigma), expression of eGFP from AdRGD-PG-eGFP 
was analyzed by flow cytometry (Attune®, Life Technologies). Cell viability was assessed by MTT assay where, 
8 h after transduction in 6 well plates, 2 ×  104 cells/well were plated in 96 well plates, treated with Dox, and ana-
lyzed after 16 h of incubation. Non-transduced cells were used as viable control and protocol was carried out as 
described  previously25. Cell cycle analysis by propidium iodide (PI) staining was carried out 72 h after p19Arf/
IFNβ and Dox single treatment, as previously  described16. Analysis of caspase 3 activity in vitro was performed 
16 h after combined treatment using the CellEvent Caspase-3/7 Green Reagent (Thermo Fisher Scientific) by 
flow cytometry, following manufacturer’s instructions. Last, analysis of ICD markers upon p19Arf/IFNβ + Dox 
was conducted as detailed  previously14. Briefly, detection of  calreticulin+ and  PI- cells was made 14 h after com-
bined treatment, by staining with a CRT-specific antibody (1:100, Novus, Biologicals, CO, USA) and after cells 
were washed with PBS, they were incubated with Alexa488-conjugated anti-rabbit secondary antibody (1:500, 
Thermo Fisher Scientific) followed by PI staining to exclude dead cells, immediately before flow cytometry. 
Accumulation of ATP in the cell supernatant was detected using the ENLITEN ATP Assay (Promega, Madison, 
WI, USA), as per the manufacturer’s instructions. Luminescence was observed using a GloMax Plate Reader 
(Promega). HMGB1 in cell supernatant was detected by Western blot after conditioned medium was supple-
mented with protease inhibitor cocktail (Thermo Fisher Scientific). Then, 180 µl of the medium was concen-
trated (Concentrator Plus—Eppendorf, Hamburg, Germany) and subjected to western blotting. Unrelated, high 
molecular weight regions of the membrane were removed before detection was performed using anti-HMGB1 
(Abcam ab79823, Cambridge, UK) and a secondary antibody conjugated with horseradish peroxidase before 
visualization using ECL (GE Healthcare, Chicago, IL, USA) and the ImageQuant LAS4000 imaging platform 
(GE Healthcare). See ‘Supplementary Information Westerns S2’ for original images from three independent 
assays. Additional Western blots were performed using cell lysates, high-molecular weight regions of the mem-
branes were removed and then detection was performed using anti- PARP (Cell Signaling, Danvers, MA, USA, 
#9542), anti-Actin (Santa Cruz Biotechnology, Dallas, TX, USA, #47778), anti-Caspase 3 (Cell Signaling, #9662), 
anti-Tubulin (Millipore, Burlington, MA, USA, #05-829) and the appropriate secondary antibodies conjugated 
with horseradish peroxidase (anti-mouse—Sigma #A9044 e anti-rabbit—Sigma #A0545). See ‘Supplementary 
Information Westerns S2’ for original images from two independent assays.

In vitro association of p19Arf/IFNβ and Dox. The influence of two independent variables, namely, 
MOI of adenoviral vectors encoding p19Arf/IFNβ and the concentration of Dox, was investigated on MCA and 
B16 cells using factorial experiments in five levels (Table S1), with the percentage of hypodiploid cells as the vari-
able response. The experiments were carried out employing central composite rotational design (CCRD) where, 
for each cell line, a set of twelve combinatory assays containing a central composite factorial matrix plus rotation 
points, central points and controls was performed (Table S2, where the assays and conditions are provided in 
detail). To better visualize the effects and interactions of MOI and Dox concentration on the percentage of hypo-
diploid cells, assessed by PI staining after 20 h of treatment, the results were plotted in response surface graphs.

Importantly, the statistical significance of the independent variables and their interactions was determined 
by Fisher’s post-test for an analysis of variance (ANOVA) and Pareto chart analysis, both at a confidence level of 
95% (p ≤ 0.05). Moreover, five repetitions at the central point (CP) assays were used to minimize the error term 
of the ANOVA. Experimental designs, data regression and graphical analysis were performed using the Statistica 
software v.7.0 (Statsoft, Inc., Tulsa, OK, USA).

Ethics statement. Both C57BL/6 and Nude mice were female, 7 weeks old, obtained from the Centro de 
Bioterismo da FMUSP and kept in the animal facility in the Centro de Medicina Nuclear (CMN) in SPF condi-
tions, with food and water ad libitum. The methods are reported in accordance with ARRIVE guidelines. The 
well-being of the mice was constantly monitored and all methods, including vaccination protocols, in vivo gene 
therapy, imaging, echocardiographic assessments, anesthesia and euthanasia were carried out in accordance 
with relevant guidelines and regulations of Brazil and our institution whose ethics committee (Committee for 
the Ethical Use of Animals, CEUA, University of São Paulo School of Medicine, FMUSP) approved this project 
(protocol n° 165/14).

Immunotherapy model. In the first step of the immunotherapy model, naïve C57BL/6 mice were inocu-
lated (s.c) in the right flank (tumor challenge site) with fresh untreated MCA (2 ×  105) or B16 (6 ×  104) cells and 
in the second step, vaccinated (s.c) on days + 3, + 9 and + 15 with 3 ×  105 ex vivo treated cells applied in the left 
flank (vaccine site). Ex vivo treatment was carried out as follows: MCA or B16 cells were seeded in 10 cm plates 
with 2 mL of media and co-transduced with the AdRGD-PG-p19 and AdRGD-PG-IFNβ (MOI 500 for each) 
for 4 h before the addition of 8 mL of fresh media. Then, cells were kept in culture for 16 h and in the p19Arf/
IFNβ + Dox or Dox groups, Dox (14 µM) was added for 6 h, until cells were harvested, washed twice with cold 
PBS, counted and resuspended in 100 µL of cold PBS. For the DEAD cell + GFP control group, cells were trans-
duced with the AdRGD-PG-eGFP vector (MOI 1000) and after 16 h, harvested, washed twice with cold PBS, 
resuspended and lysed by three cycles of freezing and thawing.

In vivo gene therapy and doxorubicin treatment models. MCA (2 ×  105) or B16 (5 ×  105) cells were 
harvested, washed twice with cold PBS, resuspended in 100 µL of PBS per mouse and then inoculated subcuta-
neously (s.c) in the left flank of immune competent C57BL/6 or immune deficient Balb/c Nude (Foxn1n) mice. 
While mice were not randomized after injection of cells, but there was no specific selection of animals for each 
treatment group. No blinding of group allocation was performed at any phase of experimentation. No animals 
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were excluded from the data. Approximately 8 days later, palpable (60  mm3) tumors were treated three times, 
once every 2 days, with intratumoral (i.t) injections (administered with precision Hamilton glass syringes (vol-
ume 100µL) and 26G needles) of the following adenoviral vectors, AdRGD-CMV-LacZ or AdRGD-PG-LUC 
(4 ×  108 IU, resuspended in 25 µL final volume of PBS/mouse) or treated with the combination of AdRGD-PG-
p19 and AdRGD-PG-IFNβ (2 ×  108 IU, for each vector and maintaining the 25 µL final volume per mouse). For 
the Dox single treatment model, chemotherapy was applied (i.t) once on day 12 with the following doses: 60, 20, 
10 or 5 mg/kg (in the final volume of 30 µL of PBS/mouse). Whereas in the association model, adenoviral vectors 
were injected as explained above and Dox given 2 days after the last viral injection (day 14), following the injec-
tion method as the Dox single treatment group. Tumor progression was measured by calipers every two days 
and volume calculated as  described17. For the survival analysis comparing C57BL/6 and Nude mice, treated mice 
were euthanized by anesthesia with ketamine/xylazine followed by  CO2 inhalation when tumor volume reached 
1000  mm3 unless otherwise noted. See figure legends for the number of animals in each experimental group.

In vivo bioluminescence imaging. For the analysis of caspase 3 in  vivo, MCA-DEVD tumors were 
treated in situ as described above and 24 and 48 h after the last treatment injection, mice were submitted to bio-
luminescence imagining (IVIS Spectrum, Caliper Life Science) to detect the luciferase activity from the DEVD 
reporter. To this end, 10 mg/kg luciferin (Promega) was administered by intraperitoneal (i.p) injection of each 
mouse and these were anesthetized with isoflurane (Cristalia, São Paulo, Brazil) using the Xenogen anesthesia 
system before imaging. Images were captured and only the strongest signal from each tumor was included in the 
analysis with Living Imaging 4.3 software (PerkinElmer, Waltham, MA, USA). Luciferase activity was obtained 
from the average radiance value [p/s/cm2/sr]. To calculate the fold activity overtime, average radiance values 
obtained for each mouse 48 h post-treatment were divided by its respective value at 24 h. Parental MCA tumors 
were used as negative control and no emission was detected (data not shown).

Echocardiographic assessments. The systolic cardiac function was assessed by echocardiography. 
Exams were performed 10 days after treatments with AdRGD-PG-eGFP (adenovirus control), Dox 10 mg/kg, 
Dox 20 mg/kg and p19Arf/IFNβ + Dox 10 mg/kg. Mice were anesthetized with 1.5 to 2.5% isoflurane (in 100% 
oxygen ventilation). They were trichotomized and placed in supine decubitus to obtain cardiac images. Paraster-
nal-long and short axis images were captured using VEVO 2100 ultrasound equipment (Vevo 2100 Imaging Sys-
tem, VisualSonics, Toronto, Canada) with a 40 MHz linear-transducer. Analyses were performed off-line using 
VevoCQ LV Analysis software (VisualSonics). Parameters such as systolic and diastolic volumes were calculated 
using Simpson’s modified algorithms present in the analysis software (parasternal-long axis images). Based on 
these volumes, stroke volume (μL) and left ventricle ejection fraction (LVEF, %) were calculated. Also, linear 
measurements were obtained from parasternal short axis images. Left ventricle shortening fraction (LVSF, %) 
was calculated, using systolic and diastolic diameters. Left ventricle mass (LV mass, mg) was estimated by linear 
measurements. Beating rate (beats per minute, BPM) was recorded directly by an animal table-ECG system con-
nected to the VEVO 2100 system. Echocardiographic results were interpreted considering the American Society 
of Echocardiography recommendations concerning the mouse  model26. All parameters were shown as the mean 
values of three consecutive cardiac cycles. Transthoracic echocardiography image acquisition and analysis was 
performed by an expert investigator who was blind to the experimental groups.

Statistical analysis. Data are presented as mean ± SEM. Statistical differences between groups are indicated 
with p values, being *p < 0.05, **p < 0.01 and ***p < 0.001. Statistical tests are indicated in each figure legend along 
with the number of independent experiments performed or number (n) of mice in each group. These analyses 
were made using the GraphPad Prism 5 (La Jolla, CA, USA) software, with the exception of the CCRD analysis 
(explained above).

Results
Use of p19Arf/IFNβ or doxorubicin as monotherapies. Considering that the response of the MCA 
cell line to our AdRGD-PG vectors has not been previously studied, we first confirmed efficient transduction and 
p53-driven expression from the AdRGD-PG-eGFP vector upon Dox or Nutlin-3 treatment (Fig. S1a). Co-trans-
duction with the AdRGD-PG-p19 and AdRGD-PG-IFN-β vectors (p19Arf/IFNβ) augments cell death levels in 
comparison with individual treatments or the GFP control vector (Fig. S1b), in agreement with our previous 
observations made with the B16 and LLC-1 cell  lines16,18.

Employing an in situ gene therapy model, where established MCA tumors are treated with intratumoral 
injections of adenoviral vectors, we next examined the antitumor efficacy of our gene therapy approach when 
treatment was performed in C57BL/6 immune competent mice or in T cell deficient Nude mice. Significant 
reduction in tumor progression was seen in either host (Fig. 1a), likely benefiting from NK cell activity as seen 
in our previous  study17. Survival was improved when treatment was performed in the immune competent host, 
suggesting the involvement of T cells in the therapeutic response (Fig. 1a).

We also analyzed the effect of Dox as an immunogenic monotherapy. In vitro, MCA cells were readily killed 
by Dox in a dose responsive manner (Fig. S1c). In vivo, using a single intratumoral injection of Dox, the dose of 
20 mg/kg or 60 mg/kg were shown to inhibit tumor progression and prolong survival (Fig. 1b), especially when 
therapy was performed in an immune competent host, as previously  observed11,27. Since the dose of 10 mg/kg 
was not effective in inhibiting tumor progression, this will be considered hereafter as a sub-therapeutic dose. 
These results reveal the efficacy of p19Arf/IFNβ and Dox when applied as monotherapies and prompted us to 
investigate their association.
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In vitro association of p19Arf/IFNβ and Dox. We expect that the association between p19Arf/IFNβ 
and Dox would act synergistically in the induction of cell death, thus allowing a reduction in both virus MOI 
and Dox concentration. To test this hypothesis, cell viability of MCA and B16 cells was analyzed after exposure to 
increasing doses of Dox (1–30 µM) as well as virus particles (MOI 100–1100), applied in association or individu-
ally. A dramatic reduction in cell viability was observed in either cell line where combined treatment surpassed 
the effect caused by monotherapies, as noted by the lower doses of the combination (MOI 300 with 6 µM of Dox) 
in contrast to the higher doses employed for the single agents (MOI 1100 or 30 µM of Dox, Figs. 2a and 3a). To 
further support this finding, we next performed central composite rotational design (CCRD) analysis by com-
bining different Dox concentrations and viral MOIs and evaluated the impact on promoting cell death. MCA 
and B16 were treated with different combinations of chemotherapy and p19Arf/IFNβ (detailed in Tables S1 and 
S2) and the percentage of hypodiploid cells projected in a surface response graph (Figs. 2b and 3b). Through this 
analysis, the association of p19Arf/IFNβ and Dox was shown to significantly enrich the induction of cell death, 
even in conditions where Dox concentration and virus MOI were decreased in an interchangeable manner, 
indicating that by sensitizing cells to Dox chemotherapy, p19Arf/IFNβ allows use of lower doses with potentially 
less severe side effects. Furthermore, we investigated the activity of caspase 3, known for playing a central role in 
the execution-phase of  apoptosis28 yet, based on our previous study, is not involved in the necroptotic cell death 
induced by p19Arf/IFNβ14. Accordingly, in both cell lines, treatment with just p19Arf/IFNβ provided relatively 
low caspase 3/7 activity, in sharp contrast to 14 µM Dox, where activity was seen in about 30% of cells (Figs. 2c 
and 3c). In the MCA cell line, p19Arf/IFNβ + Dox treatment induced caspase 3/7 activity in more than 40% of 
cells, suggesting an additive effect that may explain why this association strongly induces cell death (Fig. 2c). 
Additional indicators of cell death, annexinV staining and cleavage of PARP and caspase 3, corroborate these 
findings for MCA (Fig. 2d,e). In B16 cells, the additive effect of p19Arf/IFNβ + Dox treatment on caspase 3/7 

Figure 1.  Use of p19Arf/IFNβ and doxorubicin as monotherapies inhibits progression of established MCA 
tumors in immune competent hosts. (a) Progression of MCA tumors in C57BL/6 and Nude mice upon in situ 
PBS (Mock), Lac-Z or p19Arf/IFNβ gene therapy. [Two-way Anova and Bonferroni post-test]. Survival 
analysis comparing immune competent C57BL/6 mice and immune deficient Nude mice [Log Rank Mantel-
cox test, followed by Wilcoxon post-Test]. n = 5 for the p19Arf/IFNβ (C57), Lac-Z (C57), Mock (C57, p19Arf/
IFNβ (Nude), n = 4 for Mock (Nude) and Lac-Z (Nude) groups. (b) Progression of MCA tumors treated 
intratumorally with PBS (Mock) or doxorubicin (Dox) and performed in C57BL/6 and Nude mice. [Two-way 
Anova and Bonferroni post-test]. Survival analysis comparing immune competent C57BL/6 and immune 
deficient Nude mice. [Log Rank Mantel-cox test followed by Wilcoxon post-Test]. n = 6 for the Mock (C57), 
Mock (Nude), Dox 60 mg/kg (C57) groups; n = 4 for Dox 20 mg/kg (C57), Dox 20 mg/kg (Nude) and n = 3 Dox 
60 mg/kg.
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activity is more subtle (Fig. 3c), and is not reflected in annexinV staining or cleavage of PARP (Fig. 3d,e), pos-
sibly related to the induction of necroptosis, not apoptosis, as noted in our previous work with this cell  line14.

Impact of p19Arf/IFNβ and Dox association on tumor immunogenicity. A possible benefit of the 
p19Arf/IFNβ and Dox association would be to potentiate the antitumor immune response unleashed by each 
of these therapies. We hypothesize that by using two distinct ICD inducers, secretion of ICD DAMPS could be 
modulated and result in increased immunogenicity of the treated  cells13. To address this hypothesis, we exam-

Figure 2.  In vitro association of p19Arf/IFNβ and doxorubicin augments cell death levels. (a) MTT analysis of 
MCA cells treated for 12 h individually or in combination with doxorubicin and AdRGD-PG-p19 and AdRGD-
PG-IFNβ vectors. n = 4 [One-way Anova and Tukey’s multiple comparison post-test]. (b) Response surface plot 
illustrating the influence of different p19Arf/IFNβ MOIs and doxorubicin concentrations on the percentage 
of hypodiploid MCA cells after 20 h of treatment, for which interactions were considered significant by the 
ANOVA and Pareto chart analysis. (c) Flow cytometry analysis of caspase 3 activity in MCA cells after 16 h of 
p19Arf/IFNβ and of doxorubicin treatment. Each assay performed on 3 independent occasions with technical 
duplicates. One-way Anova with Sidak’s post-test. *p < 0.0001 vs CTR; #p < 0.0001 p19Arf/IFNβ + Dox vs p19Arf/
IFNβ or Dox (d) Fresh MCA cells, treated as indicated, were stained to reveal apoptotic cells (AnnexinV 
APC +) or advanced cell death (Sytox Green +) before observation by flow cytometry. Each assay performed on 
3 independent occasions with technical duplicates. Two-way Anova with Tukey’s post-test. (e) Representative 
image of two independent Western blotting experiments of cleaved PARP or caspase 3 with or without cleavage 
upon treatment of MCA cells (N = 3).
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ined key markers of ICD in response to the p19Arf/IFNβ + Dox treatment. While either therapy alone could 
induce emission of the ICD markers in MCA cells, the association of p19Arf/IFNβ + Dox (MOI 500 + 14 µM) 
provided the highest intensity (Fig. 4a).

To test if the p19Arf/IFNβ + Dox treatment results in superior immunogenicity of the treated cells, we 
employed a cancer immunotherapy model in which MCA or B16 cells were treated ex vivo with p19Arf/IFNβ, 
Dox or their combination, and before the start of the cell death process (i.e., not detectable by PI staining), cells 
were injected (s.c) to die within the host and function as a cancer vaccine immunogen against a previously 
established growing tumor, termed as challenge tumor. Remarkably, only vaccination with p19Arf/IFNβ + Dox 
MCA cells reduced progression of challenge tumors, whereas cells treated with just p19Arf/IFNβ or Dox dis-
played little protective effect when compared to mice that received AdRGD-PG-eGFP transduced cells killed by 
freeze and thaw, a control expected to induce accidental necrosis and tumor antigen release (Fig. 4b). However, 
it is important to note that mice vaccinated with cells treated with just p19Arf/IFNβ developed tumors at the 

Figure 3.  In vitro association of p19Arf/IFNβ and doxorubicin augments cell death levels. (a) MTT analysis of 
B16 cells treated for 12 h individually or in combination with doxorubicin and AdRGD-PG-p19 and AdRGD-
PG-IFNβ vectors. n = 4 [One-way Anova and Tukey’s multiple comparison post-test]. (b) Response surface plot 
illustrating the influence of different p19Arf/IFNβ MOIs and doxorubicin concentrations on the percentage 
of hypodiploid MCA cells after 20 h of treatment, for which interactions were considered significant by the 
ANOVA and Pareto chart analysis. (c) Flow cytometry analysis of caspase 3 activity in B16 cells after 16 h of 
p19Arf/IFNβ and of doxorubicin treatment. Each assay performed on 3 independent occasions with technical 
duplicates. One-way Anova with Sidak’s post-test. *p < 0.0001 vs CTR; #p < 0.0001 p19Arf/IFNβ + Dox vs 
p19Arf/IFNβ or Dox. (d) Fresh B16 cells, treated as indicated, were stained to reveal apoptotic cells (AnnexinV 
APC +) or advanced cell death (Sytox Green +) before observation by flow cytometry. Each assay performed on 
3 independent occasions with technical duplicates. Two-way Anova with Tukey’s post-test. (e) Representative 
image of two independent Western blot experiments for detection of cleaved PARP upon treatment of B16 cells.



8

Vol:.(1234567890)

Scientific Reports |        (2022) 12:13636  | https://doi.org/10.1038/s41598-022-17775-y

www.nature.com/scientificreports/

vaccine site at late time points (Fig. S2), which may be due to resistant clones already present in this cell line 
that, in vitro, were observed to repopulate the tissue plate after p19Arf/IFNβ therapy (data not shown). Thera-
peutic vaccination was also performed with B16 cells and once again p19Arf/IFNβ + Dox B16 cells profoundly 

Figure 4.  p19Arf/IFNβ and doxorubicin association potentiates immunogenicity of treated cancer cells. (a) 
Detection of ICD-related DAMPS in the MCA cell line: ATP (secreted, detected by ELISA), calreticulin (CALR, 
cell surface detection by flow cytometry) or HMGB1 (secreted, detected by western blot of cell concentrated cell 
supernatant). For ATP and CALR, each assay performed on 3 independent occasions with technical duplicates. 
One-way Anova with Sidak’s post-test. *p < 0.0001 vs CTR; #p < 0.0001 p19Arf/IFNβ + Dox vs p19Arf/IFNβ 
or Dox The western blot was performed on 3 independent occasions; a representative image is presented. (b) 
MCA tumors were established (s.c.) before immunotherapy was performed using MCA cells treated ex vivo 
as indicated. Impact of immunotherapy on progression of challenge MCA tumors was monitored. [Two-way 
Anova and Bonferroni post-test] n = 6 for all groups, except for p19Arf/IFNβ + Dox where n = 7. **p < 0.001 
p19Arf/IFNβ + Dox vs Dead MCA + GFP. (c) B16 tumors (s.c.) were established then immunotherapy performed 
using B16 cells treated ex vivo as indicated. Progression of the s.c. (challenge) tumors were monitored.
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inhibited progression of challenge tumors, as evidenced by 5 out 7 mice that fully rejected their tumors (Fig. 4c) 
and consequently presented survival superior to the monotherapy groups (Fig. S3). Although the immunological 
mechanism involved in this antitumor response needs to be investigated in more detail, these results provide 
strong evidence for the ability of the p19Arf/IFNβ + Dox association to augment immunogenicity of treated cells.

In situ association of p19Arf/IFNβ and Dox. Next, we sought to investigate the therapeutic impact 
of associating in situ p19Arf/IFNβ with Dox in comparison with the monotherapies. To this end, established 
MCA-DEVD tumors, which were stably modified to expresses a caspase 3 reporter, were treated in situ with 
three rounds of AdRGD-PG-p19 and AdRGD-PG-IFNβ gene therapy and two days later, also injected with the 
therapeutic dose of Dox, 20 mg/kg. From this assay, we noticed that individual treatments with p19Arf/IFNβ 
and Dox similarly reduced tumor progression when compared to the GFP control treatment (Fig. 5a). However, 
as the tumor progresses, this similarity is lost, since tumors treated with just p19Arf/IFNβ begin to grow more 
than Dox-treated tumors. The combined use of these treatments was strikingly effective not only in decreasing 
tumor volume, but also in conferring a survival benefit (Fig. 5b). Interestingly, only in the association group, 
complete regression was observed in one mouse, evidenced by reduced volume shortly after treatment, followed 
by a 40 day period of stable volume, then regressed completely by day 70, a result not demonstrated in the graph 
of tumor volume, but contemplated in the survival curve. In this way, treatment with Dox and its association 
with p19Arf/IFNβ were the most effective modalities for increasing survival.

Moreover, through the analysis of caspase 3 activity in a bioluminescence imaging strategy, treatment with 
Dox alone or in association with p19Arf/IFNβ in situ resulted in elevated luciferase reporter activity, thus indicat-
ing increased caspase 3 activity (Fig. S4). In contrast, neither the treatment with the GFP or p19Arf/IFNβ vectors 
resulted in increased caspase 3 activity. This assay suggests that pretreatment with p19Arf/IFNβ, just as in vitro, 
does not activate caspase 3. However, as compared to Dox treatment, this assay did not reveal potentiation of 
caspase 3 when p19Arf/IFNβ was associated with Dox.

Having observed that the association between p19Arf/IFNβ gene transfer with the therapeutic dose of Dox 
does not further reduce tumor volume as compared to Dox alone, we next asked whether the benefit of this 
association would be maintained when using a sub-therapeutic dose of Dox, 10 mg/kg, and consequently ease 
induction of cardiotoxicity, a major side effect observed in the clinical setting. Therefore, after in situ treatment 
with AdRGD-PG-p19 and AdRGD-PG-IFNβ gene therapy, MCA tumors were injected (i.t) with 10 mg/kg of 
Dox, which when used individually does not reduce tumor progression to the same extent as the dose of 20 mg/
kg (Fig. 6a). In accordance with our hypothesis and in vitro data, treatment with p19Arf/IFNβ elevated the 
efficacy of the 10 mg/kg dose of Dox to the same level as the dose of 20 mg/kg, providing significant reduction 
in tumor progression as well as substantial increase in survival (Fig. 6b), when compared to control groups 
GFP + PBS and Dox 10 mg/kg as monotherapy. However, those mice in the Dox 20 mg/kg group failed to gain 
weight during the three weeks of therapy (Fig. 6c) and even more critically, as analyzed by echocardiogram, a 
profound impairment of cardiac function was revealed in these animals. Indeed, we revealed compromised left 
ventricular ejection function (LVEF) and left ventricular systolic function (LVSF) parameters (Fig. 6d–g). We 
also observed that ventricular mass was not altered by the treatment, which indicates that no aggravating ana-
tomic changes were detected up to the moment of the analysis (Fig. 6h). Moreover, through the beating rate, we 
can attest that this analysis was performed following a standardized protocol, as mice displayed similar beating 
rates per minute (Fig. 6i). It is important to note that this analysis was performed 10 days after the i.t. treatment 
of Dox, representing an acute post-therapy event. This assay shows that the association of p19Arf/IFNβ + Dox 

Figure 5.  In vivo association of p19Arf/IFNβ gene therapy with doxorubicin inhibits tumor progression and 
changes the dynamic of caspase 3 activity. (a) Tumor progression curves of established MCA-DEVD tumors that 
received in situ gene therapy with the AdRGD-PG-p19 and AdRGD-PG-IFNβ vectors and after 48 h, treated 
with 20 mg/kg of doxorubicin as indicated. [Two-way Anova and Bonferroni post-test] n = 6 for all groups. 
(b) Survival analysis of mice from a. [Log Rank Mantel-cox test, followed by Wilcoxon post- Test. n = 8 for all 
groups, except p19Arf/IFNβ which n = 9.
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Figure 6.  Pre-treatment with p19Arf/IFNβ gene therapy restores efficacy of a sub-therapeutic dose of 
doxorubicin yet maintains cardiac function. (a) Tumor progression curves of established MCA tumors that were 
treated with 10 or 20 mg/kg of doxorubicin or in the association group, treated with the AdRGD-PG-p19 and 
AdRGD-PG-IFNβ in situ gene therapy and after 48 h, also treated with 10 mg/kg of doxorubicin. [Two-way 
Anova and Bonferroni post-test] n = 8 for all groups. (b) Survival analysis of mice from (a). [Log Rank Mantel-
cox test, followed by Wilcoxon post-test]. (c) Monitoring of body weight during therapy [Two-way Anova and 
Bonferroni post-test]. Echocardiogram analysis of (d) ejection fraction, (e) left ventricular systolic function, 
(f) stroke volume, (g) systolic volume, (h) left ventricular (LV) mass and (i) beating rate of heart 10 days after 
therapy. n = 8 for each group. [One-way Anova, followed by Tukey’s multiple comparison post-test].
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permitted the use of a lower drug dosage, resulting in both preserved cardiac function as well as effective inhibi-
tion of tumor progression.

Discussion
In this study we have explored potential benefits of applying p19Arf/IFNβ gene therapy in association with Dox 
chemotherapy, both of which elicit ICD, and as postulated here, their interplay could act on different levels of the 
therapeutic response. Previously, we have shown that reintroduction of p19Arf to cancer cells that harbor wild 
type p53 leads to the activation of the p53 apoptotic program, but when an IFNβ antiviral context is induced 
simultaneously, an alternative mechanism of cell death is unleashed acting in a caspase 3 independent manner 
and through the up-regulation of RIP3K, a critical mediator of  necroptosis14. Here, the association of p19Arf/
IFNβ + Dox resulted in increased levels of cell death accompanied by increased caspase 3 activity, permitting 
the reduction in virus and drug doses, resulting in the effective control of tumor progression while avoiding 
cardiotoxicity caused by higher doses of Dox.

Dox and Nutlin-3 are well known for their ability to activate p53, a point we demonstrate here and in our pre-
vious  work29. Interestingly, these treatments resulted in increased reporter gene activity, implying that the MCA 
cell line is endowed with transcriptionally functional p53 that can regulate expression from the PG promoter. 
Although not experimentally demonstrated here, activation of p53 by the combined use of these agents may 
further stimulate the PG promoter and augment transgene expression levels, a point addressed experimentally 
in our previous  work30. In our approach, treatment with the AdRGD-PG-p19 and AdRGD-PG-IFNβ vectors as 
well as Dox are all expected to activate p53, resulting in enhanced expression from the p53-responsive vectors 
as well as a multi-pronged approach to the induction of cell death.

Indeed, Dox is a well-known inducer of apoptosis and caspase 3/7  activity11, as seen in this work when 
applied alone or in conjunction with p19Arf/IFNβ gene transfer. This was shown through the analysis of cas-
pase 3 in vivo, where Dox alone or in combination with p19Arf/IFNβ resulted in prolonged caspase 3-depend-
ent luciferase activity when comparing the 48-h vs. 24-h time points. This suggests that in vivo the cell death 
pathway induced by p19Arf/IFNβ treatment was modulated by the addition of Dox, as observed in our in vitro 
experiments. CCRD analysis suggests that the viral MOI and drug concentration may be reduced since these 
treatments act cooperatively. Thus, the dynamics of vector expression, transgene activity and chemotherapy are 
acting in concert to bring about cell death.

Although massive cell death may be needed to reduce tumor volume, induction of ICD can also evoke anti-
tumor immunity. Therefore, combinatorial use of distinct agents could provide additive stimuli, modulating the 
extent of cell death as well as the immunogenicity of treated cells. As shown here, ex vivo treatment of cells with 
p19Arf/IFNβ + Dox provided superior antitumor protection in a therapeutic vaccine setting, a result that pre-
sumably depends on the up-regulation of some of the known ICD mediators, as shown here. Even so, additional 
factors may be in play. Modulation of the immunogenic potential of cancer cells has already been demonstrated 
with cisplatin (CDDP) that as a single agent does not promote endoplasmic reticulum stress and therefore no 
translocation of calreticulin to the cell  surface31. But the association with thapsigargin, an inhibitor of the sarco/
ER Ca(2+)-ATPase, endows CDDP with this ability and therefore a role in ICD. Thus, in future studies it will be 
interesting to investigate which of the ICD mediators are actually critical or even if high levels IFNβ provided 
by our vector can circumvent the lack of expression of one of them—a matter with important implications for 
cancer patients that present dysfunction in the ability to succumb to bona fide ICD, as already identified in 
breast cancer patients who carry a toll like receptor 4 (TLR4) loss-of-function allele and consequently a defect 
in HMGB1  binding10.

Additionally, modulation of immunogenicity should impact how dying cells interact with different APC sub-
sets. For example, CD169 + macrophages have been shown to dominate antitumor immunity by cross-presenting 
dead cell-associated  antigens32. Expression of our AdRGD-PG-IFNβ vector should also bring about the strong 
maturation and differentiation stimuli that are associated with IFNβ, possibly impacting tumor associated DCs. 
In particular, it would be interesting to study the role of Baft3 DCs which, upon activation of the STING-IFNβ 
pathway, can mediate recruitment of T cells within the TME through the CXCL9/CXCL10  axis33,34.

Yet, infliction of cell death can also negatively impact therapeutic outcome, as observed with localized radio-
therapy that mediates caspase 3 activation and regulates prostaglandin E2  production, stimulating growth of 
surviving tumor cells and favoring tumor  repopulation24. Moreover, capture of apoptotic cell by  CD169+ mac-
rophages has also been implicated in promoting rapid expression of the chemokine CCL22, inducing migration 
of  FoxP3+ Tregs to the spleen and their activation, favoring classic apoptotic cell-induced immune  suppression35. 
Along these lines, induction of inhibitory immune checkpoints could also come into play and hamper immunity. 
It is tempting to speculate that these mechanisms may explain why the therapeutic effect from the association 
of p19Arf/IFNβ with the 20 mg/kg was not more pronounced as compared to their application as monothera-
pies. It will be critical to evaluate levels of PD-L1 expression on tumor associated CD45 + and CD45- cells upon 
p19Arf/IFNβ gene therapy, which besides revealing if cancer cells or immune host cells are actually mediating 
immune resistance, may also provide rational for associating PD-1 checkpoint blockade, an immunotherapy 
proposed as the cornerstone for most combinatorial immunotherapeutic  strategies36, especially for those that 
rely on promoting strong inflammatory immune responses.

The relationship between intratumoral doses of Dox and their immunomodulatory properties has been 
reported  previously27,37–41. The evidence indicates that the efficacy seen at each dose may be influenced not only 
by the tumor cell type, but also by the tumor  size42 or timing when treatment is applied, resulting in dynamic 
changes in the immune infiltrate that correlate with tumor progression, including accumulation of myeloid cells 
and a reduction in the number of functional effector T  cells43,44. Even though the 5 and 10 mg/kg doses were 
considered as sub-therapeutic, the outcome may have been quite different if applied earlier during progression 
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or in other cancer types. But then again, we believe that our model, where fully established tumors are treated, 
may better reflect the advanced stage at which most cancer patients are enrolled into the clinic. And it is in this 
scenario that association of an immunotherapy capable of promoting cell death and immune stimulation, such 
as ours, may offer an advantage over other strict immune modulators, specifically, sensitizing cancer cells to cell 
death and modulating the surrounding TME with respect to immune function. Future studies will be required 
to explore the full extent of the immune stimulation in response to the p19Arf/IFNβ + Dox associated therapy.

While immune activation was not thoroughly explored here, the interactions between p19Arf/IFNβ and Dox 
were shown to significantly potentiate induction of cell death, allowing the use of smaller doses of Dox as well 
reduced virus MOI. Accordingly, association with p19Arf/IFNβ with a subtherapeutic dose of Dox, 10 mg/kg, 
resulted in the effective inhibition of tumor progression, yet preserved cardiac function. While higher dosages 
of Dox could control tumor progression, acute cardiotoxicity was encountered. Thus, the association of p19Arf/
IFNβ + low dose Dox was advantageous.

In conclusion, evidence presented here unveiled relevant therapeutic benefits of using the p19Arf and IFNβ 
gene therapy in association with Dox, a standard of care immunogenic chemotherapeutic agent. This study 
paves the way for the exploration of combinatorial approaches, such as gene transfer in association with other 
inducers of immunogenic cell death or immune stimulatory modalities, harboring great potential for the further 
improvement of therapeutic efficacy while avoiding cardiotoxicity.
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