
ORIGINAL RESEARCH
published: 05 February 2021

doi: 10.3389/fncom.2021.594337

Frontiers in Computational Neuroscience | www.frontiersin.org 1 February 2021 | Volume 15 | Article 594337

Edited by:

Florentin Wörgötter,

University of Göttingen, Germany

Reviewed by:

Yuanyuan Mi,

Chongqing University, China

Viola Priesemann,

Max Planck Society (MPG), Germany

*Correspondence:

Yifan Dai

daiyifan_dyf@qq.com

Hideaki Yamamoto

hideaki.yamamoto.e3@tohoku.ac.jp

Received: 13 August 2020

Accepted: 06 January 2021

Published: 05 February 2021

Citation:

Dai Y, Yamamoto H, Sakuraba M and

Sato S (2021) Computational

Efficiency of a Modular Reservoir

Network for Image Recognition.

Front. Comput. Neurosci. 15:594337.

doi: 10.3389/fncom.2021.594337
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Liquid state machine (LSM) is a type of recurrent spiking network with a strong

relationship to neurophysiology and has achieved great success in time series

processing. However, the computational cost of simulations and complex dynamics

with time dependency limit the size and functionality of LSMs. This paper presents

a large-scale bioinspired LSM with modular topology. We integrate the findings on

the visual cortex that specifically designed input synapses can fit the activation of

the real cortex and perform the Hough transform, a feature extraction algorithm used

in digital image processing, without additional cost. We experimentally verify that

such a combination can significantly improve the network functionality. The network

performance is evaluated using the MNIST dataset where the image data are encoded

into spiking series by Poisson coding. We show that the proposed structure can not only

significantly reduce the computational complexity but also achieve higher performance

compared to the structure of previous reported networks of a similar size. We also

show that the proposed structure has better robustness against system damage than

the small-world and random structures. We believe that the proposed computationally

efficient method can greatly contribute to future applications of reservoir computing.

Keywords: liquid state machine, reservoir computing, pattern recognition, robustness, Hough transform

INTRODUCTION

Recurrent neural networks (RNNs) have been successful in many fields including time sequence
processing (Sak et al., 2014), pattern recognition (Graves et al., 2009), and biology (Maass et al.,
2006; Lukosevicius and Jaeger, 2009). In a typical RNN, a network is initialized by randomly
coupling the neurons, and their synaptic weights are updated by backpropagation as in feedforward
networks. However, the major difference between RNNs and feedforward networks is that the
connections in RNNs possess recurrent loops and thus create time-dependent dynamics. Higher
degree of freedom gives RNNs the ability of generalization but also introduces design and training
difficulties. The constraints of hardware and algorithms limit the applications of RNNs.

One practical paradigm to overcome the difficulties of RNNs is reservoir computing (RC)
proposed by Maass et al. (2002a) and Jaeger (2001). The RC paradigm skips gradient-
descent training in RNNs and uses a simple readout function to process the states of
neurons. The network functionality is retained at a considerably reduced training cost (Maass
et al., 2006). Therefore, RC performs well with limited resources. In addition, without
backpropagation, spiking neuron models can be applied, leading to low power consumption
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of hardware (Soures, 2017; Zyarah et al., 2018). Such a model is
generally referred to as liquid state machine (LSM), and previous
works have confirmed that LSMs with specific connections are
highly robust (Hazan and Manevitz, 2010, 2012) against both
input noise and network noise, e.g., random attacks on a fraction
of synapses. Efforts have been made to illustrate the relationship
between LSMs and biological neuron networks (Lukosevicius
and Jaeger, 2009) to find an explainable learning model based
on biology.

Although LSMs have advantages, their practical application is
still limited. This is primarily because of the lack of methods to
scale up and the difficulty of parallelizing LSM simulations. This
situation raises the following questions: (1) How can we improve
the computational efficiency of reservoir networks? (2) How does
the synaptic connection between the input and reservoir neurons
influence the classification performance?

In this paper, regarding the first question, we consider a
modular reservoir network and compare its performance with
those of random, metric (Maass et al., 2002a,b), and small-
world (SW) reservoirs. We show that the computational cost
is minimized in modular networks, in which the simulation
of the entire reservoir can be simplified using the divide-and-
conquer method. Regarding the second question, we investigate
the impact of the Hough transformation (Ballard, 1981), a
model consistent with themechanisms of information processing
in the visual cortex (Kawakami and Okamoto, 1993), on the
classification performance of image recognition tasks.We test the
MNIST dataset by transforming the pixel values into sequences
using Poisson coding. Owing to the randomness in the Poisson
process, samples of the same class have very different firing
times, which stresses the network generalization capabilities
(Soures, 2017).

The outline of this paper is as follows: section Materials
and Methods explains the methodology of the models. The
experimental results together with noise analysis are illustrated
in section Results. The discussion and conclusions are presented
in sections Discussion and Conclusions.

MATERIALS AND METHODS

The LSM model consists of input, the spiking neuron reservoir,
and readout. In our methodology, following the previous studies
given in Kheradpisheh et al. (2018), we first preprocess the
input using a difference of Gaussian (DoG) filter. DoG filter was
used because it well approximates the center-surround properties
of the retinal ganglion cells (Kheradpisheh et al., 2018). Next,
the preprocessed sequences are encoded by Poisson coding and
fed into the modular reservoir by Hough encoded synapses, as
shown in Figure 1. The connection map of input synapses is
predefined to make the firing rates of post-synaptic neurons
consistent with the Hough transform of the input image (28 ×

28-pixel MNIST images). The topology of the modular reservoir
is described in subsection Reservoir Structure. Finally, a support
vector machine (SVM) readout function with C = 1 is used to
classify the reservoir states. Empirically, the linear kernel in SVM
performs better than the Gaussian or polynomial kernel. From

the experimental result presented in the following sections, all
reservoirs perform better compared to the case where the input
signal is classified using only the SVM without the reservoir. The
basic simulation is performed in MATLAB.

Preprocess
The input images are first preprocessed using the DoG filter. The
size of the filter is 7, and the standard deviations of DoG are
1 and 2. After that, the float values are converted to temporal
sequences by the Poisson coding method, where the maximum
firing rate of each input neuron is 160 per second to keep the
post-synaptic neuron firing neither too frequent nor too sparse.
The total number of time steps per simulation is 1,600, with a
time interval of 0.4 ms.

Hough Transform
The Hough transform has a background in neurophysiology
(Blasdel and Obermayer, 1994; Watts and Strogatz, 1998) and
is an efficient method of image processing (Ballard, 1981). As
illustrated in Figure 1, synapses between the input layer and
the reservoir modules that receive direct inputs are designed to
perform the Hough transforms.

Inspired by Kawakami and Okamoto (1993), we implement
the Hough transform using a predefined map of input synapses
using Equation (1) for lines and Equation (2) for circles:

Widx(ρ, θ), idx(x,y)=δρ−x∗ cos(θ)−y∗sin(θ) (1)

Widx(a,b,r),idx(x,y)=δr2−(x−a)2−(y−b)2 (2)

where Wi,j is the connection matrix between presynaptic (j) and
post-synaptic (i) neurons, idx(x,y) is the index of the neuron with
coordinates of (x,y) in the input layer, and δx equals 1 if x is
1 and equals 0 otherwise. (ρ, θ ) and (a,b,r) are the coordinates
for post-synaptic modules, and (x,y) are for presynaptic modules.
In this way, we decide whether or not to build a synapse
between neurons idx(x,y) and idx(a,b,r) or idx(ρ, θ ). The Hough
transforms for lines and circles consist of 16 × 12 and 6 × 6
× 6 neurons, respectively. Such a map integrates the synapses;
thus, the firing frequency of post-synaptic neurons will consist
of the Hough transform of the presynaptic layer. The response
also agrees with the observation in the cortex well (Kawakami
and Okamoto, 1993, 1995).

Reservoir Structure
As shown in Figure 1, all modules in a modular reservoir are
aligned to a directed acyclic graph. The graph is generated
according to Algorithm 1 with 10 modules. The generation
algorithm preserved the acyclic property between modules,
which enables the division of computation load as discussed in
section Computational Efficiency.

Within each module, 9× 15 neurons are connected according
to the SW structure. We use the SW structure because it provides
better connectivity with fewer synapses than a random network
(Bohland and Minai, 2001). Moreover, the SW structure has high
robustness to noise (Hazan and Manevitz, 2012). In terms of
network dynamics, SW connectivity decreases the tendency for
a network to be globally synchronized as compared to random
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FIGURE 1 | Proposed liquid state machine structure with a modular reservoir and specifically designed input synapses Equations (1, 2), which perform the Hough

transform with minor computational cost. The input image is first transformed into spikes by Poisson coding. Compared to feedforward structure, the states of the

modules depend on multiple modules.

Algorithm 1 | Random Directed Acyclic Graph Generation.

1. Fix the modules that are directly connected to input synapses

2. Label all modules (1, 2, …, n) according to the topologic order

3. For all non-input connections (from module j to module i, with i > j):

if rand < p: %% p (= 0.25) depends on the density of the graph

Connect module j and module i

networks (Netoff et al., 2004; Yamamoto et al., 2018b), and we
expected that this leads to the maintenance of high dimensional
dynamics as a reservoir. The SW network is generated by
rewiring from a 2D regular lattice network where each neuron
is connected to 8 neighbor neurons. The edges in the lattice are
either preserved or rewired to another destination neuron with
a probability of 0.35. Owing to the boundary effect, the average
out-degree of neurons was 7.2. For neurons of different modules,
the synapses form a directed acyclic graph. The connection
map between two modules is aligned randomly. Each neuron
in a presynaptic module is randomly connected to 10 neurons
in a post-synaptic module in order to keep a moderate firing
rate. Synaptic weights of connections between modules are
kept constant.

This modular setting has previously been shown to increase
the functional complexity of the network (Yamamoto et al.,
2018a). We show experimentally that the modular reservoirs
provide better performance over non-modular reservoirs of
the same size. Moreover, the computation for the simulation

Algorithm 2 | Divide-and-Conquer Method for Modular Simulation.

1. Generate a directed acyclic graph and connect the modular reservoir where

the modules of zero input degree are connected to the input layer

2. Add the input layer into a queue named K and label the depth 0. Add other

modules into the set named U.

3. while (U != NULL):

4. N, depth = K.pop()

5. if N.neighbor_node != null:

6. parfor I in N.neighbor_node:

7. if I in U:

8. I.simulate()

9. U.drop(I)

10. K.add((I, depth+1))

11. %% Simulate each submodules separately according to the topology

order, where modules of the same depth could be simulated in parallel.

The results of the pre-modules are the input of the post-module.

of modular networks can be reduced using divide-and-
conquer methods, as shown in Algorithm 2 and subsection
Computational Efficiency.

Neuron Model
The LSM model always consists of input, spiking neuron
reservoir, and readout. The input is encoded by Poisson coding
and the readout is one SVM with C equals 1. Empirically, the
linear kernel in SVM performs better than the Gaussian or
polynomial kernel. From the experimental result provided in the
following subsections, all reservoirs perform better than in the
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SVM-only case where the input is directly fed into the SVM
without the reservoir.

The neuron model of reservoir neurons is the leaky integrate-
and-fire (LIF) model. The parameters of the LIF model used
herein reference the work byMaass et al. (2002b) with a threshold
V th of 15mV, a reset voltage Vreset of 13.5mV, a membrane time
constant τmem of 30ms, Vrest of 13.5mV, and refractory periods
of 5ms and 2ms for excitatory (ex) and inhibitory (in) neurons,
respectively. For the synaptic models, we use a delay of 1.5ms for
ex–ex (post–pre) and a delay of 0.8ms otherwise. The strengths
of synaptic weights are also referenced from Maass et al. (2002b)
with slight modifications for reducing the mean firing rate: 20
for ex–ex, 45 for in–ex, and −17 otherwise. For each simulation,
before presenting an input, a phase of 50ms without any input is
kept to allow all neurons decay to a resting value.

The activation of an LIF neuron is calculated as follows:

τmem
dV

dt
= − [V (t)−Vrest]+RI(t) (3)

V(t) = Vreset , if V(t) = Vth (4)

Here, R and Vrest are constants and I(t) is the excitation
current defined asWin×Sin+Wres×Sres, whereWin andWres are
connection matrices of input–reservoir and reservoir–reservoir
and Sin and Sres are spiking vectors of input neurons and reservoir
neurons. After simulating for 1,600 time steps, the average
spiking frequency of neurons in the reservoir is calculated
and recorded as the features of the sample. Afterward, the
collected features are fed into the readout SVM layer to perform
the classification.

Convolutional Neural Networks
To compare the performances of our LSM and a conventional
network, we implement a trivial convolutional neural network
(CNN) with two convolutional and subsampling layers and test
it on the MNIST dataset. The kernels of the first and second
layers have a 5 × 5 size with 6 and 12 channels, respectively. The
reservoir network in the comparison group has 1,488 neurons
with 10 modules. We simulate both networks on the same dataset
until the models reach an accuracy of 90% and compare the
convergence speed of the two networks.

RESULTS

We used the MNIST dataset to investigate the influence of
the reservoir connectivity on the classification performance and
computational load of LSMs. We compared the results of the
proposed modular reservoir with those of other reservoirs,
including SW,metric (Maass et al., 2002b), and random networks
with comparable number of neurons and node degrees (Table 1).
In addition, the LSM noise analysis is performed. The results
show that the proposed modular structure has the highest
robustness against both input noise and system noise.

Pattern Recognition
In this subsection, we present the results of 10-class classification
tasks with the MNIST dataset, in which the input images are

TABLE 1 | Summary of reservoir network configurations.

Topology Number of neurons Parameters

Random 1,500 Mean degree: 15

Connection probability: 0.01

Small-world 1,500 Mean degree: 8

Rewiring probability: 0.35

Metric 1,500 (Located on the

integer points of a 15 ×

10 × 10 lattice)

Mean degree: 9.44

Connection probability between

nodes a-b: Pa,b = C · e

[

−D(a,b)2

λ2

]

,

where D(a,b) is the distance between

a-b, λ = 2, C = 0.3 (ex-ex), 0.2

(ex-in), 0.4 (in-ex), 0.1 (in-in).

Modular 1,488 (Module 1: 192,

Module 2: 216, other

Modules: 135)

Mean degree: 12.10

(See also section Reservoir Structure)

transformed into spike sequences. We set the test set to 200
randomly selected samples.

In Figure 2, we show the raster plots of neurons in different
modules. We observe that each module exhibits different features
that can be extracted by the SVM readout. For example, in the
case of the input symbol “4,” there are two major vertical lines
of zero degree in the polar coordinates, and consequently, there
are two bright spots in the Hough-transformation layer of line
detection with θ equals zero (module 1 in Figure 2). Similarly,
in the second Hough-transformation layer, only one bright spot
indicates that there is only one circular component with a fixed
center in the symbol (module 2 in Figure 2). Within 10,000
of training samples, CNNs generally cannot converge, but the
reservoir suffers only a slight loss. Therefore, the reservoir has
the advantage of fast learning.

In order to validate the proposed structure, we compare
it with the following cases: (1) an SVM classifier directly
connected to the input (SVM-only); (2) a reservoir consisting
of a metric network proposed by Maass et al. (2002b); (3) a
common SW reservoir; and (4) a CNN with two convolutional
and two subsampling layers. The metric network was
constructed by connecting 1,500 neurons with the probability

of Pa,b = C · e
−

D(a,b)2

λ2 , where C and λ are constants and D(a,b) is
the distance between nodes a and b. All parameters were adopted
from Maass et al. (2002b) (Table 1). The SW reservoir was
constructed using the same procedure described in subsection
Reservoir Structure with 1,500 neurons.

The learning curves of the reservoir networks are summarized
in Figure 3A. All reservoir networks performed better than the
SVM-only case, which verifies the effect of the reservoir on
the computational performance. The highest score among the
three topologies was achieved by the modular structure (black
curve), possibly due to an increase in functional complexity
in the reservoir network. Moreover, reservoir networks were
found to converge significantly faster than CNNs (see subsection
Comparison With the Convolutional Neural Network).

To better understand the classification performance of the
reservoir networks, we created a confusion matrix with the
predicted and true labels in columns and rows, respectively
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FIGURE 2 | Firing rate and raster plot of each module in the proposed modular reservoir. The raster plot is an example of the network dynamics during learning of the

symbol “4” preprocessed using a difference of Gaussian filter. The brightness of the pixels in the maps represents the firing rate of each neuron. As illustrated in

Figure 1, the connections between modules are randomly generated to form an acyclic graph using Algorithm 1. The index of each graph indicates the index of the

modules shown in Figure 1.

FIGURE 3 | (A) Learning curves of reservoir computing models with different reservoir topologies. (B) Average confusion matrix for the modular + Hough reservoir

network. (C) Learning curves of the reservoir computing models for the TI-46 classification task.

(Figure 3B). Two hundred images for each digit were fed into
the network, and predicted labels were counted and presented as
percentages. Interestingly, different digits with smaller distance
were found to have higher percentage of being misclassified, e.g.,
“3” was classified as “8” in 14.3% of the trials. Contrarily, the
misclassification was less frequent in digits with larger distance,
and misclassification between “0” and “1,” e.g., was 0%.

The main enhancement of performance in the modular
network comes from the Hough transform layer (compared
the black and blue curves), which well supports our hypothesis
that input synapses with specially designed connection patterns
would largely improve the reservoir functionality. It is uncertain
whether the Hough transform-based synapses are optimal.
However, practically speaking, as the Hough transform is efficient

in detecting the border of textures and is robust to image noise,
the proposed connection pattern shows better performance over
random input connections.

Considering the fact that reservoir networks are capable of
efficiently learning sequential data, we also applied the proposed
modular reservoir to the TI-46 dataset, a dataset of ten spoken
digits (“0”–“9”). For this, the audio files were firstly preprocessed
by the Lyon cochlear model into 78 channels using Auditory
Toolbox in MATLAB (Slaney, 1998). Next, the first 100ms of
the preprocessed signals were clipped in order to eliminate
background noise. Then, each channel of the signals was fed
into input LIF neurons by input synapses. As the inputs in this
test were audio signals, Hough transform-based connection was
not applied, and each input neuron was randomly connected to
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FIGURE 4 | Comparison of the learning curves for (A) the proposed RC model and (B) a two-layer convolutional neural network (CNN). The same dataset as the

“modular + Hough” in Figure 3A are shown in (A). The RC model converges faster than the CNN.

10 post-synaptic neurons. As shown in Figure 3C, the reservoir
network with SVM readout function exceeded the SVM-only
case, because of the separation property of the reservoir. Both the
metric and modular reservoirs achieved a classification accuracy
of over 95% with < 200 epochs. The difference between the two
reservoir topologies, however, was insignificant in this task.

Comparison With the Convolutional Neural
Network
The CNN is a more matured structure than the reservoir
network, but in some fields without enough labeled data, the
reservoir network may be more suitable because of the faster
convergence speed. Comparison of the learning curves showed
that the classification accuracy of reservoir network converged
in the first 3,000 iterations (Figure 4A), whereas the CNN
did not work until 300,000 iterations (Figure 4B). One reason
is that reservoirs do not involve backpropagation, which can
simplify the system and reduce the number of parameters from
the number of connections to the number of neurons. Even
using an unsupervised method, i.e., spike timing-dependent
plasticity (STDP), in Kheradpisheh et al. (2018), a three-layer
spiking system can converge within 5,000 iterations, which is
still faster than backpropagation, because spiking sequences for
a spiking network contain more information than float numbers
for an artificial network. In absolute terms, state-of-the-art CNNs
achieve >99.7% accuracy in MNIST classification tasks (Wan
et al., 2013), which is higher than the accuracy of the presented
reservoir networks. The two models, i.e., CNNs and reservoir
computing, are not mutually exclusive and should thus be chosen
depending of the conditions in applications, such as the amount
of labeled data, network size, and the computational resource.

We note that the parameter space for the reservoir network is
smaller or equivalent to that of the CNNs. For example, a simple
CNN with two layers of 6 and 12 channels and kernels of size
5 × 5 has 1,950 parameters without counting the parameters
in the dense linear map and normalization layers. In contrast,
the number of parameters of the SVM readout function for the
reservoir network in the experiments depends on the number

of support vectors, which could be smaller than the number of
parameters in dense linear map layers of CNN.

Computational Efficiency
Next, we compared the computational efficiencies of the
LSMs with modular and non-modular reservoir networks by
calculating the number of float operations per iteration. In
Figure 5, the number of float operations per iteration is plotted
for different settings. Among the non-modular networks, the
metric structure exhibited the highest computational efficiency
with 9.1 × 106 FLOPS/iteration. The efficiency of the proposed
modular structure was more than twice as high as that of
the non-modular networks with 4.4 × 106 FLOPS/iteration.
Finally, we compared all configurations by evaluating the
classification accuracy per million FLOPS, i.e., 21.0 (modular
+ Hough), 18.9 (modular), 9.0 (metric), 8.2 (SW), and 8.1
(random), quantitatively showing the advantage of the proposed
LSM model.

The reason for the increased efficiency in the modular
networks can be understood as follows. Suppose there are L
modules with N neurons in each module. If the simulation is
performed in the whole network, the matrix multiplexing cost
is O((L∗N)k) in time with k > 2. In contrast, in the case of
the modular structure, we can simulate each module separately
and reduce the cost for the entire network to O(L∗Nk) using
the divide-and-conquer algorithm (Algorithm 2). Moreover,
simulations for different modules can be performed in parallel
according to the topological order. With greater number of
modules, the improvement in the efficiency becomes more
significant. For instance, on a personal computer with i7-core
CPU and 8 GB memory, a 10-fold acceleration was achieved.

Noise Analysis
One of the advantages of the RC paradigm is the robustness
against noise. As described previously by Maass et al. (2002b),
LSMs possess a separation property, which results in the reservoir
robustness to input noise. However, for noise inside the system,
which arises, e.g., by disabling some synapses, the robustness may
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FIGURE 5 | Computational cost (number of float operations per iteration) and

performance of different network topologies. The proposed modular structure

saves the cost significantly (blue and green).

substantially vary depending on the topology of the reservoir
(Hazan and Manevitz, 2010). Especially for a random reservoir
where the change of an arbitrary synapse uniformly influences
every neuron in the network, disabling of some synapses causes
significant deterioration. For a densely connected network, the
situation worsens further.

As shown in the previous work (Hazan and Manevitz, 2012),
reservoir networks with hub nodes have higher robustness,
as compared to random or SW networks, because the node
degrees of a large fraction of nodes are low and hence hardly
influence global dynamics. Here, we show that the proposed
modular structure also has such a property by comparing
it with the SW and metric (Maass et al., 2002b) networks.
We compare the results under different levels of system
noise, which was induced by disabling 0–20% of synapses.
In Figure 6, we show the difference between the proposed
structure and the SW reservoir of comparable sizes (Table 1).
Both cases of input noise and system noise are displayed on left
and right.

Figure 6A shows the learning curves for the SW (dashed)
and modular (solid) reservoirs with the designated amount of
white noise imposed on the input image. The strength of white
noise is presented as a signal-to-noise ratio. The classification
performance of both networks was robust against input noise,
even under 20% of white noise, as the RC paradigm suggests.
As shown in Figure 6B, a damage on 20% of synapses in the
proposed modular structure decreased the classification accuracy
by 18%, whereas for the SW structure, the accuracy decreased by
35%. Even in the case of 0.1% dead synapses, the SW and metric
networks deteriorated substantially by 9 and 6%, respectively,
whereas the deterioration was only 3% for the modular structure.

From the experimental results, we illustrate that owing to
its decentralized property, the proposed modular structure can
resist the damage to the network better than the simple one-
module network topology, such as the SW connection. Our

results indicate that for neuronal networks in the brain, which are
known to be modular (van den Heuvel et al., 2016), the modular
topology endows the network with high robustness to damage.

DISCUSSION

The RC has achieved superior results for various datasets
including TI-46 (audio) (Verstraeten et al., 2005), DogCentric
(video activity recognition) (Soures and Kudithipudi, 2019),
etc. Compared to traditional RNNs, RC saves the resource
for backpropagation. However, because of the difficulties in
parallelization, the simulation of spiking networks is still time-
consuming depending on the precision of models. Therefore,
hardware-based parallelization speedup could be a promising
direction for LSMs.

From the experiments, we showed that the proposed modular
reservoir network significantly improves the performance and
robustness compared to non-modular structures, because
the changes in modules do not have global influence.
Moreover, the modular method substantially reduces the
computational cost, as shown in Figure 5, which enables
further expansion of the network size. The results also showed
that the classification accuracy in modular networks was
higher as compared to metric and SW networks. Although
the in-depth understanding of the core parameters that led to
this improvement in the modular topology requires further
systematic experiments investigating the parameter space
for each network configurations, we speculate that separate
modules functioning as independent classifiers reduced
the variation, or overfitting, similar to the mechanics in a
random forest.

The use of the Hough transform in the connection of
input synapses is very efficient for image pattern recognition,
as shown in Figure 3A. Although it is uncertain whether the
Hough transform-based connection is the optimum setting for
synapses, our results showed that it improves the performance, as
compared to the random connection. Further optimization could
be performed using STDP or pruning.

The proposed setting for the LSM is biologically plausible.
First, the use of Hough transform-based input synapses agrees
well with the model of motion detection in the visual
cortex (Kawakami and Okamoto, 1993, 1995). The responses
of neurons in the visual cortex are known to match the
activities of the Hough transform layers of spiking neurons.
In addition, the modular architecture is an evolutionarily
conserved connectivity pattern found in the nervous system
of animals (van den Heuvel et al., 2016). Moreover, the
robustness to noise of the proposed network is consistent
with the fact that the biological neuronal system resists
damage well.

Recently, Cramer et al. (2020) showed that reservoir
networks of spiking neurons require different operating
points depending on task complexity. The optimal
topology within each module thus may vary depending
on the nature of the tasks, but the advantage of modular
reservoirs being robust and computationally inexpensive
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FIGURE 6 | Classification accuracy for different levels of (A) input noise and (B) network noise (0/5/10/20% dead synapses). The solid lines denote the proposed

modular structure and the dashed lines trivial SW reservoir. Both can resist input noise well as the reservoir computing paradigm suggests. However, the proposed

structure shows better robustness to network noise than the trivial SW reservoir.

should remain consistent irrespective of the tasks. We also
note that, in the current work, fixed values of connection
strengths and mean degree were used for the excitatory and
inhibitory connections and that the connections between
modules were randomly formed. Further optimization
of the parameters, as well as the intermodular coupling
scheme, should further improve the performance of the
modular reservoirs.

The model explored in this work can be viewed as a type of
deep spiking networks. Previously, Kheradpisheh et al. (2018)
reported on deep spiking CNNs, in which weights are optimized
using STDP, and achieved superior results on various datasets.
The simplified STDP used in that work can be a potential
method to prune synapses in the modular reservoir, given that
the values of learned synapses converged to the upper and
lower limits. The deep feedforward LSM explored in Soures
(2017) and Soures and Kudithipudi (2019) is similar to the
proposed network in terms of network topology. We think
that by introducing acyclic directed modules in feedforward
LSMs, the network functionality can be further extended and
its applications can be generalized like in residual networks or
graph networks.

In comparison with deep CNNs, RC still has a long
way to practical applications. Nevertheless, the RC
paradigm could replace CNNs in fields where labeled
training sets are not sufficiently large. The RC ability
to extract time-dependent features is also important.
We think that the proposed computationally efficient
method can greatly expand the future application
of RC.

CONCLUSIONS

We showed experimentally that reservoir networks with modular
topology and Hough transform-based input synapses can
not only efficiently scale up the performance of pattern
recognition in LSMs, but also improve the system robustness
and resistance against system damage. It is obvious that
different topologies influence the network functionality (Hazan
and Manevitz, 2010, 2012), which indicates the existence of
the most efficient system for a given problem. We believe
that the current network topology can be optimized further,
e.g., using unsupervised methods, such as STDP. Several
attempts have been made to implement STDP in reservoir
networks (Indiveri, 2002; Li and Jin, 2016). However, the
performance of those methods after a scaleup still needs to
be confirmed (Nessler et al., 2013; Diehl and Cook, 2015).
The visualization and explainability, which are issues in deep
neural networks, need to be considered in reservoir networks
as well. Our future work will focus on the application of
unsupervised techniques, such as various STDP rules, to improve
the functionality and interpretability of large-scale reservoir
networks. In addition, we will further explore the relationship
to neurophysiology to achieve biologically plausible models with
engineering efficiency.
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