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Recent evidence shows that the renin-angiotensin system is a crucial player in atherosclerotic processes. The regulation of
arterial blood pressure was considered from its first description of the main mechanism involved. Vasoconstriction (mediated by
angiotensin II) and salt and water retention (mainly due to aldosterone) were classically considered as pivotal proatherosclerotic
activities. However, basic research and animal studies strongly support angiotensin II as a proinflammatory mediator, which
directly induces atherosclerotic plaque development and heart remodeling. Furthermore, angiotensin II induces proatherosclerotic
cytokine and chemokine secretion and increases endothelial dysfunction. Accordingly, the pharmacological inhibition of the renin-
angiotensin system improves prognosis of patients with cardiovascular disease even in settings of normal baseline blood pressure.
In the present review, we focused on angiotensin-convertingenzyme (ACE) inhibitors, angiotensin II receptor blockers (ARBs), and
renin inhibitors to update the direct activities of the renin-angiotensin system in inflammatory processes governing atherosclerosis.

Copyright © 2009 Fabrizio Montecucco et al. This is an open access article distributed under the Creative Commons Attribution
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1. Introduction

Atherosclerosis is a chronic inflammatory disease, which
involves vascular cells, immune system, and several organs
[1]. Although leukocytes, endothelial and smooth muscle
cells have been shown to play a crucial role in atherosclerotic
inflammation, recent evidence also supports a direct activity
for the liver, lung, heart, kidney, adipose tissue, adrenal, pan-
creatic, pituitary, and sex glands [2]. These organs produce
several soluble inflammatory mediators, which orchestrate
vascular and immune cell functions. Although cytokines,
chemokines as well as growth factors have been shown
to modulate inflammatory processes, recent studies suggest
new inflammatory activities for endocrine hormones [3,
4]. The renin-angiotensin system could serve an important
role in promoting inflammation [4, 5]. However, despite
its first description by Tigerstedt and Bergman over a
century ago [6], the role of these hormones in inflammatory
processes is still unclear. The recent identification of new

angiotensins and the different roles of angiotensin and
renin/prorenin receptors increased the complexity of this
system, suggesting that further investigations are needed
to better understand the role of renin-angiotensin axis in
inflammation (Figure 1) [7–9]. Furthermore, the description
of the angiotensin-converting enzyme (ACE) 2 and its main
product (angiotensin1–7) raised some controversies [10, 11].
ACE 2 and angiotensin1–7 levels are not influenced by ACE
inhibitors or angiotensin II receptor blockers (ARBs). On the
other hand, the “negative feed-back” regulating plasma renin
activity is modulated by these drugs [12] (Figure 2). ACE 2
and angiotensin1–7 rather appear to be upregulated by these
drugs maily in the myocardium and kidney [13, 14]. ACE 2
is also highly expressed in hypothalamus and aorta, and it is
considered as a possible modulator of the renin-angiotensin
system [15]. In particular, both ACE 2 and angiotensin1–7

may counterbalance excess of activity of the “classical”
renin-angiotensin system (Figure 3). Angiontenin II has been
detected also in peripheral tissues (such as aortic tissue),
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Figure 1: Expanded renin-angiotensin-aldosteron system. Recently, the identification of new angiotensins with different activities increased
the complexity of this hormonal axis. In addition to the crucial activities of the liver, kidney, lung, adrenal gland cortex, and pituitary
gland, the heart also influences this system. ACE: angiotensin converting enzyme; ACE-2: angiotensin converting enzyme 2; NEP: neutral
endopaptidase; AMPA: aminopeptidase A; AMPM: aminopaptidase M.

suggesting a possible role of the local renin-angiotensin
system in atherosclerosis [16]. Both local and circulating
angiotensin II exert their activities through the binding to
angiotensin II type 1 (AT1) or type 2 (AT2) receptors. AT1

receptor is widely expressed on different cell types involved
in atherosclerogenesis [17]. AT2 receptors are ubiquitously
expressed in foetus and dramatically fall in the first few hours
after birth [18]. Recently, a local renin-angiotensin system
characterized by the expression of both AT1 and AT2 recep-
tors has been also shown in adipose tissue [19]. Furthermore,
the rediscovery of the “intracellular” activity of angiotensin
II as a major factor involved in cardiac remodeling suggested
new possible investigation fields [20–22]. The present review
will be focused on evidences from basic research studies and
clinical trials, investigating the role of the “revisited” renin-
angiotensin system [7] and its pharmacological inhibitions
in atherosclerotic inflammatory processes (Figure 2).

2. ACE Inhibitors, ARBs, and Renin Inhibitors
in Atherosclerotic Inflammatory Processes:
Basic Research and Animal Studies

In the last decades, basic researches have strongly suggested
that the renin-angiotensin system blockade exerts potent
antiatherosclerotic effects, not only through the antihy-
pertensive pathway but also through anti-inflammatory,
antiproliferative, and antioxidant properties [23]. Among
these hormones, angiotensin II is considered as the main
proatherosclerotic mediator. Angiotensin II regulates not
only adhesion molecule (VCAM-1, ICAM-1, P-selectin)
expression but also cytokine, chemokine, and growth factor
secretion within the arterial wall [24]. On the other hand,
the renin-angiotensin system can modulate the activation
of complement system in both atherosclerosis and renal
injury [25–27]. This inflammatory cascade activates the
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Figure 2: Simplified view of renin-angiotensin pathway and its
pharmacological inhibition. Renin inhibitors, ACE inhibitors, and
ARB modulate angiotensin activities in inflammatory processes.
AT1 receptors, which are expressed in immune cells, have been
shown to trigger inflammatory pathways.

vascular inflammatory response by increasing inflammatory
cell recruitment to intima. Recruited cells can produce
angiotensin II (intracellular angiotensin system), resulting
in a positive feedback response, which can maintain this
inflammatory vicious circle. In humans, an analysis of both
ruptured and hypercellular plaques demonstrated high levels
of ACE in macrophages. Accordingly, little or no ACE was
found in areas with only fibrotic plaques [28, 29]. These data
suggest that ACE may be associated to atherosclerotic plaque
development and vulnerability through the direct regulation
of inflammatory cells. Furthermore, angiotensin II favors
the intraplaque recruitment of monocytes and lymphocytes
[30] and directly enhances TNF-α, IL-6 and cyclooxygenase-
2 expression in atherosclerotic arteries [31]. Angiotensin II-
mediated effect could be potentitated by C-reactive protein
(CRP) through the upregulation of AT1 receptor expression
in vascular smooth muscle cells [32]. Angiotensin II has
been also shown to increase LDL oxidation in macrophages
[33, 34], oxLDL receptor (LOX-1) expression in endothelial
cells [35], superoxide and metalloproteinase production, and
lipid peroxidation [36]. In addition, the inactivation of nitric
oxide (NO) and prostacyclin (PGI2) has been also observed
in the presence of angiotensin II [37–40]. The binding
between angiotensin II and AT1 receptor induced proinflam-
matory effect mainly through the down-stream activation of
intracellular signaling cascade, which involves nuclear factor-
kappaB (NF-κB) activation [41–43]. The activation of NF-
κB pathway increases hypertension-induced renal damage
[44]. However, Henke et al. clearly showed that, despite the

development of high blood pressure, in vivo NF-κB path-
way suppression in endothelial cells reduced hypertension-
induced renal damage in mice with endothelial cell-restricted
NF-κB superrepressor IkappaBalphaDeltaN overexpression
[45]. Accordingly, the activation of NF-κB pathways is also
crucial in atherogenesis and macrophage activation/survival
[46–48]. Therefore, angiotensin II through the activation
of NF-κB pathway could directly increase atherosclerotic
inflammation. The majority of the direct proinflammatory
effects induced by angiotensin II have been shown in studies
with selective AT1 receptor blockers. Conversely, Kato et al.
showed that renin-angiotensin system-activated transgenic
mice receiving bone marrow transplantation from AT1a
knockout (KO) mice. These transgenic animals displayed
accelerated atherosclerosis and mortality [49]. The lethal
effect was mainly mediated by AT1a KO macrophages that
overexpressed a number of genes involved in atherogenesis
and exhibited a greater uptake of modified lipoproteins
[49]. Given the controversial role of AT1 receptors, further
investigations are needed. Less is known about AT2 receptors.
They are mainly localized in cardiac interstitial fibroblasts
and are capable of binding not only angiotensin II but also
other angiotensins, including angiotensin III. AT2 receptors
also signal through NF-κB-mediated pathways but they may
counterbalance AT1 receptor-mediated effects through the
activation of phosphatases rather than kinases [50–52]. AT2

receptor pathways increase bradykinin production and NO
synthase activity in endothelial cells [50]. AT2 receptor
activation also inhibits growth of cultured vascular smooth
muscle cells and cardiac myocytes [51, 52]. On the other
hand, the selective AT2 receptor blockade has been shown
to inhibit in vivo medial smooth muscle hypertrophy and
fibrosis in hypertensive rats [51]. These controversial results
suggest that also the role of AT2 receptors is still not clear.
The renin-angiotenin system also influences inflammatory
mediators involved in the coagulation cascade. In particular,
this hormonal axis inhibits fibrinolysis and enhances throm-
bosis by increasing plasminogen activator-1 production in
endothelial and vascular smooth muscle cells [53–55] and by
activating platelets [56]. The renin-angiotensin system also
stimulates platelets to release thromboxane A2 and platelet
derived growth factor [54] and increases tissue factor levels
in atherosclerotic plaques in acute coronary syndromes [57].
These basic research studies suggested that the pharmaco-
logical inhibition of the renin-angiotensin system may be
of benefit against atherosclerotic inflammatory processes. In
fact, ACE inhibitors or ARBs do not modulate exclusively
kidney and arterial cell functions [58]. Inflammatory cell,
adipocyte, and cardiomyocyte functions are directly regu-
lated by these drugs [59–63]. Animal models partially con-
firmed these encouraging results. Two decades ago, the first
preclinical studies in vivo showed that ACE inhibitors had
not only blood-pressure-lowering properties [64] but also
direct protective effects on endothelium and atherogenesis
[65]. At an early stage of atherosclerosis, the treatment with
different ACE inhibitors reduced endothelial dysfunction in
atherogenic diet-fed [66] or hyperlipidemic rabbits [67].
Quinapril reduced macrophage infiltration in atherosclerotic
lesions in femoral arteries in rabbits through the direct
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Figure 3: Revisited functions of the renin-angiotensin axis. Recent studies support that angiotensins influence several processes, including
inflammation. AT1R: angiotensin type 1 receptor; AT2R: angiotensin type 2 receptor; IRAP: insulin-regulated aminopeptidase; Mas (mas
oncogene) receptor.

inhibition of macrophage chemoattractant protein (MCP)-1
expression. Accordingly, angiotensin II itself increased MCP-
1 expression in atherosclerotic lesions, thus contributing to
macrophage infiltration [68]. The crucial role of the renin-
angiotensin system in inflammatory processes regulating
atherosclerosis was also observed in other animal models
prone to develop atherosclerosis [69–74]. In these studies,
various ACE inhibitors at doses comparable to those used
clinically reduced atherosclerotic lesions independently of
blood pressure. This was suggested by two independent
findings: (1) the use of other antihypertensive drugs did
not produce similar results [75]; (2) ACE inhibitors reduced
atherosclerosis without altering blood pressure [69]. The

beneficial effects of the renin-angiotensin pharmacological
inhibition have been also observed in animal models of
hypertension. The most used model was the “stroke-prone”
strain (SHR-SP) rats. Treatment with ramipril in the pre-
hypertensive phase in SHR-SP rats strongly reduced mortal-
ity and improved left-ventricular hypertrophy, cardiac and
endothelial functions, and metabolism [76]. The adminis-
tration of ACE inhibitors in the later phases of hypertension
in SHR-SP rats also decreased mortality [77], suggesting that
ACE inhibitors reduce cardiovascular risk and atherosclerosis
in animals in different stages of cardiovascular disease. These
benefits are confirmed by the majority of the published
studies. However, some authors have also demonstrated
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that lowdose of trandolapril did not reduce both blood
pressure and atherosclerosis in hyperlipidemic rabbits [78].
Similarly to ACEinhibitors, ARBs reduced blood pressure
and atherosclerosis in different animal models [79–82].
However, differently from ACE inhibitors, the protective
effect of ARBs was observed at both high and lowdoses.
Although some authors did not confirm ARB-mediated
benefits at low doses [83], a possible dose-dependent impact
on atherogenesis, not only mediated by blood pressure
lowering, is strongly suggested. No data are available on
the use of ACE inhibitors and ARBs on atherogenesis in
transgenic rats with inducible angiotensin II (Ang II)-
dependent hypertension (TGR[Cyp1a1-Ren2]), two kidney-
one clip (2K-1C) hypertension rats, or hypertensive double
transgenic mice (R+/A+) that overexpress both human renin
(R+) and human angiotensinogen (A+). Few evidences are
available about the use of ACE inhibitors or ARBs on
mouse models with local (intracardiac) or systemic high
angiotensin II [84, 85]. However, these studies were not
focused on atherosclerosis. Therefore, further studies are
needed to clarify the role of ACE inhibitors and ARBs in
atherosclerosis in animal models with high angiotensin II
levels. In March 2007, the US Food and Drud Administration
approved a new renin-angiotensin blocker (aliskiren, a
direct renin inhibitor) for the treatment of hypertension in
humans without renal dysfunction. Renin inhibition blocks
angiotensin I generation with the consequent suppression
of angiotensin II as well as angiotensin peptide formation.
Preclinical studies strongly supported the antihypertensive
efficacy and safety of aliskiren [86]. Recent evidence also
suggested a possible direct role of renin inhibitors to reduce
atherosclerotic inflammation [87–89]. In a double-trangenic
rat model (dTGR), overexpressing human renin and human
angiotensinogen genes, aliskiren reduced cardiac hypertro-
phy, fibrosis, inflammation, and inducibility of arrhythmias
[90] and reversed already established cardiac and renal
damage [91]. The benicial effects of renin inhibition on
organ damage are partially due to the suppression of hyper-
tension. The blockade of direct proinflammatory activities
of angiotensin II and angiotensin peptides represents a
crucial mechanism to reduce atherosclerosis. In fact, in
the same dTGR rat model, aliskiren and ARB losartan
also reduced albuminuria and expression of inflammatory
mediators, such as TNF-α, C-reactive protein (CRP) and
complement C1q, C3, C3c, and C5b-9 in comparison with
untreated controls [25]. Treatment with aliskiren has been
also shown to protect against endothelial dysfunction and
atherosclerosis in Watanabe heritable hyperlipidemic rabbits
[89] as well as ApoE deficient [87] or LDL receptor deficient
[92] mice.

3. ACE Inhibitors, ARBs, and Renin Inhibitors
in Atherosclerotic Inflammatory Processes:
Clinical Trials

At the beginning of the nineties, Dzau and Braunwald
proposed the concept of the cardiovascular continuum in
humans [103]: cardiovascular disease can be seen as a

pathophysiologic cascade induced by the presence of risk
factors, such as hypertension, hypercholesterolemia, diabetes
mellitus, and smoking. These conditions can produce well
defined stages, such as endothelial dysfunction, atheroscle-
rosis, and target organ damage, followed ultimately by
the clinical syndromes (heart failure, stroke, and end-stage
renal disease) and eventually death. Experimental evidence
clearly suggests a key role of the renin-angiotensin system
and the induced inflammatory processes at all stages of
this continuum and consequently a strong rationale for its
blockade in order to prevent cardiovascular events [23].
The possibility of a positive effect of the renin-angiotensin
blockade at the early stages of the cardiovascular contin-
uum, that is, the endothelial dysfunction, was specifically
addressed by some clinical studies. Although the complexity
of the methodology applied to these investigations did not
allow the recruitment of a very large number of patients,
the results were clearly supportive about the role of the
renin-angiotensin inhibition in the reversal of the endothelial
dysfunction. Early evidence came from the TREND study
[104], which showed that angiotensin-converting enzyme
(ACE) inhibition with quinapril improves endothelial func-
tion of the coronary arteries. Similar results were obtained in
the coronary circulation with the ARBs: valsartan improved
basal nitric oxide production and release in hypertensive
patients as compared to diuretic-treated subjects, despite
similar blood pressure decrease [105]. The endothelial
function was evaluated also in both the peripheral [106]
and the renal circulation [107], always showing a consistent
improvement exerted by the renin-angiotensin blockade. In
addition, in a small group of hypertensive patients, resistance
arteries obtained from subcutaneous biopsies were studied
before and after 1 year of treatment with either an ARB
(losartan) or a β-blocker (atenolol); basal measurements
were compared to those of normotensive controls [108].
Despite similar reductions in blood pressure, losartan nor-
malized acetylcholine-dependent vasodilation and reduced
media/lumen ratio. Whereas different ARBs exert their
effects on endothelial function in a similar way (through
AT1 receptor antagonism) for ACE inhibitors we have to
consider the presence of both plasma ACE, which regulates
blood pressure, and tissue ACE, which is involved in the
regulation of tissue inflammation, fibrosis, and hypertrophy
[109]. In BANFF study, for example, an ACE inhibitor
with low activity at the tissue level, enalapril, was not
able to affect endothelial function [110]. More recently the
TRENDY study tried to compare an ARB, telmisartan, and
an ACE inhibitor, ramipril, in terms of improvement of the
renal endothelial function [107]: no significant differences
between the two drugs were observed although the ARB
seemed to be a little more efficient. The demonstration
of the prognostic significance of endothelial dysfunction
was obtained from studies where it was possible to find
an inverse association between the acetylcholine-stimulated
forearm blood flow increase and the cumulative incidence of
cardiovascular events [111]. Two other surrogate parameters,
which have been evaluated in clinical studies extensively, are
the circulating inflammatory markers and the extension of
the vascular damage (carotid intima-media thickness [IMT],
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Table 1: Clinical studies evaluating effects of RAS blockade on circulating inflammatory markers. When two active drugs are administered,
the effects demonstrated are with respect to basal values; when an active deug and placebo are used, the comparisons are between the two
arms. CABG: coronary artery bypass grafting; ACEI: ACE inhibitors.

Studies Patients Clinical conditions Drugs Main effects

Sheth et al. [93] 107 Chronic heart failure Lisinopril versus Omapatrilat
↑ IL-10 (Omapatrilat)

= IL-6

Jilma et al. [94] 32 Essential hypertension Enalapril versus Losartan

↓ E-selectin

Enalapril↓ ICAM-1

↓ VCAM-1

↓MCP-1

Essential hypertension Candesartan versus Placebo

↓MCP-1

Koh et al. [95] 45 ↓ TNF-α

= CRP

Di Napoli and Papa [96] 507 Ischemic stroke
ACEI versus Other
hypotensive drugs

↓ CRP (ACEI)

Tsikouris et al. [97] 30 Acute myocardial infarction Quinapril versus Enalapril ↓ CRP (Quinapril)

Schieffer et al. [98] 48 Coronary artery disease Essential
hypertension

Enalapril versus Irbesartan

↑ IL-10
Both

↓MMP-9

↓ IL-6
Irbesartan

↓ CRP

Fliser et al. [99] 199
Essential hypertension and/or
Vascular disease Diabetes mellitus
LDL-C > 150 mg/dL

Olmesartan versus Placebo

↓ CRP

↓ TNF-α

↓ IL-6

↓MCP-1

Trevelyan et al. [100] 45 Angina pectoris awaiting CABG
Enalapril or Losartan versus
Control

↓ IL-1ra

↓ IL-6

= IL-10

= IL-8 n.d.

Tikiz et al. [101] 45 Rheumatoid arthritis Quinapril versus Placebo

= CRP

= TNF-α

= IL-1β

= IL-6

Coronary artery disease
Perindopril or Enalapril
versus Placebo

↓MCP-1
Both

Krysiak and Okopień [102] 90 ↑ IL-10

↓ CRP (Perindopril)

coronary circulation, and volume of the atherosclerotic
plaques). Although ACE inhibitors reduce blood levels of
inflammatory cytokines in vivo [102], this issue has been
addressed more in depth for ARBs [112]. Table 1 lists a series
of clinical studies, in which ACE inhibitors and ARBs reduce
serum levels of inflammatory markers in different diseases
[93–102]. As for vascular structure, the less invasive way
to evaluate the possible atherosclerotic changes is the ultra-
sound determination of the carotid IMT. In the SECURE
trial, a significant decrease in the progression slope of mean
maximal IMT by 0.04 mm was observed in the active arm as
compared to placebo [113]. These results were not confirmed
by another study, the PART-2 trial, with the same active
drug and the same parameter [114], and also by two studies
(QUIET and SCAT) with a coronary angiographic evaluation
[115, 116]. More recently intravascular ultrasound (IVUS)
was used in a substudy of the CAMELOT trial, which

compared the effects of 3 different treatments on atheroscle-
rosis progression: amlodipine, a calcium-antagonist, showed
no progression; enalapril, an ACE inhibitor, a trend toward
progression, which was more evident in the placebo group
[117]. Also the effects of ARBs were evaluated at the vascular
levels: in a substudy of the LIFE trial, losartan, an ARB,
but not atenolol, a β-blocker, induced a regression of the
carotid artery hypertrophy in hypertensive subjects [118].
The first successful clinical application of the experimental
observations about the role of the renin-angiotensin in the
cardiovascular pathophysiology was the demonstration of
the ACE inhibitors as an undisputed treatment in patients
with congestive heart failure or coronary artery disease
(CAD) and concomitant left ventricular dysfunction, all
clinical syndromes characterized by a strong activation
of the renin-angiotensin system [119]. These results were
subsequently confirmed by trials with ARBs [120]. The first
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studies (SAVE and SOLVD) demonstrated that these drugs
reduced both mortality rate and risk of ischemic events
[121]; moreover in SAVE the effect of the ACEinhibition by
captopril was found to be independent of the degree of left
ventricular dysfunction. These data suggested a primary anti-
ischemic effect of the ACEinhibitors. Therefore a subsequent
step was proposed to demonstrate a significant positive
effect of the renin-angiotensin blockade in subjects at high
risk for cardiovascular events but without left ventricular
dysfunction. The HOPE study was the first randomized
controlled trial that reached this goal: in high-risk patients
ramipril was able to induce an important 22% risk reduction
of composite cardiovascular death, MI, or stroke compared
to placebo [122]. High-risk patients were defined as those
with evidence of vascular disease (CAD, stroke, peripheral
vascular disease) or diabetes plus one other cardiovascular
risk factor (hypertension, low high-density lipoprotein levels,
elevated total cholesterol levels, smoking, microalbumin-
uria). The analysis of the results induced intense debate
about the role of blood pressure decrease per se in the
observed benefits [123]. The results in the HOPE study and
in the subsequent similar trials with other ACEinhibitors
occurred in a population of patients already receiving
standard medical therapy, including platelet inhibitors, lipid-
lowering therapy, and β-blockers. Two large trials (EUROPA
and PEACE) were performed to confirm HOPE study results
with the same class of renin-angiotensin antagonists [124,
125]. The former was successful in demonstrating a similar
(20%) relative reduction of cardiovascular risk (primary
end point of cardiovascular death, MI, or cardiac arrest);
instead the latter was not able to show significant differences
between treatment groups (ACEinhibitor versus placebo) in
the primary end point, a composite of death resulting from
cardiovascular causes, nonfatal MI, or revascularization.
Several hypotheses have been put forward to explain these
discrepancies [126]: the main reason could be the healthier
conditions of the PEACE patients with respect to the patients
enrolled in the other trials and therefore the difficulty for
the active treatment to demonstrate clear positive effects
on the outcomes. However a meta-analysis of the three
placebo-controlled trials demonstrated a significant effect
of ACE inhibition on the occurrence of all-cause mortality,
cardiovascular mortality, nonfatal MI, stroke, heart failure,
and coronary bypass surgery [127]. The same approach
has been performed with an ARB in the TRANSCEND
study [128]. The results have shown that the active treat-
ment (telmisartan) was not superior to placebo in the
prevention of cardiovascular events, primary composite end
point represented by cardiovascular death, MI, stroke, or
admission to the hospital for heart failure events. Ripley
and Harrison suggest that these partially unexpected data
could be explained by the differences in patient number,
event rates, and the use of other life-saving drugs between
TRANSCEND and HOPE studies [129]. However these
results confirm the difficulty to demonstrate a significant
effect of the renin-angiotensin blockade in the cardiovascular
prevention beyond the blood pressure control. At present,
the only suggestion of a therapeutical action which could
be independent from the changes in blood pressure levels

derives from the LIFE study [130]. In this large multicenter
trial patients with left ventricular hypertrophy were ran-
domized to receive treatment based on an ARB (losartan)
or a β-blocker (atenolol): the composite primary end point
of death, MI, and stroke was reduced by 13% with the
ARB-based treatment compared with the β-blocker-based
treatment in presence of a similar amount of blood pressure
decrease. Another important issue is the mechanism of
action of the different classes of renin-angiotensin blockers. If
angiotensin II is the key player in the inflammatory processes
in cardiovascular disease, we have many pharmacological
ways to inhibit its synthesis; in addition the different classes
of drugs demonstrate other effects, possibly related to a ther-
apeutic gain (so called pleiotropic actions). In fact it is well
known that ACE inhibitors are able to reduce the breakdown
of bradykinin, and this molecule can cause the most frequent
untoward effects of these drugs (cough, angioedema) but it
is believed also as an important contributor to the protective
cardiovascular effects exerted by them [131]. On the other
hand, ARBs significantly increase angiotensin II levels, as a
consequence of the antagonism at the AT1 receptor site. The
possible role of the AT2 receptor stimulation in the beneficial
therapeutic effects of ARB remains a fascinating hypothesis
[132, 133]. These pharmacological differences could explain
the possible better results obtained with ACE inhibitors in
terms of prevention of coronary events and with ARBs in
terms of prevention of ischemic strokes [134] in comparison
with the direct competitors for renin-angiotensin blockade.
This therapeutic hypothesis has been verified by a systematic
review of the available clinical data about the two classes
of drugs [135] and by the recently published ONTARGET
trial, a very large multicenter randomized trial in which the
patients were treated with an ACE inhibitor (ramipril), an
ARB (telmisartan), or the combination of the two drugs
[136]. After a median follow-up of 56 months, the occur-
rence of the primary outcomes, consisting of death from
cardiovascular causes, MI, stroke, or hospitalization for heart
failure, was not significantly different in the ramipril and
telmisartan groups, although the ARB was better tolerated.
There were trends slightly favoring the ACE inhibitor for
MI prevention and the ARB for stroke prevention but
these differences did not reach statistical significance. The
other issue addressed by the trial, the clinical role of the
combined renin-angiotensin blockade, brought a word of
caution about this strategy since more adverse events were
observed [137, 138]. Although in conditions of renin-
angiotensin hyperactivation, such as advanced heart failure,
and of marked proteinuria the double blockade can still
exert beneficial effects, other recent studies confirmed the
possible risk of the combination in both a cardiological and
a nephrological setting [139–141]. In 1957, Skeggs et al.
suggested another possible approach to pharmacologically
inhibit the renin-angiotensin system [142]. Renin inhibition
was indicated as the preferred step to reduce angiotensin
II effects. The discovery of prorenin receptor constitutes an
additional reason to develop a new class of renin inhibitors
[9]. An ambitious plan of primary and secondary prevention
trials has begun in order to demonstrate possible advantages
of the treatment with aliskiren alone or in combination with
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other renin-angiotensin blockers in patients with hyperten-
sion. At present, the effects independent of antihapertensive
activity of aliskiren have been shown by one clinical trials
focused on end-organ damage. In aliskiren in the evaluation
of proteinuria in diabetes (AVOID) trial, the treatment
with aliskiren reduced proteinuria independently of blood
pressure [143]. Other clinical trials have been started to
investigate the possible benefits of aliskiren in cardiac
remodeling after myocardial infarction (AVANT GARDE,
ASPIRE) and diabetic nephropathy (ALTITUTE) [144].
Therefore, in the next future, further clinical evidence will
be available to confirm these preliminary anti-inflammatory
and antiatherosclerotic effects of aliskiren in humans.

4. Conclusions

The inhibition of the renin-angiotensin system represents a
pivotal approach for reducing atherosclerosis and its dra-
matic complications, such as stroke and myocardial infarc-
tion (MI). ACE inhibitors and ARBs are well-established
pharmacological tools in both primary and secondary pre-
vention of atherosclerotic cardiovascular disease. Emerging
evidence shows that their beneficial effects are not only due
to blood pressure lowering but also due to a direct anti-
inflammatory activity. Further studies are needed to better
understand this promising investigation field, with particular
interest for the promising results with the new renin inhibitor
treatment.
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