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Abstract: Transmissible spongiform encephalopathies or prion diseases are rapidly progressive
neurodegenerative diseases, the clinical manifestation of which can resemble other promptly evolving
neurological maladies. Therefore, the unequivocal ante-mortem diagnosis is highly challenging and
was only possible by histopathological and immunohistochemical analysis of the brain at necropsy.
Although surrogate biomarkers of neurological damage have become invaluable to complement
clinical data and provide more accurate diagnostics at early stages, other neurodegenerative diseases
show similar alterations hindering the differential diagnosis. To solve that, the detection of the
pathognomonic biomarker of disease, PrPSc, the aberrantly folded isoform of the prion protein, could
be used. However, the amounts in easily accessible tissues or body fluids at pre-clinical or early
clinical stages are extremely low for the standard detection methods. The solution comes from the
recent development of in vitro prion propagation techniques, such as Protein Misfolding Cyclic
Amplification (PMCA) and Real Time-Quaking Induced Conversion (RT-QuIC), which have been
already applied to detect minute amounts of PrPSc in different matrixes and make early diagnosis of
prion diseases feasible in a near future. Herein, the most relevant tissues and body fluids in which
PrPSc has been detected in animals and humans are being reviewed, especially those in which cell-free
prion propagation systems have been used with diagnostic purposes.

Keywords: transmissible spongiform encephalopathy; prion disease; PrPSc; diagnostic; PMCA;
RT-QuIC

1. Introduction

Transmissible spongiform encephalopathies (TSE) or prion disorders, are rapidly progressive
neurodegenerative diseases caused by an aberrantly folded protein that affect several mammalian species,
including humans [1]. Diagnosis of these diseases ante-mortem is still challenging for several reasons,
despite relevant advances in recent years. First, they show highly varied clinical presentations in humans [2],
in part due to the different etiologies of the diseases. They can be sporadic, putatively due to the spontaneous
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misfolding of prion protein (PrPC) to the aberrant isoform (PrPSc) (sporadic Creutzfeldt-Jakob disease
(sCJD), sporadic Fatal Insomnia (sFI), and Variably protease-sensitive prionopathy (VPSPr)); genetic, which
is associated to mutations in the gene encoding PrPC (PRNP) that apparently promote misfolding (genetic
Creutzfeldt-Jakob disease (gCJD), Familial Fatal Insomnia (FFI) and Gerstmann-Sträussler-Scheinker
syndrome (GSS)); or acquired, in which PrPSc comes from exogenous sources, such as contaminated
meat consumption or surgical procedures (variant Creutzfeldt-Jakob disease (vCJD) and iatrogenic
Creutzfeldt-Jakob disease (iCJD)) [3,4]. Each one of these diseases presents with distinct clinical signs and
symptoms, especially in the genetic forms of the disease, for which more than 60 genetic alterations have
been described [5]. Each of them can appear with distinctive features but also showing striking variability
even within individuals of the same family. Moreover, to complicate further the accurate and early diagnosis
of prion diseases, some cases of CJD have been reported with unusual clinical presentations [6]. Thus, highly
variable manifestations that expand from rapidly progressive dementias that lead to death in less than two
years, to slower syndromes that take years to progress, makes early diagnosis on clinical settings highly
challenging. Second, the similarity of many of the possible signs observed in prion disorders to those from
other neurological conditions such as Alzheimer’s disease, frontotemporal dementia, or certain types of
parkinsonism, makes them easy to confuse, hindering differential diagnosis [7]. Other tests used regularly
in clinical practice, although helpful, do not completely solve the problems for accurate ante-mortem
diagnosis of TSE. Neuroimaging and electroencephalogram results, suggestive of neurodegenerative
processes, are not present in many cases of prion disorders or, if present, can be similar to alterations
observed in other neurological disorders [8]. Biomarkers detectable in cerebrospinal fluid (CSF) are also
routinely used. In fact, an incredible effort has been done in recent years to increase sensitivity and
specificity of those assessing neuronal damage such as 14-3-3 protein, total tau, and total/phosphorylated
tau ratio, neuron specific enolase (NSE),α-synuclein, S100B or neurofilament (NFL) [9,10]. However, as they
are markers of rapid neuronal loss that can be elevated in other rapidly progressive neurodegenerative
conditions, the positive predictive value is limited and generally low. Therefore, definite diagnosis of
TSE ante-mortem is not achievable by these means, with the exception of genetic prion diseases in which
sequencing of PRNP gene can certainly support a clinical manifestation-based diagnosis. What is required
is the post-mortem confirmation based on neuropathological analysis (spongiosis and astrogliosis are
usually the histopathological hallmarks of TSE) and immunohistochemical detection of prion protein
aggregates or protease-resistant PrP detection by Western blotting (WB) on distinct brain areas [11,12].
In fact, the misfolded, partially protease-resistant and aggregated isoform of PrPC, PrPSc, being the causal
agent is the hallmark of TSE and the only pathognomonic biomarker identified so far.

Since Stanley Prusiner proposed the “protein only” hypothesis in 1982, postulating that the
causal agent of TSE was an exclusively proteic pathogen composed by aberrantly misfolded PrPC,
the attention of TSE researchers focused on the study of PrPSc. According to this widely accepted
hypothesis, PrPC can misfold through a poorly understood event into PrPSc, which aggregates and
becomes insoluble, partially protease-resistant, neurotoxic, and able to induce its aberrant conformation
to PrPC through seeding [13,14]. In the case of sporadic or genetic prion disorders the location of the
initial misfolding event is unknown, but in the acquired prion diseases, the exogenous PrPSc makes
its way to the central nervous system. Here, PrPC is highly expressed facilitating PrPSc spreading
and its neurotoxic properties lead to neuronal damage. Therefore, formation or acquisition of PrPSc

seeds is the initial event in TSE, which then spreads and multiplies exponentially. This event seems
to happen long before the manifestation of the first symptoms of the disease [15]. However, using
PrPSc presence as a biomarker for the ante-mortem diagnosis of TSE has been limited due to several
reasons: (1) the amount of PrPSc at early stages of the disease or before disease onset is too low to be
detected by standard biochemical or immunological techniques [WB, immunohistochemistry (IHC)
or Enzyme-Linked Immunosorbent Assay (ELISA)], (2) it is unknown how long before the onset of
clinical signs does PrPSc appear and in which tissue or body fluid could be present at initial stages,
(3) different TSE, even within the same species, are caused by distinct prion strains (putatively slightly
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different PrPSc conformations) with differential pathobiological features that determine the presence in
peripheral tissues and body fluids, as well as the time of appearance before disease onset [16,17].

Although PrPSc can be detected ante-mortem directly from certain tissues in some TSE-affected
animals (i.e., rectal biopsies in small ruminants and cervids allow direct detection in lymphoid follicles of
the rectal mucosa) [18], in general, PrPSc amounts in peripheral tissues and body fluids are too low for
detection with standard biochemical techniques. However, this limitation for the use of PrPSc as biomarker
has been recently overcome, at least partially, thanks to important advances on cell-free systems for prion
propagation [19]. The initial attempts to propagate or amplify PrPSc in vitro in these systems showed
that it was possible to achieve prion replication in a test tube but required high amounts of PrPSc as seed
and long incubation periods. This limitation strongly hindered its usefulness for the detection of minute
amounts of prions and thus, for TSE diagnosis. Since this initial breakthrough on prion propagation
in vitro in 1994 [13], cell-free systems have been developed further and two methods have emerged as
the most effective for the detection of minute amounts of PrPSc. Protein misfolding cyclic amplification
(PMCA) came first in 2001, in which originally, a substrate composed by healthy brain homogenates
was used as PrPC source to be misfolded by minute amounts of PrPSc obtained from a diversity of
tissues from infected animals. Successive cycles of incubation and sonication, considerably improved
the detection limit and accelerated the whole process with respect to the initial systems [20]. Further
improvements have been developed during the last two decades, which have allowed to (1) increase its
sensitivity (serial PMCA [21] and PMCA with beads [22]), (2) to work with a variety of tissues and body
fluids [21,23], (3) work with PrP sources other than brain homogenates [24,25], or (4) adapt the system to
the detection of different strains from distinct species [26]. This technique and its variants are widely
used in TSE research, because apart from their high sensitivity for the detection of down to 1 attogram of
some prion strains [27], the final product obtained from prion propagation replicates the main hallmarks
of the original seeds including infectivity [28], strain features (glycosylation pattern and pathobiological
characteristics) [29], and reproduces one of the most important phenomena in TSE research, such as
the transmission barrier [30]. However, the use of PMCA for diagnostic purposes has been hampered
by (1) the need of complicated sonication equipment that makes results variable between laboratories,
(2) the need of brain homogenates as substrate, (3) the requirement of serial rounds of PMCA which
is time consuming, (4) the high possibility of cross-contamination or spontaneous misfolding of PrPC

during serial rounds and (5) the need of a separate readout system such as WB of proteinase-K digested
products, which increases the total time required for diagnosis [26]. Although further developments
of the technique may improve its value for diagnostic purposes, for instance: the use of recombinant
PrP and well-defined environments composed by specific cofactors [24,31,32] that improve consistency
due to variability in brain homogenate perfusion quality, or the use of multi-well plate formats that
could permit its adaptation to a high-throughput setting [33], or the application of different more
automatable readout methods [34]; another cell-free prion propagation system is preferentially used for
diagnosis and is already being applied in clinical practice, the real time Quaking induced conversion
(RT-QuIC) [35]. This technique is revolutionizing diagnostics of TSE and is being expanded to the
detection of other protein misfolding-related neurodegenerative disorders in which protein aggregates
with seeding capacity are pathognomonic, such as synucleinopathies and tauopathies [36]. RT-QuIC
uses agitation instead of sonication cycles and recombinant protein as PrPC source. Since the first report
of Quaking induced conversion of prions [37], it has been further developed. Aiming to diagnosis of
TSE, it was adapted to a multi-well plate format and coupled to a readout system based on Thioflavin T
(ThT) fluorescence that can be performed by the same equipment in which the reaction is done, being
more easily automatable [38]. Thanks to the fluorescence from the amyloid-binding dye, which increases
upon aggregate formation, reaction kinetics can be monitored in real-time. An initial lag time of variable
duration depending on the seed and substrate used are followed by a fast exponential growth phase.
Moreover, reaction conditions have been also finely tuned in order to shorten the process time and to
achieve improved sensitivity and specificity, increasing detection limit to the range of femtograms to
attograms of seeds [39]. In contrast to PMCA or the Protein Misfolding Shaking Amplification (PMSA)
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recently derived from PMCA [40], the aggregates produced in RT-QuIC do not mimic faithfully the
original seeds, limiting its applications in research although it has been used for drug screening or
prion strain typing [35,41]. However, for prion detection has more desirable characteristics than PMCA,
mainly regarding standardization, reproducibility, and ease of use, allowing its implementation in
clinical practice. In fact, for some prion diseases it is being offered in clinical settings since 2015 in the
United States and was included in the diagnostic criteria of the Centre of Disease Control (CDC) in
2018 for sCJD. Similarly, it was also included in European diagnostic criteria used by the UK National
CJD Research and Surveillance Unit. However, the gold standard for definitive diagnosis is still based
on neuropathology and immunological detection of PrPSc. Despite its good sensitivity and specificity
detecting some prion strains in different tissues and biological fluids, such as sCJD seeds in CSF, there is
still room for improvement. The main problem delaying its generalized use in clinical practice is that
first-generation RT-QuIC, performed using recombinant hamster PrP, was unable to detect some specific
prions (i.e., variant CJD, the human prion disease acquired from bovine spongiform encephalopathy
contaminated sources; some GSS cases due to specific point mutations; etc.) and sensitivity was quite low
for other subtypes [19]. Nonetheless, the use of a new recombinant PrP as substrate [42] has provided
a solution to this problem, likely making the detection of PrPSc in body fluids or tissues by RT-QuIC the
next gold standard for ante-mortem diagnosis of TSE.

In order for the combination of PrPSc (as pathognomonic biomarker) coupled to in vitro prion
propagation techniques (allowing the detection of minute amounts) to become a really useful diagnostic
tool, there are few factors that require careful consideration: (1) for the different TSE, is PrPSc present
in accessible body fluids or tissues? (2) In which tissues or body fluids, is it present in each case? (3)
How long before the onset of clinical manifestations is PrPSc detectable and in which tissues or body
fluids appears first? (4) Do relative PrPSc amounts in different tissues or body fluids correlate with
disease progression? In other words, could this biomarker have a prognostic value?

In this review, we will try to shed some light on these issues gathering the evidences of the
presence of PrPSc in different body fluids and tissues in different TSE, both in humans and other
mammals. Those tissues and body fluids where PrPSc has been detected and could be more useful for
ante-mortem diagnosis of TSE will be reviewed and the data obtained from in vitro prion propagation
assays highlighted.

2. Detection of PrPSc in Brain

One of the most obvious places where PrPSc can be found is the central nervous system (CNS)
and specifically the brain, where the aggregates are more abundant in the final stage of the disease [43].
In fact, according to the present diagnostic criteria followed in most countries, immunohistochemical or
biochemical detection of PrPSc in brain is required for a definitive diagnosis of TSE in humans [44]. However,
due to the invasiveness of such procedure and the reduced benefits that supposes a confirmation of prion
disease given the lack of treatments, it is rarely performed ante-mortem [45]. Moreover, the differential
distribution of PrPSc in specific brain areas depending on the particular prion disease [46] hinders the
utility of ante-mortem brain biopsies, which could easily provide false negative results if the wrong area
is biopsied.

2.1. PrPSc in Brain in Animal Prion Diseases

Regarding the time course of PrPSc deposition in CNS during the pre-symptomatic stage of the
disease, it has been thoroughly studied in animal models of acquired prion disease. Thus, the time
course of PrPSc spreading from peripheral tissues to the CNS has been characterized in several models of
infection [47–54] and even distinctive deposition patterns were found after injection of the same prions
through different routes [55–57]. However, there are few reports trying to unravel the time course of PrPSc

deposition in sporadic and genetic forms of the disease, which are the vast majority in humans. This is
mainly because: i. it is impossible to predict the development of a sporadic prion disease, hindering the
study of the preclinical stage, ii. the rapidly progressive nature of these diseases and their low prevalence
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makes it impossible to gather enough cases that are not in the final stage, and iii. the animal models
available for sporadic or genetic prion disease are scarce and, except for few examples, require infection
to reproduce the prion disease for which they were designed [58]. Therefore, for acquired prion diseases
and despite the phenotypic variability observed as a result of distinct administration routes, for the most
socioeconomically relevant prion strains (scrapie, bovine spongiform encephalopathy (BSE), Chronic
Wasting Disease (CWD), and vCJD), the initial sites of PrPSc replication in the CNS are known as well as
the kinetics of PrPSc accumulation in the brain and in peripheral tissues in experimental and natural
infections [15]. However, despite the brain areas in which early PrPSc deposition is more probable in
acquired animal TSEs is known, brain biopsies are not used for early diagnosis given the presence of
PrPSc in early stages in peripheral tissues, such as lymph nodes, which are much more accessible [18].

2.2. PrPSc in Brain in Human Prion Diseases

In the case of human prion diseases, in which acquired diseases account for less than 1% of the cases,
PrPSc deposition patterns for the different TSE at the final stage of the disease are very well characterized
and are actually used to distinguish different forms of the disease and even subtypes or strains [59,60].
However, the great variability that characterizes prion diseases also impacts the interpretation of such
neuropathological profiling with unusual distributions or exceptions reported [6]. Despite the difficulty
of defining PrPSc deposition kinetics on sporadic or genetic human prion diseases, some efforts have been
directed towards defining the staging of the cerebral pathology in sCJD cases. However, PrPSc presence
at each stage could not be studied in detail [61,62]. Overall, although post-mortem neuropathological
examination of the brain and PrPSc detection is the gold standard criteria for definitive diagnosis,
detection of PrPSc on brain ante-mortem through brain biopsy is controverted. On the one hand, it is
not advised due to its invasiveness, its low diagnostic success and the low benefits of a confirmatory
diagnosis for untreatable diseases [44]. On the other hand, since it may help to detect other causes
of rapidly progressive dementia that are treatable and reversible, in certain clinical cases it may be of
utmost importance [45]. The conclusions that can be drawn from the few studies reported on brain
biopsies of suspected CJD cases are that: (1) although possibly helpful, all the other diagnostic criteria
should come first and if a probable diagnosis is still impossible, a brain biopsy could be performed when
some other treatable cause of rapid dementia is suspected. (2) The high heterogeneity of human TSE
should be taken into account in order to increase the possibility of successful diagnosis and for that,
the participation of all implicated departments is recommended to achieve correct sampling (neurology,
pathology, neuroimaging and neurosurgery departments). (3) In light of recent advances on PrPSc

detection by in vitro prion propagation techniques from more accessible tissues or body fluids, as will be
reviewed in subsequent sections, brain biopsy should be the last option.

Nevertheless, even though PrPSc detection in brain tissue is not ideal for ante-mortem diagnosis
of TSE neither for humans nor for other mammals, it has been extensively used to develop in vitro
prion detection methods such as PMCA or RT-QuIC given the high amount of PrPSc in comparison to
other tissues [42,63–68].

3. Detection of PrPSc in Cerebrospinal Fluid

Being in direct contact with the CNS and easily accessible via lumbar puncture, the cerebrospinal
fluid has become the preferred site for early detection of PrPSc, which has led to the adaptation of in vitro
prion propagation techniques to this body fluid. As mentioned above, the CSF is being used extensively in
TSE diagnostic for the detection of surrogate biomarkers of neuronal damage that includes an increasing
number of proteins, the levels of which are altered in prion disorders, and that have been extensively
reviewed elsewhere [9,69–72]. However, the change in the levels of many of such surrogate markers
are also detected in other neurodegenerative diseases, which complicates the differential diagnosis
and requires a protein profiling and checking a panel of the relative levels of multiple biomarkers [71].
Although this review intends to focus on PrPSc as a biomarker, it is worth to pay some attention to
total PrP levels in CSF, which have diagnostic and prognostic value for prion diseases. In fact, total
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PrP levels were reported to be reduced in CSF of patients suffering from different neurodegenerative
disorders, including CJD [73]. Although it could apparently have limited utility in differential diagnosis
with other neurodegenerative disorders, further studies using larger cohorts of CJD-affected patients
concluded that, in combination with other surrogate biomarkers (i.e., tau and Aβ42), total PrP levels are
useful to distinguish them from patients suffering from Alzheimer’s disease [74,75]. Apart from sCJD
cases included in the previous reports, a recent study analyzed total PrP levels in CSF of iatrogenic CJD
cases and several genetic prion diseases, showing also decreased levels in all tested cases except for the
GSS associated with P102L mutation [76]. Furthermore, they observed that in sCJD patients at different
stages and in the case of asymptomatic carriers of FFI-causing mutation, total PrP is reduced as disease
progresses, making it a possible prognostic biomarker and an adequate parameter for evaluating future
therapeutic interventions. However, since it is a new approach still in development, during the last year
a methodological improvement was presented using mass-spectrometry, instead of ELISA, to detect total
PrP in CSF more accurately [77]. Similarly, alternative detection of PrP fragments or truncated forms is
being explored what coupled also to mass spectrometry could increase the usefulness of measuring total
PrP in CSF for diagnostic and prognostic purposes [78].

3.1. PrPSc in CSF in Animal Prion Diseases

It was long ago proven that CSF from TSE-affected animals was infectious when inoculated to
other animal models, demonstrating the presence of PrPSc seeds [79–81]. However, direct detection
of prions in CSF by WB or ELISA is not possible due to insufficient sensitivity [82] and require more
sophisticated methods, such as the use of fluorescent probes [34] or specific precipitants [83]. Since the
development of in vitro prion propagation methods, other alternatives have been abandoned in favor
of these more sensitive and specific approaches, and both PMCA and RT-QuIC have been used for
PrPSc detection in CSF in animal prion diseases. PMCA has been applied to the detection of prions
in CSF of hamsters infected with scrapie-derived prions, reaching detection limits of approximately
50 attograms PrPSc [31]. Similarly, but increasing the sensitivity by the use of specific cofactors during
the propagation in vitro, CSF from macaques infected with classical BSE and atypical L-type BSE
(L-BSE) at the pre-symptomatic stage was also used [84,85]. During the last decade, PMCA has been
progressively substituted by the RT-QuIC, for the detection of PrPSc in CSF of animals affected by
prion diseases. This technique has allowed the detection of prions in CSF from cattle affected by BSE
type H and L, but not in those affected by classical BSE, in which PrPSc had been previously detected
in RT-QuIC in brain tissues [86]. Furthermore, the RT-QuIC using different recombinant substrates
permitted the discrimination of the different BSE strains attending to their reaction kinetics [67]. Like in
the case of atypical BSE cases, in sheep naturally affected by scrapie, PrPSc could be detected in CSF in
pre-symptomatic and in symptomatic stages of the disease [87]. On the contrary, although atypical
scrapie could be detected in brain tissue [42], no report has been found on atypical scrapie detection in
CSF. An improved version of RT-QuIC, also known as second generation RT-QuIC, has been similarly
applied to CSF from classical BSE and L-BSE infected goat, in which PrPSc was detected in preclinical
and clinical stage [88]. Finally, it is worth mentioning the detection of Chronic Wasting Disease (CWD)
prions in CSF of affected cervids, for which both PMCA and RT-QuIC have been used. In the case of
CWD-exposed white-tailed deer, both systems were compared showing similar performance regarding
sensitivity (around 50%) and specificity (around 90%) [89]. For the analysis of CWD-infected elk CSF
only PMCA was used, showing a generally low sensitivity and being able to detect PrPSc only in
the most advanced stages of disease [90]. Therefore, despite PrPSc detection in CSF using in vitro
propagation systems is feasible for detection of the most common prion diseases in animals (classical
scrapie, BSE, and CWD), the presence of infectivity in lymphoid nodes and associated mucosa, which
are easier to obtain than CSF, has rendered detection in this body fluid uncommon.



Biomolecules 2020, 10, 469 7 of 44

3.2. PrPSc in CSF in Human Prion Diseases

In comparison, for diagnosis of human prion diseases the use of CSF samples to seed in vitro
propagation reactions has been explored much more profoundly. Lumbar puncture and extraction of
CSF is a usual procedure in patients showing neurological signs and especially in those presenting
rapidly progressive dementias. Since the quantification of 14-3-3 protein levels is one of the standardized
diagnostic criteria [91], this body fluid is available for most of the patients suspected of a TSE. Since
the first human CSF-adapted RT-QuIC was reported in 2011, in which from 48 CSF samples of sCJD,
iCJD and from other neurodegenerative pathologies they achieved about 80% sensitivity and 100%
specificity [92], improvements mainly in the recombinant PrP used as substrate have allowed to
increase the sensitivity and to screen for other TSEs apart from sCJD and iCJD [42,93]. Several studies
have been performed with the CSF of different cohorts of patients suffering from distinct prion diseases
and using slightly different RT-QuIC procedures (summarized in Table 1).



Biomolecules 2020, 10, 469 8 of 44

Table 1. List of studies performed using Real Time-Quaking Induced Conversion (RT-QuIC) in cerebrospinal fluid (CSF) from patients affected by different prion
diseases. A summary of the most relevant parameters such as RT-QuIC substrate, assay sensitivity, and specificity are included. Creutzfeldt-Jakob disease (CJD),
Sporadic Creutzfeldt-Jakob disease (sCJD), iatrogenic Creutzfeldt-Jakob disease (iCJD), prion protein (PrP), cerebrospinal fluid (CSF), Gerstmann-Sträussler-Scheinker
syndrome (GSS), genetic Creutzfeldt-Jakob disease (gCJD), Familial Fatal Insomnia (FFI), Amyotrophic Lateral Sclerosis (ALS), Variably protease-sensitive prionopathy
(VPSPr).

Prion Diseases RT-QuIC Substrate Sensitivity Specificity Observations Reference

sCJD
iCJD

Full-length recombinant
human 129M PrP >80% 100%

Just two iCJD cases.
Controls included other neurodegenerative
disorders (Alzheimer’s disease, Parkinson’s

disease, etc.)
All samples correspond to post-mortem collected

CSF.

Atarashi et al.
2011 [92]

sCJD Full-length recombinant
Syrian hamster PrP 89% 99%

Controls included patients suspected of sCJD but
finally diagnosed with other neurodegenerative

disorders.
All samples correspond to post-mortem collected

CSF.

McGuire et al.
2012 [94]

GSS (P102L)
gCJD (E200K, V203I)

FFI

Full-length recombinant
human 129M PrP

GSS 89%
gCJD (E200K) 81.8%
gCJD (V203I) 100%

FFI 83.3%

100%
14-3-3 and tau analysis of the GSS and FFI samples
detected only 20% and 8.3% of the positive cases,

respectively.

Sano et al. 2013
[95]

sCJD
gCJD

Full-length recombinant
Syrian hamster PrP 70% 100%

CSF samples were obtained from patients with
possible or probable CJD (alive) and with other

neurologic disorders (Alzheimer’s disease,
Parkinson’s disease, etc.)

Orrú et al. 2014
[96]

sCJD
Truncated recombinant

Syrian hamster PrP
(90–231)

96% 100%

CSF samples were obtained from patients with
possible or probable CJD at the time of sampling,
as well as from the patients with other neurologic

disorders, including Alzheimer’s disease, ALS,
atypical Parkinsonism, etc.

Orrú et al. 2015
[97]
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Table 1. Cont.

Prion Diseases RT-QuIC Substrate Sensitivity Specificity Observations Reference

sCJD
gCJD (E200K,V210I)

FFI

Sheep-Syrian hamster
chimeric

recombinant PrP (Syrian
hamster 14–128 followed
by sheep residues 141 to

234)

85% 99%

Control group composed by patients with either
clinically or pathologically defined alternative

diagnosis (Alzheimer’s disease, Lewy body
dementia, Parkinson’s disease, psychiatric

disorders, etc.) Lumbar puncture in sCJD samples
was done in early, middle, or late disease stage.

Cramm et al.
2015 and 2016

[98,99]

sCJD Full-length recombinant
human 129M PrP 76.5% 100% Negative control with artificial CSF. Park et al. 2016

[100]

sCJD
gCJD

(E200K and V210I)
GSS (P102L)

Truncated recombinant
Syrian hamster PrP

(90–231)
94% 100%

Controls included patients with other
neurodegenerative diseases (multiple sclerosis,

Alzheimer’s disease, etc.).

Groveman et al.
2017 [101]

sCJD
VPSPr
gCJD

Full-length recombinant
Syrian hamster PrP

sCJD 75.9–82.7%
VPSPr 0%

gCJD 91.3%
99.4%

Two hundred and twenty-seven, 97, and 29
samples of definite, probable, and possible sCJD

were analyzed; 348 cases of non-CJD patients were
used as negative controls. Along with these, 1 case
of VPSPr and 46 cases of gCJD were also tested.

Lattanzio et al.
2017 [72]

sCJD
gCJD

(E200K, V210I and
V180I)

GSS (P102L)

Truncated recombinant
Syrian hamster PrP

(90–231)

sCJD 95%
gCJD 75% 100%

All non–prion disease control CSF samples,
including those originally with suspected prion

disease, were negative.
The single case of gCJD with V180I mutation was

always negative.
Probable, possible, and suspected cases were

included, being diagnosis confirmed in all cases
post-mortem.

Bongianni et al.
2017 [102]

sCJD
gCJD (E200K and

V210I)
FFI

GSS (A117V, P102L)

Truncated Recombinant
Syrian Hamster PrP

(90–231)
95% 98.5%

Specificity is reduced due to a repeatedly positive
Lewy Body Dementia case that may have also had

a subclinical prion disease.
The CSF RT-QuIC differentiated 94% of cases of
sporadic Creutzfeldt-Jakob disease (sCJD) MM1

from the sCJD MM2 phenotype, and 80% of sCJD
VV2 from sCJD VV1.

Foutz et al. 2017
[103]
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Table 1. Cont.

Prion Diseases RT-QuIC Substrate Sensitivity Specificity Observations Reference

sCJD
gCJD

(E200K and V210I)
GSS (P102L)

VPSPr

Truncated recombinant
Syrian hamster PrP

(90–231)

sCJD ranging from 90% to
100% depending on the

subtype
gCJD 100%

GSS 25%
VPSPr 100%

100%

CSF Analysis of 339 patients:
166 definite CJD
73 probable CJD
100 negative CJD

Franceschini et
al. 2017 [104]

sCJD
Truncated recombinant

Syrian hamster PrP
(90–231)

96% 100%

Control cases included patients diagnosed by
many other neurodegenerative disorders

including Alzheimer’s disease, Lewy body
dementia, Parkinson’s disease, etc.

Fiorini et al.
2020 [105]
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Overall, in the light of all the studies performed until now, analysis of CSF by RT-QuIC has
become one of the most helpful tests to diagnose prion diseases ante-mortem in humans. Although
some genetic TSE cannot be detected yet using this approach, the development of new substrates and
modifications in the methodology might solve these problems soon [42,106]. In fact, RT-QuIC based
on CSF samples is being adapted to other protein-misfolding based neurodegenerative disorders such
as some synucleinopathies and tauopathies [36]. Given the success of the RT-QuIC, the almost full
specificity and high sensitivity achieved and its ease of use in clinical settings, it has surpassed other
methods, such as PMCA for the detection of PrPSc in CSF. However, there are applications for which
CSF analysis by PMCA is preferentially used to answer specific questions that could not be addressed
by RT-QuIC. Particularly, PMCA based on transgenic mouse brain homogenate has been used to detect
the first human vCJD case heterozygous valine/methionine at codon 129, which manifested clinically
as a sCJD. It could be definitively distinguished from a sporadic case thanks to a specific PMCA that
selectively propagates vCJD prions while being unable to propagate sCJD or gCJD [107]. Another
study using a modified version of PMCA also shows the ability of this technique to detect prions in
CSF of vCJD-affected patients with 100% sensitivity and specificity [108].

Although RT-QuIC based on CSF has been proven as the most useful technique for diagnosis of
human prion diseases ante-mortem, there are still few issues that need to be addressed for its generalized
application in clinical practice. The increasing but still small number of laboratories using this method
at present for diagnosis, in many cases depend on external supply of recombinant protein to be used
as substrate, that among other technical variations may cause low reproducibility between different
labs. The inter-laboratory reproducibility using different protein suppliers and distinct batches has been
recently addressed showing good results in a small cohort of CSF samples analyzed by 11 different
laboratories worldwide [109], but needs to be further assessed [9]. Finally, another problem that affects
not only RT-QuIC, but also any other method for prion detection in CSF, is the ignorance of how
long, prior to the onset of clinical signs, is PrPSc detectable in this body fluid, which will be of utmost
importance for the pre-clinical detection of the disease in genetic cases when a therapy is finally available.

4. Detection of PrPSc in the Lymphoreticular System

The involvement of the lymphoreticular system in prion diseases in animals and, more specifically,
the presence of prion infectivity and replication in spleen has been known for a long time. Initial reports
describe the differential accumulation of prion infectivity in spleen of mouse models with different PrP
sequences [110] and the early replication of prions in the spleen being relevant mainly after peripheral
inoculations [111,112]. In addition, presence in the spleen after intracerebral inoculation of scrapie
prions in mouse and sheep have been also reported, pointing to the lymphoreticular system as an early
prion replication site before neuroinvasion [110,113–115]. However, it was also noticed early on that the
lymphoreticular system was not the only possible route for prions to reach the CNS [116]. Since then,
the ability of prions to replicate in lymphoid tissues and their role on systemic prion propagation in the
case of peripheral infections, especially in oral infections, has been extensively investigated [117,118].
In short, after oral exposure in the case of naturally transmitted scrapie, CWD, BSE, and vCJD, prions
arrive to the small intestine and accumulate in gut-associated lymphoid tissues (GALT), such as Peyer’s
patches or other lymphoid organs such as tonsil. From there they spread to other secondary lymphoid
organs such as mesenteric nodes and the spleen and, after replication in these tissues, mostly in the
follicular dendritic cells (FDC) within the GALT, prions invade the peripheral nervous system. Here,
prions can spread from the gastrointestinal tract, GALT or secondary lymphoid organs to the CNS
via two different neuroanatomic pathways [119]. However, this neuroinvasion route can be bypassed
in the case of experimental infections by intracerebral inoculation or by directly injecting prions in
peripheral nervous tissues [112,116]. For other orally acquired prions, this pathway is not as clear
as in the case of BSE. In cattle orally challenged with this prion strain, infectivity in guts increases
at the beginning (~6 months post-infection) but rapidly decreases, only to be recovered at the final
stages of disease, probably by retrograde transport: this suggests that Peyer’s patches can likely act
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as a prion replication sites for BSE [49,120,121]. Therefore, different prion strains might have distinct
capacities to propagate in lymphoid tissues, termed lymphotropism [122], meaning that detection of
prions in lymphoreticular system is restricted to some prion diseases and for certain infection routes.
This was undoubtedly proved using two different strains of Transmissible Mink Encephalopathy (TME)
in hamsters, in which one of the strains was not detected in lymphoid tissue, apparently invading
the CNS through the cranial nerves innervating the tongue, while the other was found all over the
lymphoreticular system [123]. Anyway, the early multiplication of prions in these tissues for some
naturally acquired infections such as scrapie, which are usually due to ingestion of prion contaminated
material, aroused the interest of researchers trying to develop ante-mortem detection methods for TSE
diagnosis in accessible body fluids and tissues.

4.1. PrPSc in Lymphoreticular System in Animal Prion Diseases

Direct detection of protease-resistant protein in the lymphoreticular system of scrapie-affected
sheep by WB or IHC was demonstrated to be possible in the pre-clinical stage (in 14 months after
inoculation) as well as in sheep showing clinical signs within spleen and lymph nodes, albeit with low
sensitivity with respect to brain tissue in the latter ones [124]. Other similar direct-detection studies
reported detection of PrPSc in 87% of the spleen and lymph nodes analyzed in comparison to 100%
in brain [125] and in 100% of spleens but in 80% of lymph nodes [126]. Initial attempts to improve
sensitivity included improved protocols for PrPSc extraction from lymphoid tissue [127]. Although
initial detection studies were performed with rodent models of scrapie [110,112,115,116,125,128,129]
or with scrapie-affected sheep [124,126,130–133] distinct prion strains in different species have been
found in lymphoid tissue, with it being necessary in some cases to use PrPSc concentration procedures
or in vitro prion propagation techniques to enhance sensitivity. Transmissible Mink encephalopathy,
which gives rise to two strikingly different strains upon passage in hamsters, is one of the clearest
examples that some prion strains may show lymphotropism (i.e., Hyper (HY)) while others are more
limited to the CNS (i.e., Drowsy (DY)) [123,134]. The original prion in mink shows early affectation of
lymphoid organs by intracerebral inoculation. Upon oral inoculation, PrPSc is detected even earlier in
retropharyngeal and mesenteric lymph nodes, then in spleen and finally in GALT. Moreover, in contrast
to intracerebrally inoculated animals, PrPSc was found in rectal mucosa-associated lymphoid tissue
(RAMALT) for orally inoculated minks [51]. Spleens, several lymph nodes, and myenteric plexuses
from cats that developed Feline Spongiform Encephalopathy (FSE) after ingestion of BSE-contaminated
foodstuff, were analyzed by IHC. PrPSc was only detected in few of these samples (2 out of 13 spleens,
1 out of 2 Peyer’s patches, 4 out of 4 myenteric plexuses and in all kidneys examined) [135]. In part,
such inconsistent detection of PrPSc could be due to the low sensitivity of direct detection methods
and the result might change if cell-free propagation systems were used. In fact, a study performed in
a captive cheetah affected by FSE using a specific PrPSc precipitation protocol and IHC or immunoblot,
showed prions in spleen and mandibular lymph nodes, confirmed also by PMCA propagation of
spleen prions [136]. The presence of BSE prions in lymphoid tissue of different species has been also
investigated due to its socioeconomic importance. Although not as clearly characterized as in the case
of scrapie, in naturally occurring BSE cases, involvement of the lymphoreticular system appears to
be low and infectivity has only been demonstrated in Peyer’s patches of the ileum by ultrasensitive
bioassay. In experimentally infected cattle with high oral dose also could be detected in Peyer’s patches
and inconsistently in tonsil [137]. However, the lack of detection could be due to the low sensitivity
of direct detection methods and bioassays, since a study based on PMCA propagation showed PrPSc

in palatine tonsils, lymph nodes, ileocecal region and spleen of cattle experimentally infected by the
oral route [138]. The distribution of BSE in sheep has been also studied by IHC in pre-clinical animals,
showing similar pattern to that of scrapie in sheep. Upon oral inoculation, PrPSc could be first detected
in tonsil and ileal Peyer’s patches as early as six months after oral inoculation. At nine months, all the
GALT and lymph nodes, including spleen, showed PrPSc and it was also detected in the peripheral
nervous system. It appeared first in the enteric nervous system and from there invaded the CNS
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through the dorsal motor nucleus of the nervus vagus. At 12 months, and up to the development
of clinical signs at 20–24 months post-inoculation, PrPSc spread within the lymphoid system to
all non-gut-associated lymphoid tissues and completely invaded the CNS via the enteric nervous
system through the parasympathetic and sympathetic nerves to the medulla oblongata and the spinal
cord [139,140]. Similar studies performed by bioassay in sheep bearing other polymorphic PrP showed
a generally similar pathway although with slight differences; for example the early involvement of
retropharyngeal lymph nodes instead of tonsils [141,142]. However, in many cases detection depended
on the thorough screening of several tissue sections by IHC, due to the low amounts of PrPSc present
at early stages in lymphoid or enteric tissue. Thus, it is likely that the observed variability is derived
from the different and low sensitivity of the detection methods used. Experimental infection of BSE
and sheep-BSE in pigs has been also investigated using IHC and PMCA to detect minute amounts of
prions in peripheral tissues. In this experiment, pigs were infected intracerebrally. In spite of the route
of inoculation, prions could be detected already in the clinical stage of disease in palatine tonsils in
some cases and in few submandibular and mesenteric lymph nodes but rarely in spleens or GALT,
suggesting a centrifugal spread of intracerebrally inoculated prions from the CNS to the periphery,
with low affectation of lymphoid organs [143,144]. Finally, another animal prion disease in which PrPSc

detection in lymphoid tissues is relevant for diagnostic purposes is CWD of cervids, known for the
high rate of horizontal transmission likely due to abundant presence of prions in extraneural tissue and
body fluids [145]. PrPSc distribution in orally CWD-infected deer checked by IHC reveals its presence
at 42 days post-infection in lymphoid tissues draining the oral and intestinal mucosa (retropharyngeal
lymph nodes, tonsils, ileal Peyer’s patches and ileocecal lymph nodes), but not in other lymphoid
organs, such as the spleen, mesenteric nodes, and others at 80 days post-infection [146]. Other studies
using cervid samples post-mortem, or in more advanced stages of the disease, and in some cases using
more sensitive techniques, showed PrPSc presence in other lymphoid organs, such as the RAMALT,
demonstrating that the presence of prions in lymphoid tissues follows a spatiotemporal distribution
similar to that of scrapie in sheep [48,147–149]. Apart from the detection by IHC or immunoblot, the
necessity of limiting the spreading of naturally occurring prion diseases such as BSE, scrapie and
CWD, resulted in the development of rapid diagnostic tests. First for BSE and afterwards adapted to
small ruminants, they are mainly used for active surveillance by government agencies due to their
shortened assay times, although with no significant improvement over standard methods on specificity
and sensitivity (e.g., TeSeETM sheep/goats ELISA, Bio-Rad, Hercules, CA, USA; PrionicsTM-Check
PrioStrip SR, Prionics, Zurich, Switzerland). These tests, based on detection of PrPSc by ELISA were
initially approved just for post-mortem analysis of brain samples [150], but the numerous reports
on ante-mortem detection of prions in lymphoreticular system of sheep and cervids [131,151–155]
prompted their use on lymphoid tissue as well as on brain samples [156]. Lymphoid tissues of choice,
due to accessibility and ease of sampling and their association with the gastrointestinal track, are
retropharyngeal lymph nodes and tonsils [151,157,158]. However, in sheep [159–161] and mainly
in deer, another lymphoid tissue or its associated mucosa has been also widely used, namely the
RAMALT [149,162]. For this tissue, cell-free prion propagation systems are being adapted in order to
increase sensitivity and specificity [163–167]. Overall, the use of lymphoid tissues for the ante-mortem
diagnosis of orally transmissible animal prion diseases is widely used together with brain samples for
surveillance by government agencies.

4.2. PrPSc in Lymphoreticular System in Human Prion Diseases

The involvement of the lymphoreticular system for some human prion diseases was reported
early on in the course of transmissibility studies to primates. Infectivity in spleen and lymph nodes of
some patients with prion disease was demonstrated although irregularly, with those affected by Kuru
showing the best transmission rates [80]. The discovery of variant CJD, the third acquired prion disease
in humans derived from dietary exposure to BSE prions, prompted the search for accurate ante-mortem
diagnostic methods in order to control its spreading. For that, based on observations with animal
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prion diseases and the fact that infectivity was found in lymphoid tissues in human prion disease,
the presence of PrPSc in tonsillar biopsies of vCJD-affected patients was first explored [168]. In samples
of deceased patients, PrPSc was found on tonsils by IHC and immunoblotting, suggesting that biopsy
of lymphoid tissue could be a good method for early diagnosis of vCJD. In a comparative study
between vCJD and other human prion disorders, PrPSc was detected in tonsils, spleens and lymph
nodes of vCJD-affected patients but not in iCJD, indicating that tonsillar biopsy could be useful at least
in advanced stages of disease [169]. The first notion that detection of prions in lymphoid tissue could
be done ante-mortem came from the analysis of an appendix of a vCJD-affected patient, which was
removed approximately one year before the onset of the clinical signs and where prions were detected
by IHC [170]. By bioassay in mice, presence of infectivity in spleen and tonsil were also confirmed [171].
With an improved method for PrPSc detection based on selective precipitation and immunoblotting,
prion distribution in four vCJD patients was analyzed finding that tonsils, spleens, and lymph nodes
were uniformly positive for PrPSc (concentrations of 0.1 to 15% of those in brain), with tonsils showing
consistently highest concentrations. In one of them very low levels of PrPSc were found in rectum,
adrenal gland, and thymus, but all were negative in the appendix [172]. A similar study using another
precipitation method showed also detection of vCJD prions in tonsils, in accordance with the previous
one [173]. Although vCJD was considered to be unique in the involvement of the lymphoreticular
system, in contrast to sporadic or genetic forms of the disease, the enhanced precipitation-based
detection method was applied to the study of tissue distribution of PrPSc in sporadic CJD. This study
revealed prions in 10 out of 28 spleens of confirmed sCJD patients, which were those showing the
longest disease duration and the more uncommon molecular subtypes, correlating PrPSc presence in
extraneural tissues with long disease duration [174]. Technical improvements of the analytical methods
offering enhanced sensitivity for PrPSc detection, however, showed complete absence of prions in
lymphoid tissues of sCJD cases in contrast to vCJD, where PrPSc was found in spleens, tonsils and
lymph nodes [175]. In order to shed some light on the presence of peripheral PrPSc in the distinct
human prion diseases, primate models were inoculated intracerebrally and via intratonsillar route
with different tissue homogenates from vCJD, sCJD, and iCJD patients. In this study, prions were
detected in spleen, tonsils, mesenteric lymph nodes, and Peyer’s patches from the small intestine
of vCJD and BSE inoculated animals, while for sCJD, prions were detected in low amounts in the
spleen, and for iCJD in tonsils, but not in other lymphoid tissues. These results definitively confirmed
vCJD as a highly lymphotropic strain whereas other CJD types show very low lymphoid tropism [16].
A similar study using primate models, orally inoculated with BSE prions, also showed widespread
presence of PrPSc in lymphoreticular system (tonsils, spleen and ileocecal lymph nodes) at the clinical
stage. However, prions were rarely detected in these organs in preclinical stages, indicating caution for
assessment of vCJD prevalence in the population based on screening of lymphoid tissues which could
greatly underestimate the number of affected individuals [176]. Nonetheless, a large scale prevalence
study performed on more than 30,000 appendices of UK citizens by IHC revealed PrPSc in one out
of 2000 persons, pointing towards a much higher prevalence than expected and with important
implications for public health [177]. Another one conducted on more than 10,000 tonsil specimens from
the UK only detected PrPSc in one sample, offering prevalence data for vCJD strikingly different of that
predicted in the study done with appendices [158]. In some cases, humanized transgenic mice have
been employed to determine the PrPSc containing tissues and evaluate transmission risk. For example,
lymphotropism of atypical BSE was evaluated through inoculation in mice expressing human PrP,
in which PrPSc was detected in spleen [178]. Another study aimed to determine if the PrPSc detected in
spleen and lymph nodes of a recipient of vCJD-infected blood that never developed disease (likely
due to being heterozygous for codon 129), was infectious and thus a supposed risk of transmission.
Since the mice succumbed to infection when inoculated with spleen tissue of the subclinically affected
patient, they demonstrated that the PrPSc present in the spleen (without CNS involvement) was also
infectious and able to cause disease in susceptible recipients [179]. Finally, studies in transgenic mice
also allowed the quantification of prion infectivity in different tissues by endpoint titration experiments.
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Infectious titers calculated in spleen of a vCJD-affected patient using this method were of ~106.1 ID50/g,
although its use for diagnosis is highly limited due to the duration of the assay [180].

Given that in humans, sporadic and genetic prion diseases are far more common than acquired
prion diseases and that their lymphoreticular involvement is generally low or absent, few efforts have
been made for the adaptation of highly sensitive PrPSc detection methods, such as PMCA or RT-QuIC to
these tissue samples. However, the use of rapid screening tests based on ELISA that are commonly used
for animal TSE surveillance, has been explored with lymphoid tissues (in addition to brain homogenates)
for human prion disease associated PrPSc detection. Tonsils and spleens of few vCJD-affected patients
were analyzed and found to be positive for prions in all cases, demonstrating the potential of such rapid
tests for vCJD diagnosis [181]. Finally, cell-free prion propagation systems have been used to further
assess PrPSc distribution in peripheral tissues of sCJD patients in comparison with vCJD patients, since
the lack of infectivity in the peripheral organs of sCJD-affected patients could be due to an insufficient
sensitivity of previously applied techniques. In contrast to many previous reports claiming absence or
an irregular detection of PrPSc in lymphoreticular system of sCJD patients, the ultrasensitive method
used in this study detected similar levels of PrPSc in spleens, lymph nodes and tonsils of sCJD and vCJD
affected patients [182].

In summary, lymphoid tissues and associated mucosa are widely used for the diagnosis of animal
prion diseases such as scrapie and CWD. Since rapid tests based on ELISA offer good specificity and
sensitivity for these cases, cell-free prion propagation techniques have not been extensively used, despite
showing enhanced sensitivity compared to the previous methods. However, in the case of human prion
diseases, analysis of lymphoid tissue could be useful for vCJD detection but has not been exploited
for sporadic or genetic TSE due to the putatively low and late affectation of lymphoreticular system.
Moreover, even in the case of vCJD in which patients with extremely low involvement of lymphoid
organs have been reported [183], the use of these tissues for early diagnosis could be challenging, favoring
other strategies as detection in CSF or other more accessible body fluids.

5. Detection of PrPSc in Blood

The presence of prions in blood and specially infectivity in this body fluid has been a cause of
concern since the transmissibility of prion diseases was established. In fact, in experimental rodent
models of scrapie, infectivity in serum was shown as early as 1960s [184,185]. However, only few of the
initial transmission experiments in animal models confirmed such results, being positive only for some
blood fractions using certain rodent models of scrapie [186–188]. Similar results were found for human
CJD and GSS blood samples inoculated by different routes in rodent models [189–191], while many
other similar studies showed negative results for blood infectivity [192–196]. Despite the variable
results, the possibility of TSE transmission through blood had been established experimentally at least
for some prion diseases and the scarce evidences that in human prion diseases could also occur [197],
set the alarms ringing for the risk of transmission via blood transfusion [198]. The outbreak of vCJD
in the UK further increased the urgency to definitively assess the infectious potential of blood and
blood-derived products from pre-symptomatic TSE-affected individuals, to develop sensitive methods
for prion detection in blood and procedures that could reduce the risk of contamination during the
processing of blood-derived products [199–202]. At the same time, researchers started to explore the
extraneural distribution of prions due to the discovery of the involvement of the lymphoreticular
system and its close association with the circulatory system. The blood fractions containing prion
infectivity were mainly sought given the importance for the control of possible prion contamination in
blood-derived products [191,202–206]. From these studies, it could be deduced that infectivity in blood
is much lower than that found in brain (105-fold lower), that it is mainly present in leukocytes (5 to
10-fold more than in plasma or red cells) and that for some prion disease infectivity in blood could be
present as early as half-way the incubation period [207].
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5.1. PrPSc in Blood According to Transmission Studies

Based on those observations and suspecting that lack of infectivity detection in many experimental
transmission experiments was due to the low sensitivity of the available techniques, several sophisticated
methods for PrPSc detection in blood were developed using animal models of prion infection or blood
spiked with brain material from TSE-affected individuals [208–218]. The report of the first cases of vCJD
transmission through contaminated blood transfusion in 2004 [219–221] entailed a point of inflexion, since
a theoretical hazard became real, causing a significant increase in researchers dedicated to investigate
infectivity and PrPSc presence in blood as well as improved detection methods. In all cases, blood
transfusion recipients developed vCJD after receiving transfusions of red blood cells from donors that
were pre-symptomatic at the time of donation but developed vCJD later. Transmission studies in
animal models continued and further complicated the situation, using different blood fractions to assess
infectivity levels. These studies confirmed the presence of infectivity in whole blood and buffy coat of
scrapie and BSE-affected sheep [222], in BSE-inoculated mice, and primate models [223,224] as well as in
GSS and vCJD-inoculated mouse models [225], among others [198]. In addition, for CWD in cervids,
known for its ease of natural transmission due to the presence of prions in most of the tissues and body
fluids analyzed to date, infectivity in blood was definitively proven by the intravenous (equivalent
to transfusion) route in symptomatic [226] and pre-symptomatic animals [227]. The infectivity was
later described to be harbored by B lymphocytes and platelets [228] as found also in scrapie-infected
sheep [229]. Nonetheless, other studies with mouse models and vCJD prions showed that all clinically
relevant blood fractions can contain prions [230], as well as with naturally acquired scrapie in sheep [231]
and that the efficiency of blood to blood transmission could be higher than expected [232]. Although the
situation with vCJD was increasingly clear (transmission risk had been established and the dependence
on the recipient’s genotype regarding codon 129 for the development of the disease had been observed),
the risk of transmission of other human TSE types, such as sporadic or genetic cases was still under
study [207]. Despite some evidences of the presence of PrPSc in blood or plasma from sCJD patients
and animal models infected with sCJD or GSS prions [216,233,234], there are also reports of lack of
infectivity or PrPSc [182,234,235]. On the other hand, no cases of infection through blood transfusion
have been reported in humans and epidemiological and follow-up studies suggest that the possibility
of occurrence of such an event is extremely low [236–239]. However, a recent report of neurological
impairment after vCJD prion contaminated-blood infection in mice and macaques suggests, that apart
from a low percentage of vCJD transmission, another neurological condition could be transmitted
through transfusion of contaminated blood [240], reinforcing the importance of developing detection
methods for prions in blood. In addition, experimental inoculation of mouse-adapted CWD prions by
the intravenous route gave rise to a novel more neuroinvasive strain, that indicates that exposure to
prions through transfusion could generate new prion strains in humans [241].

5.2. PrPSc in Blood According to New Detection Techniques

Despite the development of new detection methods with increased sensitivity, in many cases resulted
insufficient and reports of lack of PrPSc detection in blood fractions that have been proven positive in
infectivity studies were still published [172,242]. A major breakthrough in this matter occurred in 2005
when cell-free prion propagation methods were applied to the detection of prions in blood. PMCA was
shown to detect prions in buffy coats from scrapie-infected hamsters with unprecedented 89% sensitivity
and 100% specificity [21]. Moreover, this methodology was readily improved and used for the detection
of minute amounts of PrPSc in blood of pre-symptomatic animals, detecting it in scrapie-infected hamsters
down to 20–50 molecules of misfolded PrP, with a maximum sensitivity of 60% and specificity of 100% in
the pre-clinical phase (at 40 days post-inoculation) and reaching 80% sensitivity in the clinical stage (at
115 days post-inoculation) [243]. These results brought some hope to the possibility of detecting prions
for the screening of blood for transfusion or other blood-derived products and importantly, for early
diagnosis of prion diseases using an easily accessible body fluid. In fact, apart from the development
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of new PrPSc detection methods for diagnosis, PMCA has permitted to detect PrPSc in extracellular
vesicles from plasma of vCJD infected mice [244], which was later confirmed by IHC [245]. Although
other methods have been proposed (e.g., rapid tests based on ELISA [18,246], cellular assays using
prion susceptible cells [247], or bioassay in Drosophila [248]), the worse specificity and sensitivity and
difficulties associated to cell culture or fly models for standardization purposes have limited their use.
Nonetheless, several laboratories and companies have developed their own methods for screening of
vCJD prions in blood based on distinct procedures. This is the case of the EP-vCJD blood screening
assay from Amorfix Life Sciences Ltd., based on prion concentration followed by immunoassay, which
showed 100% sensitivity and 97%–99% specificity with brain prions spiked in blood and plasma [249].
Other systems have been also developed not only based on in vitro prion propagation, with variable
sensitivity and specificity aimed to the detection of vCJD or sCJD prions in blood. These methods have
been tested in different models (summarized in Table 2), but in general, procedures based on cell-free
prion propagation such as RT-QuIC and PMCA can be considered the most promising due to their
versatility. They have been applied to blood in several occasions and with different prion strains and
species, offering maximum specificity and overall high specificity (Table 2). Although there is no routine
blood test fully developed yet, blood analysis could be one of the easiest way for the early diagnosis
of prion diseases as long as sufficient sensitivity is achieved and the ability to detect not only vCJD,
but other human prion diseases at the pre-clinical stage is definitively demonstrated. This might not
be far off since the use of recombinant bank vole PrP as RT-QuIC substrate has shown the capacity
to propagate all human prions tested from brain homogenates [42]. Meanwhile, analysis of surrogate
biomarkers in blood is becoming a feasible strategy to aid in early diagnosis of TSE, given that total PrP
and total tau levels have been already correlated with CJD [250,251].
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Table 2. List of studies performed using different techniques for the detection of scrapie isoform of the prion protein (PrPSc) in blood and blood fractions. The blood
fraction in which PrPSc presence was checked is detailed, as well as the disease stage at the sampling time when available. Prion protein (PrP), Variant Creutzfeldt-Jakob
disease (vCJD), Chronic Wasting Disease (CWD), bovine spongiform encephalopathy (BSE), Real Time Quaking Induced Conversion (RT-QuIC), Protein Misfolding
Cyclic Amplification (PMCA), Surround Optical Fiber Immunoassay (SOFIA), Direct Detection Assay (DDA), Rocky Mountain Laboratory mouse-adapted scrapie
strain (RML).

Assay Species Prion Strain Blood
Component Disease Phase Substrate Sensitivity Specificity Reference

RT-QuIC Human
Hamster

vCJD
263K

Plasma
Plasma & serum

Post-mortem
and

preclinical

Full-length recombinant Syrian
hamster PrP

Full-length recombinant
human PrP

Sheep–Syrian hamster chimeric
recombinant PrP (Syrian

hamster 14–128 followed by
sheep residues 141 to 234)

100%
100%

100%
100% Orrú et al. 2011 [252]

RT-QuIC Cervid CWD Whole blood Clinical and
preclinical

Truncated recombinant Syrian
hamster PrP (90–231) >90% 100% Elder et al. 2013 [253]

Elder et al. 2015 [254]

PMCA Hamster 263K Buffy coat Clinical
Preclinical

Syrian hamster brain
homogenate

89%
20–60%

100%
100%

Castilla et al. 2005
[21]

Saá et al. 2006 [243]

PMCA Sheep Natural Scrapie
infection Buffy coat Post-mortem

Sheep brain homogenate
(V136R154Q171/V136R154Q171,
A136R154Q171/A136R154Q171

and A136R154Q171/
V136R154Q171)

100% 100% Thorne et al. 2008
[255]

PMCA
Sheep

Macaque
Human

Sheep-BSE
vCJD
vCJD

Buffy coat

Preclinical
(Sheep-BSE &

Macaque vCJD)
Clinical

(Human vCJD)

tgBov (Bovine PrP, line tg110),
tga20 (murine PrP), tg338
(ovine V136R154Q171 PrP),

tgShXI (ovine A136R154Q171
PrP variant) and tg650 (M129

variant of the human PrP)
brain homogenates

100%
75%

100%
100%

Lacroux et al. 2014
[256]

PMCA Macaque vCJD Whole blood Preclinical and
clinical

tgHu129M (M129 variant of the
human PrP) brain homogenate 96–100% 100% Concha-Marambio

et al. 2020 [257]

PMCA Cervid CWD Whole blood Preclinical and
clinical

tg1536 (mule deer PrP) brain
homogenate 53–100% 100% Kramm et al. 2017

[258]

Plasminogen
bead-capture coupled

to PMCA
Human vCJD Plasma Post-mortem

tg338 (ovine V136R154Q171 PrP)
and tg650 (M129 variant of the

human PrP) brain
homogenates

81.5–100% 96.5–100% Bougard et al. 2016
[259]
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Table 2. Cont.

Assay Species Prion Strain Blood
Component Disease Phase Substrate Sensitivity Specificity Reference

Surround Optical
Fiber Immunoassay
(SOFIA) coupled to

PMCA

SheepCervid

Natural and
experimental

Scrapie
CWD

Plasma Preclinical and
clinical

Hamster, Sheep and deer brain
homogenates

100%
100%

100%
100%

Rubenstein et al. 2010
[260]

Rapid ligand-based
Immunoassay Sheep

Natural Scrapie
infection

BSE
Buffy coat Clinical and

preclinical -

33% (Preclinical
Scrapie)

59–60% (Clinical
Scrapie)

71% (Clinical BSE)

100% Terry et al. 2009 [246]

Monoclonal antibody
and streptavidin

Immunoassay

Sheep and
goat

Natural and
experimental

Scrapie
Whole blood Post-mortem - 100% 100% Soutyrine et al. 2017

[261]

Raman spectroscopy Sheep Natural Scrapie
Membrane-rich

fraction from
Blood Cells

Post-mortem - 100% 100% Carmona et al. 2004
[210]

Infrared spectroscopy Cattle BSE Serum Clinical - >85% >90% Martin et al. 2004
[211]

In vitro amplification
coupled to fluorescent

amplification
catalyzed by T7 RNA
polymerase technique

(Am-A-FACTTR)

Mouse
Cervid

ME7
CWD Plasma Clinical and

preclinical
Mouse and mule deer brain

homogenates 100% 100% Chang et al. 2007
[218]

Misfolded Protein
Diagnostic

Sheep
Mouse
Human
Squirrel
monkey

Natural Scrapie
Fukuoka-1 (GSS

derived)
SCJD (Human
and monkey)

Plasma and
serum Clinical - 100% 100% Pan et al. 2007 [216]

Atomic Dielectric
Resonance

Spectroscopy
Human vCJD

sCJD Whole blood Clinical - 100% 100% Fagge et al. 2007 [217]

Fluorescence Intensity
Distribution Analysis Sheep Scrapie Plasma Clinical - 100% 100% Bannach et al. 2012

[262]

Prototype
blood-based vCJD

assay
Human vCJD Plasma Post-mortem - 71.4% 100% Jackson et al. 2014

[263]
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Table 2. Cont.

Assay Species Prion Strain Blood
Component Disease Phase Substrate Sensitivity Specificity Reference

Commercially
available Amorfix

EP-vCJD blood
screening assay

Human vCJD Citrated plasma - - 97.6–99.9% 100% Guntz et al. 2010
[249]

Direct
immunodetection of

Surface-Bound
Material

Human vCJD
sCJD Whole blood Post-mortem - 71.4% 100% Edgeworth et al. 2011

[264]

Direct Detection
Assay (DDA) Mouse RML Whole blood Clinical and

preclinical - 100% 100% Sawyer et al. 2015
[265]
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6. Detection of PrPSc in Olfactory Mucosa

In the previous sections it has been clearly established that despite being pathologies of the CNS,
prions can replicate in extraneural tissues (such as lymphoid organs) and that they can spread to
different locations through the peripheral nervous system [118,266]. Moreover, intraocular inoculations
done to study the neural spread of prions [267] and the report of iatrogenic CJD cases due corneal
transplants [268] clearly demonstrated that prions could spread in both directions along the axons.
Further demonstration of PrPSc spreading along the sensory pathways and cranial nerves came from
inoculation studies using the intratongue route [123] and from PrPSc deposition assessments that
showed detectable amounts of prions by IHC in the optic nerve of a sCJD-affected patient [172].
The possibility of finding PrPSc in peripheral nerves that could be accessed easily and that were close
to the CNS, lead Zanusso and collaborators to pay attention to the olfactory sensory pathway, which is
in close contact to the CNS through the olfactory receptor neurons. The dendrites of these neurons are
located in the olfactory epithelium of the upper nasal cavity form the olfactory cilia, which is directly
connected to the olfactory bulb. In fact, they were able to determine in post-mortem sCJD samples,
that prions were selectively deposited in the neuroepithelium of the olfactory mucosa, which could
be detected by IHC and WB analysis [269]. Although early involvement of the olfactory system was
suspected, indicating it could be useful for early diagnosis of sCJD, it was not proven until a year later.
The same group was able to detect PrPSc in a patient just 45 days after disease onset although just
by IHC likely due to low levels for immunoblot detection [270]. The presence of prions in olfactory
mucosa in early stages of sCJD that could be due to selective centrifugal spread of prions from the
brain via olfactory sensory pathway, opened the way for a non-invasive early diagnosis of TSE based
on PrPSc detection in nasal brushing.

In animals, the shedding of prions to oral and nasal mucosa was investigated by laser scanning
confocal microscopy in hamsters inoculated intracerebrally with the HY prion strain. They observed
PrPSc in the olfactory and vomeronasal epithelium, mainly in the apical dendrites of the sensory
neurons in early clinical stage of disease, confirming transport of prions via the olfactory nerve fibers
that descend from the olfactory bulb early in the disease [271]. The involvement of the olfactory system
has also been investigated in sheep naturally affected by scrapie. In this case, PrPSc was detected by
IHC or immunoblotting in nasal cavity and olfactory system-related brain areas. They were able to
detect PrPSc in the nasal cavity of 21 out of 24 sheep samples analyzed in both pre-clinical and clinical
stages of disease. However, olfactory receptor neurons and olfactory epithelium, analyzed just by IHC,
did not show PrPSc deposition, likely due to the small amounts present (as in humans in which was
estimated to be around 3% of that in the olfactory bulb) or the high turnover rate of olfactory receptor
neurons [272].

Cell-Free Prion Propagation Systems and PrPSc Detection in Olfactory Mucosa

The low PrPSc levels in olfactory mucosa could have greatly limited its use for diagnosis if cell-free
prion propagation techniques had not come onto the scene. In fact, further studies in which prion
shedding to the olfactory mucosa of hamsters was reported, already took advantage of the RT-QuIC
system to confirm the previous findings, being the first reports on the use of nasal brushings for prion
detection [273,274]. The use of RT-QuIC with olfactory mucosa obtained from nasal brushings was
readily applied to the detection of human prions in a study that compared the results of the olfactory
mucosa with samples of CSF from the same patients. Tested in definite and probable sCJD cases,
as well as in a couple of gCJD cases, the assay showed 97% sensitivity for sCJD and 75% for gCJD and
100% specificity, improving the sensitivity offered by CSF analysis of the same patients that was around
77%. Moreover, nasal brushings provided stronger and faster seeding than CSF samples in RT-QuIC,
since they contained significantly higher prion concentrations than CSF samples [96]. Therefore, nasal
brushing RT-QuIC could be more promising for TSE diagnosis than the CSF-based technique, although
how long before disease onset prion shedding to the olfactory mucosa occurs needs to be addressed
for that.
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This technique has been also applied to the analysis of CWD-affected deer and elk samples in
comparison with RAMALT tissue obtained ante-mortem from clinically affected animals. In this case,
while RAMALT sensitivity was around 70% and specificity of around 94%, nasal brushings performed
much worse, with sensitivity reaching 15% and specificity ranging from 90% to 100% in white-tailed
deer [165]. In ante-mortem and post-mortem samples of elk, similar results were obtained with RAMALT
reaching 78% sensitivity, in contrast to the 34% achieved with nasal brushing [166]. Few other studies
have been performed in humans due to the novelty of the method, but the published studies indicate that
nasal brushings coupled to in vitro prion propagation techniques could be one of the most promising
diagnostic tests in development that use PrPSc as pathognomonic biomarker. Both PMCA and RT-QuIC
on nasal brushings of two FFI patients demonstrated that in this genetic prion disease, PrPSc can also
be found in trace amounts in olfactory mucosa samples. Both techniques were able to detect as little
as femtogram amounts of PrPSc in nasal brushings of FFI-affected patients, with 100% specificity and
quantitative PMCA allowed to estimate PrPSc concentration on these samples of 1.41 × 10−14 g/mL [275].
Another control-case study in olfactory mucosa was performed with samples from 86 CJD patients
(probable, possible and suspected cases) versus 104 controls analyzed by RT-QuIC. The results showed
that from 61 patients with definite sCJD, 93% to 100% sensitivity was achieved with 100% specificity,
whereas for the 8 gCJD or GSS cases, 75% sensitivity was reached with 100% specificity and suggested
that the combined CSF and olfactory mucosa analysis could provide virtually 100% sensitivity [102].
In the most recent study, 182 CSF samples and 42 olfactory mucosa brushings from patients suspected of
having sCJD with rapidly progressive dementia were submitted to RT-QuIC showing sensitivity of 91%
(versus the 96% achieved with CSF samples) and 100% specificity, significantly higher than surrogate
biomarkers 14–3-3 and total tau for the same samples [105]. Again, the study concludes that combined
CSF and olfactory mucosa analysis by RT-QuIC can achieve 100% sensitivity in sCJD, proposing it as
one of the possible ways to develop the definitive test for TSE diagnosis in humans. Finally, it is worth
mentioning that the success of this method for the diagnosis of TSE has prompted its use on other
protein misfolding-related neurodegenerative disorders such as Parkinson’s disease or Multiple System
Atrophy [276].

7. Detection of PrPSc in Urine, Saliva, and Feces

Prion diseases with high rate of horizontal transmission such as scrapie and CWD are well-known
for the spreading of PrPSc in a wide range of peripheral tissues and body fluids. One of the possible
explanations for their considerable dissemination rates was long suspected to be due to the excretion
of prions through body fluids that persist in the environment and are afterwards acquired by other
individuals. In fact, in contrast to other orally acquired prion diseases such as BSE, scrapie-affected
animals show PrPSc throughout their digestive track including colon [277], indicating that excretion in
feces could be a route for horizontal transmission. However, although the amounts of PrPSc might
be much higher in scrapie or CWD it does not seem an exclusive trait of these prion diseases as
demonstrated by the detection of protease-resistant PrP forms in urine of BSE-affected cattle, sCJD or
gCJD-affected patients as well as in intracerebrally scrapie-infected hamsters in pre-clinical stages of
disease [278]. Based on the observations that prions could be found in urine, probably in feces and
likely in other body excretions, the search for a non-invasive diagnostic test based on prion detection
in these fluids started.

7.1. Urine

The initial attempts to detect prions in urine of CJD affected patients, aimed to developing
a diagnostic test, failed to detect proteinase K-resistant PrP by immunoblotting [278] due to the
presence of several protease-resistant proteins coming from contaminant Enterobacterial species [279].
A second study using urine samples from sCJD, gCJD, and vCJD-affected patients also reported detection
of multiple protese-resistant proteins in the range expected for prions that showed cross-reactivity
with anti-PrP antibodies but consisted fundamentally of immunoglobulins from the urine. Despite
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partially solving this problem by using two distinct secondary antibodies, the assay showed overall
low sensitivity and specificity: 31% with one of the antibodies and 64% sensitivity with the other
one for sCJD, 0% and 33% for vCJD, and 25% and 50% for the gCJD cases, with specificity of 88%
and 35%, respectively [280]. Even a third one was reported in which the same PrP-immunoglobulin
composed aggregates were observed in concentrated urine samples of CJD-affected patients, failing in
this occasion to determine whether urine could be used for human TSE diagnosis [281]. In spite of
the low performance of these initial assays the presence of PrPSc in urine was established and thus,
studies aimed at using PrPSc detection for diagnosis or for transmission risk assessment increased [282].
Prionuria or presence of prions in urine was found to be increased due to nephritis in scrapie-inoculated
mouse models. By bioassay they detected infectivity in urine of mice affected by this condition but not
in prion-infected mice not suffering the renal pathology [283], that could reflect the low titers present in
animals not suffering from nephritis. In agreement with this observation, a couple of studies performed
with scrapie-infected hamster urine showed that inoculation with urine caused subclinical infection
in most cases, developing into scrapie just in few animals [284,285]. Another bioassay in humanized
transgenic mice inoculated with raw and 100-fold concentrated urine from three sCJD-affected patients
also showed negative results, indicating that there was not PrPSc in the urine of these patients or that
the amount was lower than 0.38 infectious units/mL (based on titration experiments with brain-derived
sCJD prions in the same animal model) [286].

Again, specific procedures designed ad hoc and in vitro prion propagation systems contributed
to solve the problems associated with the low PrPSc amounts present in urine samples, confirming
presence of PrPSc in urine of several species and opening the way for the development of diagnostic
tests based in urine. For instance, a method developed originally for detection of PrPSc in blood of vCJD
patients named direct detection assay and based on PrPSc concentration [264], was adapted to urine
samples. Using this procedure, the authors reported 40% sensitivity on detecting PrPSc in urine of sCJD
patients but only around 8% for vCJD samples of patients within the symptomatic stage of the disease,
both with 100% specificity [287]. However, cell-free prion propagation methods have provided the best
results taking into account the low concentrations of PrPSc in urine. PMCA has been used to detect
prions in urine of orally scrapie-infected hamsters, revealing that in few animals PrPSc was excreted
in urine four days after inoculation, although afterwards it was undetectable until the final stages of
disease [288]. An initial estimation of sensitivity and specificity of PMCA for the detection of prions in
urine of scrapie-infected hamsters in the clinical phase of disease showed approximately 80% sensitivity
and 100% specificity, although larger number of samples might be required for an accurate calculation
of sensitivity [289]. Variations of the PMCA methodology in order to enhance sensitivity have been
used for the specific detection of atypical BSE prions in urine of experimentally infected macaques.
Using L-Arginine ethylester during the in vitro propagation, the technique allowed detection of prions
in urine of 1 out of 2 animals at pre-clinical stage and in all the samples at the clinical stage of
disease [85]. PMCA has also been applied to the study of scrapie-affected sheep and CWD-affected
deer urine samples. Rubenstein and colleagues reported PrPSc detection in urine of sheep naturally or
experimentally infected with scrapie at the clinical stage of disease and for deer infected with CWD in
pre-clinical, early and late clinical stages of the disease consistently by PMCA [290]. Similarly, another
study on CWD-affected cervids showed detection of prions in urine by PMCA and bioassay although
at lower levels than in saliva [23]. Importantly, it has also been applied to determinate the time course
of prion excretion in urine of three different orally CWD infected-cervid species at the preclinical stage:
elk, mule deer, and white-tailed deer. They found that prion excretion started as early as 6 months
post-infection in feces whereas their detection in urine resulted 10 times less frequent, finding PrPSc at
six months only in one out of two white-tailed deer and requiring 18 months to be detected in one
of the two elks and in the only mule deer tested [291]. The use of PMCA for the detection of prions
in urine of human TSE-affected patients has also been explored. Moda and collaborators analyzed
urine samples from several patients in the clinical phase of vCJD, sCJD, gCJD, or other neurological
disorders, and found PrPSc only in vCJD patients’ urine with a sensitivity of 93% and a specificity of
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100% [292]. Furthermore, they demonstrated that urine-derived PrPSc propagated by PMCA conserved
its strain features by bioassay in humanized transgenic mice [293]. Regarding RT-QuIC, its utility on
urine prion detection has also been proven, mainly applied to CWD samples. In white-tailed deer and
mule deer orally inoculated with CWD-containing brain homogenate, urine from the pre-clinical stage
was analyzed, being negative for PrPSc at five months post-infection but consistently positive at 13 and
16 months, three to four months before development of the first clinical signs [294]. Quantification
of PrPSc amount was also performed by RT-QuIC and using a specific prion precipitation procedure
to improve sensitivity. Results showed similar PrPSc amounts in urine and saliva of symptomatic
deer of approximately 1–5 LD50/10 mL [295]. The same authors also presented a longitudinal study in
CWD-infected white-tailed deer to determine the onset, duration, and amount of prion shedding in
urine. They detected PrPSc in urine by RT-QuIC at 6 months post infection and estimated infectivity
titers were found to be coincident with the previous study [296]. An enhanced RT-QuIC procedure
for the analysis of urine samples has been also presented, based on PrPSc extraction and purification
using magnetic beads. This method, also applied to CWD prions, showed similar sensitivity in urine
than other methods involving precipitation procedures [295], but the one based on magnetic beads
improved assay consistency (reduced range among replicates) [297]. Apart from CWD prions, RT-QuIC
has also been used to quantify PrPSc in urine of mice inoculated with mouse-adapted scrapie prions.
Importantly, this assay allowed the monitoring of the efficacy of an anti-prion therapy in these model
animals, in which brain PrPSc amounts correlated with the amounts found in urine [298]. Therefore,
in addition to diagnosis, cell-free amplification techniques may provide the perfect platform to monitor
the effect of therapeutic agents in efficacy assays using a non-invasive method.

7.2. Saliva

The presence of prion infectivity in saliva was found first in CWD-affected cervid by bioassay,
looking for explanations for the high rate of horizontal transmission that characterizes this TSE [226].
In scrapie-infected goats, PrPSc was also observed in salivary glands by immunoblotting in amounts
ranging from 0.02% to 0.005% of the amount detected in the brain [299]. These observations were further
confirmed in another bioassay study using TSE-affected deer and sheep saliva. In this case, six out of
seven urine samples from scrapie-infected sheep transmitted prions to ovinized transgenic mice with
titers of −0.5 to 1.7 log ID50 U/mL. Similarly, inoculation of saliva samples from two CWD-affected mule
deer transmitted prions to mice expressing elk PrP with titers of −1.1 to −0.4 log ID50 U/mL [300].

Due to the low amounts, detection of PrPSc in saliva was definitively confirmed thanks again to
cell-free in vitro prion propagation techniques. However, in the first attempts, results of CWD-prion
presence in saliva determined by bioassay could not be further confirmed by PMCA, in contrast to presence
in urine in which PrPSc was readily detected, most likely due to propagation inhibitors present in the
saliva [23]. Inhibition problems were also observed when CWD-affected deer saliva was used as seed
in RT-QuIC and mucins from saliva were identified as inhibitors. Given the observation that sonication
could degrade part of the RT-QuIC inhibitors, Davenport and colleagues decided to try a modified PMCA
protocol (increased temperature and energy input) that allowed detection of PrPSc in samples that were
negative for RT-QuIC. Nonetheless, PMCA requiring multiple serial amplification cycles is time-consuming
and the authors decided to combine both methods to reduce assay times. For that, they used PMCA
products still undetectable by immunoblotting to seed RT-QuIC reactions [301]. PMCA has also been
exploited for the detection of BSE-infected cattle, although enhanced methods were also required in order
to increase sensitivity. The use of sulfated dextrans to specifically favor propagation of BSE prions in vitro,
allowed the detection of PrPSc in salivary glands and saliva of BSE-infected cattle at terminal stage of
disease with 50% sensitivity (two out of four samples were positive) [138]. The same method was applied
to the detection of PrPSc in saliva of cattle at terminal stage, early clinical stage and two months before
onset of clinical signs. The authors estimated salivary PrPSc amount to be equivalent to that in 10−12

dilution of brain homogenate, however failed to detect in cattle three to five months prior to the onset of the
disease [302]. Another modified PMCA protocol using L-Arginine ethylester also allowed early detection of
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prions in saliva as well as in urine of atypical BSE-infected macaques. PrPSc presence was shown in saliva
in half of the samples obtained from one animal at pre-clinical stage of the disease and in all the samples of
another animal at the symptomatic phase of the disease [85]. These studies clearly indicate the importance
of optimizing each assay for specific prion strains and PrPSc seed source. RT-QuIC, once inhibition
problems were solved through dilution of saliva samples or using prion-enriched samples precipitated with
phosphotungstic acid, also allowed detection of PrPSc in saliva obtained from CWD-exposed white-tailed
deer. Specifically, prions were detected in 14 out of 24 (58.3%) diluted saliva samples, including 9 out of 14
asymptomatic animals (64.2%) and in 19 out of 24 (79.1%) enriched samples [303]. The same assays were
used to quantify prions in saliva samples of CWD-infected deer, detecting similar levels than in urine of
1–5 LD50 per 10 mL [295]. Moreover, for a longitudinal study in which prions were detected in saliva of
CWD-affected deer as early as 3 months post inoculation with an assay specificity of 97% (a bit lower than
in urine with 99% specificity) [296]. Further modifications of RT-QuIC assay, such as the PrPSc extraction
with magnetic beads before the in vitro seeding reaction, showed sensitivity and specificity similar to that
obtained by phosphotungstic acid precipitation in the previous study [297].

7.3. Feces

Presence of prions in fecal material was first suspected due to the detection of PrPSc in the
gastrointestinal track by IHC [277]. Moreover, it has been repeatedly established that prions are not
degraded by gut microbiota and do not lose infectivity after passage through the digestive system
of different species [304–307]. The first experimental evidence of prion transmission through feces
was reported in hamsters that were exposed to the bedding of orally scrapie-infected hamsters, which
developed infection with 80–100% attack rate, likely due to coprophagy. Presence of prions in feces was
confirmed by immunoassay and the amount determined by bioassay, showing that fecal samples collected
from infected hamsters in the first seven days after oral challenge harbored 60 ng of PrPSc per g of feces and
prion titers of approximately 106.6 ID50/g [308]. Using a procedure involving detergent-based extraction
and immunoprecipitation, PrPSc was also detected in feces from orally inoculated mice over four-days
post-inoculation shortly after oral ingestion of scrapie and BSE agents (up to 24 and 48 h post-infection,
respectively), although it failed to detect prions in feces from terminally sick scrapie-infected mice [309].

Since lack of prion detection at terminal stages of disease could be due to low sensitivity of the
techniques used, cell-free prion propagation methodologies were readily applied to the analysis of
fecal samples. Krüger and collaborators were able to detect PrPSc in feces of orally scrapie-infected
hamsters by immunoblotting at 24–72 h post infection, but not at the first 24 h or at later preclinical or
clinical stages. To detect some PrPSc in clinically affected animals PMCA was required, finding prions
in two out of four animal feces tested [50]. PMCA and two different PrPSc extraction methods were
also used to detect prions in feces of sheep naturally infected with scrapie, showing positive results in
7 of 15 sheep at clinical stage and in 14 out of 14 sheep at preclinical stage [310]. For the detection of
CWD prions, an adapted PMCA was also presented able to detect 1.2·10−7 dilution of brain-derived
CWD prions in fecal environment, equivalent to 100 pg of PrPSc per g of feces. This system was used
to detect prions in feces of naturally infected elk and estimate the concentration in correlation of IHC
findings in the obex and RAMALT of the same animals, observing a good relationship between the
amounts detected in feces by PMCA and the stage of the disease as indicated by IHC [311]. Another
study with three CWD-affected cervid species (elk, white-tailed deer, and mule deer) in which prions
in feces were sought by PMCA showed positive results in 10 out of 12 elk samples, in seven of nine
white-tailed deer, and in seven out of eight mule deer; detection being possible for all three species in
some samples already at six months post-inoculation [291]. In contrast, RT-QuIC has been only used in
fecal samples of CWD-affected animals. The enhanced RT-QuIC detection method based on magnetic
particle extraction of prions that was also used to detect prions in saliva and urine was applied to
feces from terminal CWD-affected deer. Five out of six (83%) samples from CWD-infected deer were
positive as well as 3 out of 46 uninfected control samples (false positive rate of 6.25%). Whereas in
crude samples for which PrPSc was not extracted using magnetic beads only one out of six (16.6%)
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CWD-infected samples were positive [297]. This result reflects the difficulties of performing in vitro
prion propagation assays in complex substrate as fecal material, suggesting that previous purification
or extraction steps can be of utmost important for the success of a detection method. Another method
based on prion precipitation with phosphotungstic acid has also been developed for the screening of
CWD infection in pre-symptomatic animals in RT-QuIC using fecal material. Using this method in
experimentally CWD-inoculated elk from which feces were collected at different timepoints, out of the
14 preclinical samples obtained between 8 and 400 days post infection 11 samples (78.5% sensitivity)
were positive by RT-QuIC, including at least one out of two samples taken at very early time points
(8, 9 or 14 dpi) [312]. Further improvement of this method through substrate replacement during
RT-QuIC increased the sensitivity (77%; 14 out of 18 samples in RT-QuIC were positive) and specificity
(100%; none of the negative controls in RT-QuIC turned positive) of detection, demonstrating that
there is still room for improvement for these kind of diagnostic tests [313]. Apart from using distinct
extraction methods for PrPSc from fecal samples, the RT-QuIC parameters can also be modified to
improve the assay sensitivity and specificity. Using magnetic bead-based prion extraction and low
temperature RT-QuIC, Henderson and colleagues were able to reduce the false-positive reactions from
34.2% to 2.5%. With this modified reaction protocol, they were able to detect PrPSc in 81.8% of feces
from deer experimentally infected with CWD for one year or longer and also in naturally affected elk
in which 40% of asymptomatic but certainly infected animals could be identified [314]. Therefore,
diagnosis of TSE through analysis of feces seems feasible at least for CWD, although the techniques
used may need further optimization.

8. Detection of PrPSc in Other Tissues and Body Fluids

Due to the possibilities offered by cell-free prion propagation techniques, PrPSc has been detected
in many other organs, tissues and body fluids. Although most of them are not adequate sources
of prions for ante-mortem diagnosis of TSE due to their bad accessibility, late appearance of prions
in the course of the disease or inconsistent detection, they are worth mentioning given that further
improvements in prion propagation methods could allow their use for this purpose.

As mentioned before, the eyes have drawn the attention of TSE researchers due to the success of
intraocular inoculations, reports of iCJD due to corneal transplant and retina being part of the CNS [267,268].
The presence of prions in retina has been reported in several species including humans [172,315,316].
In fact, a study performed using RT-QuIC in post-mortem sCJD patients’ samples, revealed PrPSc in cornea,
lens, ocular fluid, retina, choroid, sclera, optic nerve, and extraocular muscle [317]. However, due to the
invasiveness of a retinal biopsy it seems difficult to use it in routine diagnosis. Much more promising,
at least for scrapie and CWD, is the nictitating membrane or third eyelid, closely associated to lymphoid
tissue and thus, a site of prion replication. In fact, preclinical detection of prions in this tissue has been
achieved by IHC [318–320] and RT-QuIC [321].

Given the generalized spread of prions throughout the body for certain prion strains and their
presence in highly innervated tissues [266], skeletal muscle, and skin have been also tested for presence
of prions. In skin, it seems to be associated to peripheral nerves rather than keratinocytes and has
been detected by immunoblotting in scrapie-infected sheep [322], in patients with vCJD [323] and in
sCJD patients by bioassay and RT-QuIC [324], and also by RT-QuIC in animal models infected with
sCJD, even at pre-clinical stages [325]. Therefore, skin biopsy-based diagnostic test could be feasible
soon. Regarding skeletal muscle, presence of prions has been detected in humans [174,326] in primate
models of human prion diseases [16,327] and sheep [133] among others, although its use for diagnosis
using in vitro prion propagation systems has not been considered.

The possibility of vertical transmission of TSE in natural conditions, which was confirmed by
bioassay in BSE infected mice [328] took researchers to study the presence of PrPSc in placenta of infected
animals early on. Infectivity in fetal membranes and placenta of scrapie-infected sheep has been
demonstrated in sheep, goat and mice models by bioassay or immunological techniques [126,329–331],
although transmissibility seems to be determined by the genotypes of the ewe and the lamb [332,333].
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In this case, PMCA has been applied using placental tissue as source to determine the absence of PrPSc

in case of fetuses showing scrapie-resistance alleles [334]. Similarly, infectivity in milk or semen has also
been evaluated, despite initial attempts to detect prions in milk failed [328,335]. However, the presence
of low levels of infectivity in milk of scrapie-infected sheep was finally demonstrated [336–338] and
shown to be increased in sheep suffering mastitis [339]. Using PMCA, presence of PrPSc in milk
of scrapie-exposed sheep was confirmed, even in the case of subclinical infections [340]. However,
a diagnostic test based on placenta or milk would be only applicable to females limiting the development
of such assays. Embryo transfer and artificial insemination are widely used in animal husbandry and,
therefore, assessing presence of prions in embryos and semen could be of interest, although not for
diagnostic purposes. Although the first bioassay study failed to transmit scrapie in to transgenic mice
by inoculation of scrapie-affected ram semen [341], the possible natural infection of several ewes in
a scrapie free-flock that had been bred with likely scrapie-infected rams led Rubenstein and colleagues
to use PMCA to detect scrapie prions in semen of experimentally infected rams, demonstrating low
levels of seeding activity [342]. The same methodology applied to semen samples of CWD-infected
deer also confirmed the presence of prions in this body fluid, albeit with low sensitivity, probably due
to the low titers [343].

9. Concluding Remarks

In vitro prion propagation methodologies supposed a breakthrough in the detection of minute
amounts of prions in different tissues and body fluids, permitting for the first time to develop systems
for ante-mortem TSE diagnosis based on the detection of the pathognomonic biomarker of disease,
PrPSc. Thus, the gold standard for definitive diagnosis of prion diseases (post-mortem detection of
PrPSc in CNS) is being substituted by the analysis of lymphoid tissues or associated mucosa by rapid
tests in animals [18] and the analysis of surrogate biomarkers or the detection of PrPSc through RT-QuIC
in CSF in humans. Moreover, detection of minute amounts of PrPSc in different tissues and body
fluids using in vitro prion propagation methods is a very active research field that is rapidly evolving,
providing improved protocols that allow achieving unprecedented sensitivity and specificity [106].

However, although CSF-based RT-QuIC is already used in clinical practice and has been included
as diagnostic criteria for sCJD in some countries, the tests based on PrPSc propagation in vitro need to
be further tested for their generalized application. Multicentric studies with the same samples and
using larger cohorts might be required to face standardization issues. Similarly, developing protocols to
standardize sample collection and handling will be of great importance as has been already demonstrated
in the case of surrogate biomarkers [76].

Undoubtedly, cell-free systems for prion amplification will continue to evolve and provide
better results, and their implementation in clinical practice worldwide in a near future is foreseeable.
Moreover, their adaptation to other protein misfolding-related neurodegenerative diseases may also
revolutionize diagnosis of other, much more prevalent disorders, such as Parkinson’s disease [36].
Together, with other indicators, such as neuroimaging or surrogate biomarker analysis, detection of
PrPSc in pre-clinical phases of the disease using prion propagation techniques has the potential to
become the gold standard in TSE diagnosis, being based on a highly specific, pathognomonic biomarker.
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