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Simple Summary: Two host-dependent biological characteristics, “avoiding immune destruction”
and “tumor-promoting inflammation” have been added to cancer hallmarks in 2011. The interaction
and cross-talk among tumor cells and several immune cells in a tumor microenvironment are
dynamic and complex processes. The purpose of this review is to discuss the prognostic impact
of tumor-infiltrating lymphocytes and predictive biomarkers for immune checkpoint inhibitors
in four urological solid tumors, the urothelial carcinoma, renal cell carcinoma, prostate cancer,
and retroperitoneal sarcoma, through summarizing the findings of observation studies and
clinical trials.

Abstract: Over the past decade, an “immunotherapy tsunami”, more specifically that involving
immune checkpoint inhibitors (ICIs), has overtaken the oncological field. The interaction and cross-talk
among tumor cells and several immune cells in the tumor microenvironment are dynamic and complex
processes. As immune contexture can vary widely across different types of primary tumors and
tumor microenvironments, there is still a significant lack of clinically available definitive biomarkers
to predict patient response to ICIs, especially in urogenital malignancies. An increasing body of
evidence evaluating urological malignancies has proven that tumor-infiltrating lymphocytes (TILs) are
a double-edged sword in cancer. There is an urgent need to shed light on the functional heterogeneity
in the tumor-infiltrating immune system and to explore its prognostic impact following surgery
and other treatments. Notably, we emphasized the difference in the immunological profile among
urothelial carcinomas arising from different primary origins, the bladder, renal pelvis, and ureter.
Significant differences in the density of FOXP3-positive TILs, CD204-positive tumor-infiltrating
macrophages, PD-L1-positive cells, and colony-stimulating factors were observed. This review
discusses two topics: (i) the prognostic impact of TILs and (ii) predictive biomarkers for ICIs, to shed
light on lymphocyte migration in four solid tumors, the urothelial carcinoma, renal cell carcinoma,
prostate cancer, and retroperitoneal sarcoma.
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1. Introduction

The interaction and cross-talk among tumor cells and several immune cells in a tumor
microenvironment are dynamic and complex processes [1,2]. In 2011, Hanahan and Weinberg defined
“avoiding immune destruction” and “tumor-promoting inflammation” as emerging cancer hallmarks [3],
which are host-dependent biological characteristics play crucial roles in the immune cell-mediated
orchestration of tumor proliferation, progression, angiogenesis, epithelial-to-mesenchymal transition
(EMT), invasion, and metastasis [4,5]. Although inflammation caused by the innate immune system
was originally designed to fight infections and heal wounds, “tumor-promoting inflammation” can
inadvertently contribute to multiple cancer hallmark capabilities by supplying active molecules to
the tumor microenvironment [3,6–8]. “Avoiding immune destruction” allows tumor cells to escape
immunosurveillance; the main role of T lymphocytes, B lymphocytes, macrophages, natural killer (NK)
cells, neutrophils, and dendritic cells [3,9,10].

An increasing body of oncological research has provided evidence to suggest that tumor-infiltrating
lymphocytes (TILs), including T lymphocytes such as CD8+ T cells and regulatory T cells, and NK
cells such as tumor-associated NK cells and tumor-infiltrating NK cells, are double-edged swords in
cancer [9,11,12]. The density, composition, and types of TILs vary greatly across tumor stage [10] and
tumor entity [13]. Moreover, these features display significant heterogeneity between patients with
the same type of tumors [14,15]. Lymphocyte migration to neoplastic lesions is mainly controlled by
chemotactic factors, including chemokines and small cytokines, which are secreted from immune cells
and tumor cells [16]. There are three types of immunological profiles: (1) immunologically “tumors”
present with a high degree of T cell infiltration (e.g., melanoma, non-small-cell lung carcinoma,
and renal cell carcinoma (RCC)) [17,18]; (2) immunologically “cold tumors” present with scarce
immune infiltrates (e.g., prostate cancer (PCa) and pancreatic cancer) [19,20]; (3) immunologically
“altered tumors” in which peri-tumoral sites are densely inflamed with immune cells which lack the
capability to infiltrate the tumor [21]. Classification of tumors according to their immune phenotype
can help predict responses to immune checkpoint inhibitors (ICIs), such as anti-programmed cell
death 1 (PD-1) inhibitors, pembrolizumab, and nivolumab. Higher levels of immune cell infiltration
and interferon signature (a T-cell-inflamed phenotype) are associated with a positive response to
ICIs [19]. However, many other solid tumors fail to respond to ICIs due to limited immunogenicity,
unfavorable tumor microenvironments with scarce immune infiltrates, and excessive accumulation
of regulatory T cells [17]. Therefore, the potential to develop new therapeutic approaches that can
convert immunologically ’cold’ or ’altered’ environments to ’hot’ environments has recently attracted
increasing attention. [22,23].

As immune contexture can vary widely across types of tumor and tumor microenvironment,
there exists a significant lack of clinically available definitive biomarkers that provide accurate
predictions for treatment responses, especially in urogenital malignancies. Additionally, in this review,
we will discuss the functional heterogeneity in the tumor-infiltrating immune system to explore its
prognostic impact after surgery and other treatments. This review focuses on two main topics: (i) the
prognostic impact of TILs and (ii) predictive biomarker for ICIs, to shed light on lymphocyte migration
in four solid tumors which are urothelial carcinoma (UC), RCC, PCa, and retroperitoneal sarcoma
(RSar) (Figure 1).



Cancers 2020, 12, 3153 3 of 28
Cancers 2020, 12, x FOR PEER REVIEW 3 of 28 

 

 
Figure 1. Two topics discussed in this review. Urologists should handle several malignancies arising 
from different organs, including the bladder, renal pelvis, ureter, kidney, prostate, and tissues of the 
retroperitoneal cavity. In this review, we discuss two topics: (1) the prognostic impact of tumor-
infiltrating leukocytes (TILs) and (2) predictive markers for immune checkpoint inhibitors to shed 
light on lymphocyte migration in four solid tumors, the urothelial carcinoma, renal cell carcinoma, 
PCa, and retroperitoneal sarcoma. Currently available PD-L1 companion diagnostic assays predicting 
response to immune checkpoint inhibitors are shown. 

2. Methods 

2.1. Literature Search 

We searched for relevant papers published before 30 August 2020, by using the PubMed 
database with the following terms: “urothelial carcinoma” or “renal cell carcinoma” or “prostate 
cancer” or “sarcoma”, “tumor-infiltrating lymphocyte/TIL”, “tumor microenvironment”, “immune 
checkpoint inhibitor”, and “programmed death-ligand 1/PD-L1”. The inclusion criteria were as 
follows: studies which addressed the relevance between clinical outcomes including the treatment 
response and TILs, other immune cells, and PD-L1 positive cells. Any of immunohistochemical (IHC) 
staining analyses, hematoxylin and eosin (HE) staining analysis, and flow cytometry (FCM) analysis, 
and dataset analysis were allowed as methods for assessment of immune cells. Various types of 
retrospective studies and prospective clinical trials were included. If the same study was reported 
more than once, we selected the most recent publication with updated information. 
  

Figure 1. Two topics discussed in this review. Urologists should handle several malignancies
arising from different organs, including the bladder, renal pelvis, ureter, kidney, prostate, and tissues
of the retroperitoneal cavity. In this review, we discuss two topics: (1) the prognostic impact of
tumor-infiltrating leukocytes (TILs) and (2) predictive markers for immune checkpoint inhibitors to
shed light on lymphocyte migration in four solid tumors, the urothelial carcinoma, renal cell carcinoma,
PCa, and retroperitoneal sarcoma. Currently available PD-L1 companion diagnostic assays predicting
response to immune checkpoint inhibitors are shown.

2. Methods

2.1. Literature Search

We searched for relevant papers published before 30 August 2020, by using the PubMed database
with the following terms: “urothelial carcinoma” or “renal cell carcinoma” or “prostate cancer” or
“sarcoma”, “tumor-infiltrating lymphocyte/TIL”, “tumor microenvironment”, “immune checkpoint
inhibitor”, and “programmed death-ligand 1/PD-L1”. The inclusion criteria were as follows: studies
which addressed the relevance between clinical outcomes including the treatment response and TILs,
other immune cells, and PD-L1 positive cells. Any of immunohistochemical (IHC) staining analyses,
hematoxylin and eosin (HE) staining analysis, and flow cytometry (FCM) analysis, and dataset analysis
were allowed as methods for assessment of immune cells. Various types of retrospective studies and
prospective clinical trials were included. If the same study was reported more than once, we selected
the most recent publication with updated information.
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2.2. Immunohistochemical Staining and Quantification in Tumor Tissues of UC Diseases Arising from
Different Origins

IHC staining using paraffin-embedded, formalin-fixed tissue blocks was performed as previously
described [16]. Bladder, renal pelvis, and ureter are three common primary origins of UC and compared
in terms of the immune profile. The patients’ background is depicted in Table S1. The primary/secondary
antibodies used in this study and the conditions are available in Table S2. A Histofine Simple
Stain™ MAX PO (MULTI) kit (Nichirei Corporation, Tokyo, Japan) was used for peroxidase color
development according to the manufacturer’s instructions. The staining results were evaluated
by two investigators (Y.T. and Y.N.) who were blinded to any clinicopathological data. Data were
expressed by box-and-whisker plots, in which the outliers are indicated as dots, and compared using the
Kruskal-Wallis test, followed by the post hoc test (Dunn test). This observational study was approved
by the ethics committee of the Nara Medical University, and informed consent from the participants
was obtained in the form of written signature or opt-out on the web-site (reference ID: 1256).

3. Urothelial Carcinoma (UC)

3.1. Epidemiology and Current Issues of UC

UC is a histopathological type of cancer that typically arises from the urothelium of the bladder,
renal pelvis, ureter, or urethral. UC of the bladder is the most common malignancy involving the urinary
tract and is the sixth most common cancer in the United States [24]. Surgical resection is a standard
treatment strategy for UC and other solid tumors. However, unresectable/metastatic UC is strongly
associated with poor prognosis and requires multidisciplinary therapy, including chemotherapy, ICIs,
and palliative radiotherapy. Wide use of pembrolizumab (KEYTRUDA®, Merck & Co. Inc., Kenilworth,
NJ, USA) has clearly improved survival in selected patients with advanced UC [25]. As there exists a
lack of prognostic markers after radical surgery and predictive markers for response to ICIs, we focused
on the potential of TILs as a clinically available biomarker.

3.2. Clinical Impact of TILs in Patients with UC

Table 1 summarizes previous studies addressing the clinical relevance of TILs in patients with
UC [26–37]. There are several types of treatment settings, including transurethral resection of
bladder tumor (TURBT) with or without intravesical Bacillus Calmette-Guérin (BCG) for non-muscle
invasive bladder cancer (NMBIC), radical cystectomy for muscle-invasive bladder cancer (MIBC),
radical nephroureterectomy for upper urinary tract urothelial cancer (UTUC), and systemic chemotherapy
for metastatic UC. Our group previously reported that a higher number of tumor-infiltrating regulatory
T cells (Tregs) was associated with a higher risk of treatment failure [26]. This result was reasonable
in terms of the hypothesis that pre-BCG baseline status of Th1/Th2 balance and Treg recruitment
in the tumor microenvironment, or both, could influence the response to BCG [38]. Wahlin et al.
demonstrated that CD8+ and FoxP3+ TILs in cystectomy specimens were independently associated
with better outcomes, which disagrees with our previous data [26,32]. Additionally, this association
was only observed in CD8+ TILs in TURBT specimens [32]. However, we understand that the data can
be affected by the type of specimen and patient background, including treatment and race. Due to
accessibility, most studies have utilized IHC staining analyses using archival paraffin-embedded
tissues. Kawashima et al. evaluated nine extracellular surface markers measured by flow cytometry
in freshly resected UC specimens [33]. In their study, Kawashima et al. classified tumors into the
CD4 T-cell-dominant group and the immunologically activated group according to the immunologic
condition, concluding that the latter group showed significantly poorer outcomes in patients with MIBC.
Evaluation with freshly resected UC specimens is costly, time consuming, and requires effort; however,
the results obtained are often robust and reliable. Overall, aside from the method of evaluation and
interpretation, a consensus has not yet been reached regarding the prognostic value of TILs in patients
with UC.
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Table 1. Studies for the clinical relevance of tumor-infiltrating lymphocytes (TILs) in urological malignancies and retroperitoneal sarcoma.

Types of Tumor No. of Patients Treatment Makers or Assessment Assay Clinical Relevance Reference No.

Urothelial Carcinoma (UC)

NMIBC 154 TURBT followed by
intravesical BCG FOXP3, CD204 IHC

High Tregs and tumor-associated macrophages
were associated with a high risk of

intravesical recurrence.
[26]

NMIBC 115 TURBT CD3, CD4, CD8, CD20,
CD56, CD68, granzyme B IHC Low CD3+ TILs and CD8+ TILs were associated

with a high risk of intravesical recurrence. [27]

NMIBC 131 TURBT CD4 IHC High CD4+ TILs were associated with poor OS. [28]

NMIBC 102 TURBT CD8, CD66b IHC
High tumor-infiltrating neutrophils and NLR were
associated with poor OS. High TILs were related to

longer OS.
[29]

MIBC 67 Radical cystectomy CD3, CD8 IHC High CD8+ TILs and CD3+ TILs in the invasion
margin were associated with better DFS and OS. [30]

MIBC 406 Radical cystectomy CD3D, CD4, CD8A mRNA
(TCGA dataset)

High CD3D/CD4 ratio was associated with
improved survival. The power was stronger in

basal-squamous tumors.
[31]

MIBC 145 Radical cystectomy CD8, FOXP3, CD20,
PD-1, PD-L1 IHC High density of CD8, FOXP3, CD20, and PD-1 was

associated with a low risk of recurrence. [32]

Bladder cancer
and UTUC 52 and 18 Surgical resection Nine extracellular

surface markers FCM

The immunologically activated group showed
poorer PFS and CSS compared that in to the CD4+
T-cell-dominant group in bladder cancer. However,

there was no significant difference in UTUC.

[33]

UTUC 162 Radical
nephroureterectomy PD-L1 IHC

High PD-L1 expression in tumor cells was
associated with shorter CSS. High PD-L1

expression on TILs was associated with longer CSS.
[34]

UTUC 423 Radical
nephroureterectomy PD-1, PD-L1 IHC

High PD-1 level was associated with poor CSS and
OS. In patients with organ-confined disease (pT2≤,
N0/xM0), high PD-L1 was associated with a high

risk of recurrence and poor OS.

[35]
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Table 1. Cont.

Types of Tumor No. of Patients Treatment Makers or Assessment Assay Clinical Relevance Reference No.

UTUC 88 Radical
nephroureterectomy

CD4, CD8, CD20, APE1,
NTH1, OGG1, XRCC1,

polβ, STING, IRF3,
PD-L1, PD-L2

IHC High CD8+ TILs were associated with poor DFS. [36]

Metastatic UC 259 Platinum-based
chemotherapy

Recommendations by an
International TILs

Working Group 2014

Hematoxylin and
eosin staining

High TIL levels were associated with better OS after
chemotherapy both in bladder cancer and UTUC. [37]

Renal cell carcinoma (RCC)

ccRCC 43 Untreated stage
III/IV disease

CD4, CD45RA, CD8,
CD11, HLA-DR, CD3,

CD16, CD57
FCM

An increase in CD8+/CD11- and a decrease in
CD4+/CD45RA- cells were observed along with the

aggravation of tumor stage and grade.
[39]

ccRCC 473 Previously treated Th17, CTL, Tregs, Th2 mRNA
(TCGA dataset)

Long-lived patients have high levels of Th17 and
CD8+ T cells, while short-lived patients have high

levels of Tregs and Th2.
[40]

RCC 891 Untreated

M1 macrophages, M2
macrophages, memory
CD4+ T, γδ T, CD8+ T,
Tregs, naïve CD4+ T,
NK cell, mast cells,

B cells, DC, monocytes,
plasma cells,

neutrophils, eosinophils

CIBERSORT

CD8+ T cells were associated with prolonged OS.
A higher proportion of regulatory T cells was

associated with a poorer outcome. M1 macrophages
were associated with a favorable outcome, while

M2 macrophages indicated a poorer outcome.

[41]

Metastatic ccRCC 167 Previously treated CD8, PD-1, TIM-3, LAG-3 IHC

A high percentage of CD8+/PD-1+/TIM-3-/LAG-3-
cells correlated with high levels of T-cell activation
and were associated with longer median irPFS and

higher irORR.

[42]

ccRCC 199 Previously treated PD-1, FOXP3 IHC

PD1-positive or FOXP3-positive lymphocytes can
be used as significant prognostic indicators,

and PD1 positivity could be very helpful in the
prediction of latent distant metastasis.

[43]
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Table 1. Cont.

Types of Tumor No. of Patients Treatment Makers or Assessment Assay Clinical Relevance Reference No.

Metastatic ccRCC 58 interleukin-2-based
immunotherapy FOXP3 IHC

Intratumoral FOXP3-positive regulatory immune
cells significantly increased during

interleukin-2–based immunotherapy, and high
numbers of on-treatment FOXP3-positive cells were

correlated with poor prognosis.

[44]

ccRCC 125
Radical nephrectomy

or nephron-
sparing surgery

CD4, FOXP3 IHC Increased peritumoral Tregs are associated with a
poorer prognosis. [45]

ccRCC 170
Radical nephrectomy

or nephron-
sparing surgery

CD4, CD25, FOXP3 IHC

Increased number of CD4+CD25+Foxp3+ T cells
was not associated with RCC death. In contrast,

CD4+CD25+Foxp3- T cells, which may represent a
unique set of Tregs or activated helper T cells, were

significantly associated with the outcome.

[46]

RCC 97 Previously treated
CD45, CD3, CD4, CD8,
CD45RA, ICOS, Tim3,
CD25, PD-1, FOXP3

FCM
Tumor grade significantly correlated with

dysfunction of both CD4+ and CD8+ TILs and the
efficacy of nivolumab treatment.

[47]

Localized ccRCC 40
Radical nephrectomy

or nephron-
sparing surgery

CD3, CD4, CD8, CD45RA,
CCR7, CD69, CD38,
CD40L, ICOS, GITR,

PD-1, TIM-3, CTLA-4,
LAG-3, CD127, CD25

FCM

Infiltration with CD8+PD-1+Tim-3+Lag-3+
exhausted TILs and ICOS+ Tregs identified patients
with deleterious prognosis who could benefit from
adjuvant therapy with TME-modulating agents and

checkpoint blockade.

[48]

Metastatic RCC 231 Tyrosine kinase
inhibitors CD8, PD-1, PD-L1 IHC

Increased numbers of CD8+ T cells are significantly
associated with improved survival in patients with
mRCC treated with TKIs. PD-1 could be used as a

predictive and prognostic factor.

[49]

Prostate cancer (PCa)

Localized PCa 126 Radical
prostatectomy CD8, FOXP3 IHC

High CD8+ TILs were significantly associated with
good DFS, whereas FOXP3+Treg tumor infiltration

was significantly correlated with poor DFS.
[50]

Localized PCa 535 Radical
prostatectomy CD8 IHC

A high density of CD8+ TILs is an independent
negative prognostic factor for biochemical

failure-free survival.
[51]
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Table 1. Cont.

Types of Tumor No. of Patients Treatment Makers or Assessment Assay Clinical Relevance Reference No.

Biochemical
recurence after

radical
prostatectomy

22 Salvage radiotherapy PD-1, FOXP3 IHC High PD-1 and FOXP3+ Treg tumor infiltration was
significantly associated with short PFS. [52]

Localized PCa 75 Radical
prostatectomy CCR4 IHC

CCR4+ Tregs are highly infiltrated in the prostate
tissue with poor prognosis, with a strong potential

to progress to CRPC.
[53]

Retroperitoneal sarcoma (RSar)

RSar (various
types) 51 Surgical resection PD-1, PD-L1, PD-L2,

Ki-67 IHC

The prognostic value of PD-L1, PD-L2, and PD-1
expression was evaluated, and only high expression

of PD-1 was a possible predictor of
postoperative recurrence.

[54]

RSar (WDLPS) 6 Surgical resection CD4, CD8, CD20 IHC

CD8+ T cells were mostly seen in scattered gout of
the tumor. CD4+ T cells were observed in clusters

and follicles. CD20+ cells (B cells) were found
almost exclusively in cluster and forming

immature follicles.

[55]

RSar
(WDLPS/DDLPS) 8 Surgical resection CD3, CD4,CD8, PD-1,

4-1BB
IHC
FCM

Cytotoxic CD8+ T cells accounted for 20% of CD3+
T cells. Notably, 65% of CD8+ T cells were positive
for PD-1. Immune cell aggregates evaluated by IHC

were associated with poorer prognosis in both
well-differentiated and dedifferentiated

retroperitoneal liposarcoma.

[56]

RSar
(WDLPS/DDLPS/

MLPS/PLPS)
56 Surgical resection CD4, CD8, FOXP3, CD20,

PD-1, PD-L1 IHC

Higher FOXP3+ Treg or PD-1/PD-L1+ cells tended
to be associated with poor prognosis.

Heterogeneous TIL distribution was found in 50%
of patients and tended to correlate with favorable

disease-free survival.

[57]

UC, urothelial carcinoma; NMIBC, non-muscle invasive bladder cancer; MIBC, muscle invasive bladder cancer; TURBT, transurethral resection of bladder tumor; IHC, immunohistochemical
staining; TIL, tumor-infltrating lymphocyte; FCM, flow cytometry; Treg, regulatory T cell; UTUC, upper urinary tract urothelial cancer; NLR, neutrophil-to-leukocyte ration; CSS,
cancer-specific survival; OS, overall survival; DFS, disease-specific survival; PFS, progression-free survival; NA, not available; ccRCC, clear cell type RCC; CRPC, castration resistant prostate
cancer; WDLPS, well differentiated liposarcoma; DDLPS, dedifferentiated liposarcoma; MLPS, myxoid/round cell liposarcoma; PLPS, pleomorphic liposarcoma; PD-L1, programmed cell
death ligand-1; PD-L2, programmed cell death ligand-2.
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3.3. Predictive Biomarkers for Response to ICIs in UC

As of August 2020, five PD-1/programmed death-ligand 1 (PD-L1) inhibitors have been approved
for the treatment of locally advanced or mUC. The U.S. Food and Drug Administration and the
European Medicines Agency require IHC PD-L1 testing prior to first-line use with pembrolizumab
and atezolizumab in platinum-ineligible patients [58]. Table 2 summarizes key clinical trials of ICIs for
patients with UC refractory to chemotherapy [25,59–63]. There is a substantial proportion of patients
who are less likely to benefit from ICIs, and the majority of the trials have so far explored the potential
of PD-L1-related biomarkers to predict responses to ICIs in mUC. However, differences in antibodies,
staining platforms, scoring algorithms and cut-off systems between trials have raised questions
about interchangeability and comparability for diagnostic use, which could lead most pathologists
to non-workable situation [58]. Used PD-L1 testing system in clinical trials are the Dako 28-8 for
nivolumab, the Dako 22C3 for pembrolizumab, Ventana SP142 for atezolizumab, and the Ventana
SP263 assays for durvalumab. Trials for pembrolizumab, atezolizumab, and durvalumab included
combined assessments of PD-L1 staining of tumor cells and tumor-infiltrating immune cells or a single
assessment of tumor-infiltrating immune cells, while the trials for nivolumab (CheckMate) included
only PD-L1 expression in tumor cells [25,59,61–63]. CheckMate 032 did not check the expression
of cytotoxic T-lymphocyte antigen 4 (CTLA-4) expression [60]. Expression of immune checkpoint
proteins such as PD-1, PD-L1, and CTLA-4 can vary widely among primary and metastatic lesions
and are affected by intratumor heterogeneity. A significant lack of correlation between the expression
of these proteins and clinical outcomes/responses hampers the establishment of a Schottker-driven
immunotherapy strategy.
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Table 2. Key trials of immune checkpoint inhibitors and association between treatment response and maker assessment in advanced urogenital malignancies.

Types of Tumor No. of
Patients

Treatment (Phase)
Outcomes and Response

Assay Marker Assessment Clinical Relevance of
Maker Assessment

Reference No.
OS PFS ORR

Urothelial carcinoma (UC)

Advanced Muc
(JAVELIN Solid Tumor) 249 Second-line

avelumab (Phase I) 6.5 months 1.7 months 17% NA NA NA [59]

Advanced mUC
(CheckMate 032) 274

Platinum-pretreated
nivolumab ±
ipilimumab
(Phase I/II)

10.4 months in
NIVO3

7.4 months in
NIVO3+IPI1

27.6 months in
NIVO1+IPI3

2.8 months in
NIVO3

2.6 months in
NIVO3+IPI1
4.9 months in
NIVO1+IPI3

26% in NIVO3
27% in

NIVO3+IPI1
38% in

NIVO1+IPI3

IHC
Dako 28-8

PD-L1 expression in
tumor cells

PD-L1 expression was not
associated with ORR. High

PD-L1 expression was
associated with longer mOS.

[60]

Advanced mUC 191 Durvalumab
(Phase I/II) 18.2 months 1.5 months 18% IHC

Ventana SP263

PD-L1 (combined
assessment of PD-L1

staining of tumor cells
and immune cells)

Tumor response to
durvalumab was not

associated with
PD-L1 staining.

[61]

Advanced mUC
(CheckMate 275) 270

Second-line
Nivolumab
(Phase II)

8.7 months 2.0 months 20% IHC
Dako 28-8

PD-L1 expression in
tumor cells

OR was observed in 28% of
patients with PD-L1 expression

of 5% or greater, 24% of
patients with PD-L1 expression

of 1% or greater, and 16% of
patients with PD-L1 expression

of less than 1%.

[62]

Advanced mUC
(KEYNOTE-045) 542

Second-line
Pembrolizuma

vs. chemotherapy
(Phase III)

10.3 vs. 7.4
months
HR: 0.73

p value: 0.002

2.1 vs. 3.3
months
HR: 0.98

p value: 0.42

21% vs. 11% IHC
Dako 22C3

PD-L1 combined
positive score (CPS; the

percentage of
PD-L1-expressing

tumor and infiltrating
immune cells relative to

the total number of
tumor cells)

Treatment response was
similar in patients with a CPS

of 10% or more.
[25]

Advanced mUC
(IMvigor211) 931

Second-line
Atezolizumab

vs. chemotherapy
(Phase III)

11.1 vs. 10.6
months
HR:0.87

p value: 0.41

2.4 vs. 4.2
months
HR: 1.01

23% vs. 22% IHC
Ventana SP142

PD-L1 expression on
<1% [IC0], 1% to <5%

[IC1], and 35% of
tumor-infiltrating

immune cells [IC2/3]

Atezolizumab was not
associated with longer OS than

chemotherapy in patients
with IC2/3.

[63]
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Table 2. Cont.

Types of Tumor No. of
Patients

Treatment (Phase)
Outcomes and Response

Assay Marker Assessment Clinical Relevance of
Maker Assessment

Reference No.
OS PFS ORR

Renal cell carcinoma (RCC)

Metastatic RCC
(BTCRC-GU14-003) 61

Second or Third-line
pembrolizumab

plus bevacizumab
(Phase Ib/II)

NA at the
median

follow-up of
28.3 months

20.7 months 60.90% IHC
Dako 22C3

PD-L1 expression in
tumor cells

Patients with tumors
overexpressing PD-L1 > 0

showed a trend toward better
PFS after 20 months, but there
was no statistical difference in

overall PFS.

[64]

Metastatic RCC 30

Second or Third-line
lenvatinib

plus pembrolizumab
(Phase Ib/II)

NA 19.8 months 70% NA NA NA [65]

Advanced RCC
(KEYNOTE-426) 861

First-line
pembrolizumab plus

axitinib
vs. sunitinib

(Phase III)

HR: 0.53
p value:
<0.0001

15.1 vs. 11.1
months

HR = 0.69
p value:
<0.001

59.7% vs.
35.7%

IHCDako
22C3

PD-L1 combined
positive score (the

percentage of PD-L1+
tumor and infiltrating
immune cells/the total

tumor cells)

The benefit of pembrolizumab
plus axitinib was observed in

patients with tumors
expressing PD-L1 expression

and those with tumors without
PD-L1 expression.

[66]

Advanced RCC
(JAVELIN Renal 101) 886

First-line
avelumab plus

axitinib
vs. sunitinib

(Phase III)

12.0 and 11.5
months
HR: 0.78

p value: 0.14

13.8 vs. 8.4
months

HR = 0.69
p value:
<0.001

51.4% vs.
25.7%

IHC
Ventana SP263

PD-L1 expression in
tumor cells

ORR among patients with
PD-L1–positive tumors who

received avelumab plus
axitinib was twice as that in

patients who received sunitinib
(55.2% vs. 25.5%, respectively).

[67]

Advanced or Metastatic
RCC

(CheckMate 214)
1096

First-line
nivolumab plus

ipilimumab
vs. sunitinib

(Phase III)

NR and 26.6
months
HR: 0.66
p value:
<0.0001

8.2 vs. 8.3
months

HR = 0.77
p value:
0.0014

42% vs. 29% IHC
Dako 28-8

PD-L1 expression in
tumor cells

Partial responders and
complete responders to

nivolumab plus ipilimumab
both had higher baseline

tumor PD-L1 expression than
that in non-responders.

[68]
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Table 2. Cont.

Types of Tumor No. of
Patients

Treatment (Phase)
Outcomes and Response

Assay Marker Assessment Clinical Relevance of
Maker Assessment

Reference No.
OS PFS ORR

Advanced or Metastatic
RCC

(IMmotion151 trial)
915

First-line
atezolizumab plus

bevacizumab
vs. sunitinib

(Phase III)

33.6 and 34.9
months

HR = 0.93
p value: 0.48

11.2 and 8.4
months

HR = 0.83
p value: 0.022

37% vs. 33% IHC
Ventana SP142

PD-L1 expression in
tumor cells

In the PD-L1 positive
population, the median

progression-free survival in the
atezolizumab plus

bevacizumab group was
significantly longer than that in
the sunitinib group. PD-L1 can

be used as a supporting tool
for treatment selection.

[69]

Advanced or Metastatic
RCC

(CheckMate 025)
821

Second or Third-line
Nivolumab

vs. everolimus
(Phase III)

25.0 and 19.6
months
HR: 0.73

p value: 0.002

4.6 vs. 4.4
months

HR = 0.88
p value: 0.11

25% vs. 5% IHC
Dako 28-8

PD-L1 expression in
tumor cells

Higher levels of PD-L1
expression are associated with
poorer survival, while it does

not support PD-L1 as a marker
of treatment benefit.

[70]

Prostate cancer (PCa)/castration resistant PCa (CRPC)

Metastatic
CRPCKEYNOTE-199 258 Pembrolizumab after

docetaxel or ARATs

9.5, 7.9,
and 14.1

months in
cohort 1
(PD-L1

positive),
cohort 2
(PD-L1

negative),
and cohort 3

(Bone-
predominant)

2.1, 2.1,
and 3.7

months in
cohort 1
(PD-L1

positive),
cohort 2
(PD-L1

negative),
and cohort 3

(Bone-
predominant)

7% and 2 % in
cohort 1
(PD-L1

positive) and
cohort 2
(PD-L1

negative)

IHC
Dako 22C3

PD-L1 expression and
aberrations of
homologous

recombination repair
(HRR) gene in

tumor cells

There were no significant
differences in the response to
pemblolizumab between the

PD-L1-positive and
-negative groups.

[71]

Metastatic CRPC 28 Pemblolizumab and
enzalutamide 22.2 months 3.7 months

(PSA-PFS) 18% IHC and FCM PD-L1 expression in
tumor cells

The frequency of granzyme B+
CD8+ and perforin+CD8+

T cells were higher in
responders those that in

non-responders.

[72]

Retroperitoneal sarcoma (RSar)

STS and BS
(SARC028) 40 and 40 Pembrolizumab

(phase II)

12.3 months
(95% CI,
8.5–18.3)

4.2mounths
(95% CI,
2.0–5.3)

NA IHC
Dako 22C3

Score was expressed as
percentage of tumour

cells positive for PD-L1.
A tumour was

considered positive for
PD-L1 expression if
more than 1% of its

cells showed
membranous staining.

PD-L1 expression was
observed in only 5% of

samples; both were UPS and
responded to therapy.

Pembrolizumab showed
encouraging activity in

patients with UPS or DDLPS.

[73]
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Table 2. Cont.

Types of Tumor No. of
Patients

Treatment (Phase)
Outcomes and Response

Assay Marker Assessment Clinical Relevance of
Maker Assessment

Reference No.
OS PFS ORR

Advanced or metastaic
STS and BS

(Alliance A091401)
43 and 42

Nivolumab vs.
Nivolumab+ipilimmab

(phase II)

10.7 and 14.3
months
(95% CI,
5.5–15.4
and NA)

1.7 and 4.1
months
(95% CI,

1.4–4.3 and
1.4–4.7)

NA NA NA

Treatment with nivolumab
plus ipilimumab in an

unselected cohort of heavily
treated patients with advanced

sarcoma, achieved a
proportion of 16% of 38
patients with confirmed

objective responses, which is
similar to the results obtained
with standard chemotherapy.

[74]

Locally advanced or
metastaic sarcoma 20

T-VEC plus
pemblolizumab

(phase II)

18.7 months
(95% CI,

12.3–NA)

4.3 months
(95% CI,
3.2–NA)

30% IHC

PD-L1 tumor
membrane expression
and CD3+/CD8+ TILs
at the infiltrating edge

of the tumor.
The patients underwent

pretreatment and
posttreatment

tumor biopsies.

The data show that 64% of the
posttreatment tumors were
PD-L1 positive and 55% of

patients converted from PD-L1
negative to PD-L1 positive

after treatment.

[75]

Advanced sarcomas
including alveolar
soft-part sarcoma

33
Axitinib plus

pembrolizumab
(phase II)

18.7 months
(95% CI,

12.0–NA)

4.7 months
(95% CI,
3.0–9.4)

25% IHC PD-L1 expression in
sarcoma cells

PD-L1 expression was positive
in 52% of patients with
evaluable tumor biopsy
samples. Neither PD-L1

positivity nor increased TIL
score correlated with

progression-free survival of
longer than 6 months or with
achieving a partial response.

[76]

OS, overall survival; PFS, progression-free survival; ORR, objective response rate; UC, urothelial carcinoma; HR, hazard risk; IHC, immunohistochemical staining; PD-L1, programmed cell
death ligand-1; CPS, combined positive score; RCC, renal cell carcinoma; NR, not reached; RSar, retroperitoneal sarcoma; STS, soft-tissue sarcoma; BS, bone sarcoma; CI, confidence interval;
NA, not available; FCM, flow cytometry; Treg, regulatory T cell; NLR, neutrophil-to-leukocyte ration; NA, not available; TIL, tumor-infiltrating leukocytes.
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3.4. The Immunological Profile in the Tumor Microenvironment of UC Arises from Different Primary Origins

Bladder, renal pelvis, and ureter are three common primary origins of UC. Although bladder UC,
renal pelvic UC, and ureteral UC have many similarities, there are anatomical, biological, and molecular
differences that should be considered as three distinct urothelium-derived malignancies [77].
Yates et al. reported significant differences in the genetic (microsatellite instability) and epigenetic
(hypermethylation) backgrounds of bladder UC and UTUC [78]. Moreover, we have previously
demonstrated that the subsequent NMIBC after radical nephroureterectomy for primary UTUC had
a poorer prognosis after intravesical BCG compared to that in primary NMIBC [79]. This finding
suggested that the primary origin is associated with an inherently poor response to BCG. However,
all clinical trials of ICIs for metastatic UC clustered with UC diseases arising from different origins.
Figure 2 shows representative images of IHC staining of seven immune-related markers using surgically
resected UC specimens. Our previous works have presented the oncogenic or anti-tumoral effect of
endogenous and exogenous colony-stimulating factors (CSFs) in UC [80–82]. In addition, accumulating
evidence revealed that CD204, but not CD163, positive tumor-associated macrophages are associated
with the aggressive behavior of various cancers including UC [16,83]. Thus, we included three CSFs
and CD204 in the IHC analysis. The patients’ background and primary/secondary antibodies used in
this study are depicted in Tables S1 and S2. Significant differences in the density of FOXP3-positive
TILs, CD204-positive tumor-infiltrating macrophages, PD-L1-positive cells, granulocyte-macrophage
colony-stimulating factor (GM-CSF), and macrophage colony-stimulating factor (M-CSF) were observed
in the quantitative analysis. In the immunotherapy era, we may need to consider differences in the
immunological profile among the disparate triplets.
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*** p < 0.01, n.s., not significant. Abbreviations: UC, urothelial carcinoma; TIL, tumor-infiltrating 
leukocyte; HPF, high power field (magnification, ×400); PD-L1, programmed death-ligand 1; G-CSF, 
granulocyte colony-stimulating factor; GM-CSF, granulocyte-macrophage colony-stimulating factor; 
M-CSF, macrophage colony-stimulating factor. 

Figure 2. Difference in tumor immune microenvironments in urothelial carcinoma: comparison
of primary tumor origins. The left panels are representative images of immunohistochemical
staining of seven immune-related markers using surgically resected formalin-fixed paraffin-embedded
specimens. Data were expressed by box-and-whisker plots, in which the outliers are indicated as dots,
and compared using the Kruskal-Wallis (KW) test, followed by the post hoc test (Dunn test). * p < 0.05,
*** p < 0.01, n.s., not significant. Abbreviations: UC, urothelial carcinoma; TIL, tumor-infiltrating
leukocyte; HPF, high power field (magnification, ×400); PD-L1, programmed death-ligand 1; G-CSF,
granulocyte colony-stimulating factor; GM-CSF, granulocyte-macrophage colony-stimulating factor;
M-CSF, macrophage colony-stimulating factor.
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4. Renal Cell Carcinoma (RCC)

4.1. Epidemiology and Current Issues of RCC

RCC accounts for approximately 2.2% of all cancers and is estimated to cause over 170,000 annual
deaths globally [84]. RCC has been regarded as an immunogenic tumor, known as “hot tumor”, and is
thought to weaken host immunity in order to enhance tumor growth. This feature has encouraged
urologists to use immunotherapies including interleukin-2, interferon-alpha, and ICIs [81,82]. In contrast,
approximately 30% of patients with RCC present with metastases, and recurrent disease develops in
approximately 40% of patients previously treated for localized RCC [83]. Recently, the development of
ICIs has significantly improved prognosis in advanced or metastatic RCC [64–66,84–87]. As there are
still a large number of patients with advanced RCC who fail in these treatments, there is an urgent
clinical need to identify predictive markers to improve treatment efficacy.

4.2. Clinical Impact of TILs in Patients with RCC

Table 1 summarizes previous studies addressing the clinical relevance of TILs in patients with
RCC [39–49]. Most of these studies were intended for advanced or metastatic RCC and several
types of treatment settings, including radical nephrectomy and systemic treatment with molecular
targeted drugs. The clinical significance of TILs in patients with RCC has been reported over the past
three decades.

In 1992, Igarashi et al. showed that CD8+/CD11- cells, which inhibit antibody production,
increased and CD4+/CD45RA- cells, which introduced antibody-producing cells, decreased along with
tumor progression [39]. Subsequent studies using IHC and flow cytometry analyses revealed that the
complex interactions between tumor cells and TILs such as cytotoxic T cells, Tregs, exhausted T cells,
and B cells were associated with the acceleration or suppression of tumor growth, thereby affecting
the prognosis of RCC patients [40–48]. With regard to Tregs, migration of CD4+Foxp3+ T cells to the
tumor microenvironment is an independent factor for poor prognosis [43–45]. However, Siddiqui et al.
have shown that CD4+CD25+FoxP3+ T cells are not associated with prognosis, while an increase in
CD4+CD25+FoxP3- T cells was significantly associated with poor prognosis [46]. Similar to Tregs,
there are several subtypes of CD8+ TILs. An increase in the number of CD8+ TILs in the tumor
microenvironment was associated with prolonged prognosis in RCC [41,43,49], while the increase in
exhausted T cells, which belong to CD8+ T cells, was associated with poor prognosis in RCC [47,48].
There are various subtypes of CD4+ T cells and CD8+ T cells, and the difference in one cell-surface
marker can be a switch for a completely opposite function in tumor progression. These complex
mechanisms make it difficult to understand the various roles of each immune cell type. In contrast,
ICIs use these complex mechanisms and enable the switch to escape from antitumor suppression.
Overall, the clinical significance of TILs has not yet been fully elucidated. However, TILs may have the
potential to improve the clinical outcome in patients treated with molecular targeted drugs and ICIs.

4.3. Predictive Biomarkers for Response to ICIs in RCC

As of August 2020, five PD-1/PD-L1/CTLA-4 inhibitors have been approved for the treatment
of locally advanced or metastatic RCC. Table 2 summarizes key clinical trials (limited to phase II or
III) of ICIs for advanced/metastatic RCC [64–70]. These clinical trials showed that ICIs were superior
to conventional molecular targeted drugs such as tyrosine kinase inhibitors (TKIs) and mammalian
target of rapamycin inhibitors (mTORis). Moreover, most of these clinical trials evaluated the efficacy
of combination therapy with one ICI plus one targeted drug compared to that of TKI or mTORi,
which was different from the one used in the trial arm. Combination therapies have shown a higher
objective response rate (ORR). Careful interpretation of outcomes such as progression-free survival
(PFS) and overall survival (OS) is needed. Additionally, most of these clinical trials have investigated the
association between PD-L1 expression in tumor cells and outcomes. The CheckMate 025, KEYNOTE-426,
JAVELIN Renal 101, CheckMate 214, BTCRC-GU14-003, and IMmotion151 trials investigated the
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association between PD-L1 expression in tumor cells and prognosis as a subgroup analysis, and these
trials showed that high PD-L1 expression was associated with a treatment benefit for ICIs [64,66–70].
Interestingly, CheckMate 214 revealed that high expression of PD-L1 had a high rate of mortality in
patients who received sunitinib [68]. This indicates the potential benefit of sequential treatment with
ICIs and TKI/mTORis, which could create a favorable immune microenvironment. In contrast, there has
been limited evidence for predictive biomarkers for ICI responses. One major limitation is that PD-L1
expression in tumor cells is the only immune checkpoint protein investigated in clinical trials. Thus,
further research is necessary to establish a novel biomarker-driven immunotherapy strategy.

5. Prostate Cancer (PCa)

5.1. Epidemiology and Current Issues of PCa

PCa is the most common malignancy in men. The estimated lifetime risk of prostate cancer
diagnosis is 13%, with a mortality to incidence ratio of 20% [88,89]. Prostatectomy and radiotherapy
are standard curative treatments for localized PCa. Moreover, androgen deprivation therapy (ADT) is
the standard primary therapy for metastatic PCa, because it is initially androgen-dependent and has a
good response to ADT. However, some aggressive subsets progress to an androgen independent state,
resulting in castration-resistant PCa (CRPC).

Various treatments, including androgen receptor-axis-targeted (ARAT) agents such as
abiraterone [90] and enzalutamide [91], chemotherapy such as docetaxel [71] and cabazitaxel [72],
a cellular vaccine called sipuleucel-T [92], and a radiopharmaceutical radium-223 [93] are available for
patients with metastatic CRPC. Although the latest ICIs have shown strong antitumor activity in many
tumors types, ICIs for advanced PCa and metastatic CRPC remain challenging [94–97].

5.2. Clinical Impact of TILs in Patients with PCa

As TILs are not abundant in the microenvironment of primary PCa [98,99] and PD-L1 expression
in PCa cells is scarce [100], PCa is thought to be an immunologically “cold tumor”. This feature
may limit the success of ICI trials for advanced PCa and metastatic CRPC. However, two studies
demonstrated that sufficient TILs were detected in post-ADT tumors [50,101], suggesting that CRPC
could be a potential target of ICIs. Sorrentino et al. demonstrated that ADT induced abundant T cell
infiltration in both benign glands and tumor tissues in human prostates [101]. The authors also showed
that an increased number of Foxp3+CD25+CD127- Tregs was detected after ADT [50]. Previous studies
addressing the correlation between TILs and post-treatment survival in patients with PCa are listed
in Table 1 [50–53]. A high CD8+/Foxp3+ ratio in prostate tissues treated with neoadjuvant ADT
was identified as a good prognostic factor after prostatectomy [50]. On the other hand, Ness et al.
demonstrated that high density of CD8+ lymphocyte infiltration, especially in the tumor epithelial
area, was identified as an independent poor prognostic factor for biochemical-failure survival after
radical prostatectomy [51], which differs from the data reported by Sorrentino et al. [50]. Nardone et al.
revealed that increased expression of CD8+ and CCR7+ TILs is associated with longer PFS and OS,
whereas increased PD-1 and Foxp3+ Treg expression was associated with longer PFS and OS in patients
treated with salvage radiotherapy after radical prostatectomy [52]. Overall, there is a lack of sufficient
evidence regarding the prognostic value of TILs in patients with prostate cancer.

5.3. Predictive Biomarkers for Response to ICIs in PCa

Unfortunately, there are no randomized control trials that demonstrated the benefit of ICIs
for metastatic CRPC. Two studies analyzed biomarkers predicting the response to ICIs in patients
with metastatic CRPC. The KEYNOTE-199 phase II study analyzed the response to pembrolizumab
for 258 patients with metastatic CRPC who had previously treated with docetaxel or ARATs [71].
PSA response rates were 6% in cohort 1 (PD-L1-positive group), 8% in cohort 2 (PD-L1-negative
group), and 2% in cohort 3 (bone-predominant disease, regardless of PD-L1 expression), respectively.
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Median OS were 9.5 months in cohort 1, 7.9 months in cohort 2, and 14.1 months in cohort 3, respectively.
Moreover, this study analyzed correlation between the status of the homologous recombination repair
genes and the response to pembrolizumab. Response duration was 4.4 months in patients with an
ATM mutation and more than 21.8 months in patients with a BRCA2 mutation. However, it is difficult
to draw a conclusion regarding predictive biomarkers of response to ICIs because of the low number
of responders in this study. Another single-arm phase II trial analyzed the efficacy of pembrolizumab
plus enzalutamide for 28 patients with metastatic CRPC [53]. Five (18%) of 28 patients had PSA decline
of 50 % or greater. For entire cohort, the median OS was 22 months. The median OS for 5 responders
was 41.7 months. Thirteen-patients could be identified tumors by base line biopsy for metastatic
lesions. In one responder and two non-responders, PD-L1 was detected on TILs. The frequency of
granzyme B+ CD8+ T cell and perforin+ CD8+ T cell was higher in responder than in non-responder,
suggesting that the clinical benefit of pembrolizumab plus enzalutamide might require the pre-exiting
tumor-reactive CD8+ T cell. The frequency of PD-L1 expression in patients with metastatic CRPC was
31.6 % in previously publication [102], which was higher than in this study. Based on these findings,
there are a significant lack on evidence regarding correlation between TILs (i.e., PD-1 and PD-L1) and
outcome/response to ICIs in patients with metastatic CRPC because of the nature of prostate cancer,
considering scarce TILs and low PD-L1 expressions. Therefore, further studies were warranted to
demonstrate the anti-tumor activity of immunotherapy including not only PD-1 inhibitor monotherapy
but also combination-therapy with CTLA-4 inhibitor.

6. Retroperitoneal Sarcoma (RSar)

6.1. Epidemiology and Current Issues of RSar

Soft tissue sarcomas (STSs) are rare tumors with the incidence less than 1% of all adult solid
malignancies [103]. STSs can occur in any anatomic region and those arising from the retroperitoneal
cavity are classified “RSar” and a urological malignancy, accounting for only 12–15% of all STSs [104].
Extended surgical resection of primary tumor and the surrounding vital organs is the mainstay of
the treatment of RSar [105]. Although perioperative radiotherapy and chemotherapy are available to
improve the rate of complete resection, it is complicated to define the optimal treatment strategies due
to the disease heterogeneity and variety of tumor subtype.

Recurrent, unresectable, and metastatic RSars are indicated for systemic therapy. Chemotherapeutic
drugs such as doxorubicin plus dacarbazine, doxorubicin plus ifosfamide, or doxorubicin alone has been
administered as the first-line treatment for advanced sarcomas [106]. Recently, accumulating evidences
have demonstrated the potential benefit of immunotherapies, especially ICIs (Table 2) [73–76,107,108].
Because the response to chemotherapy and immunotherapy is not expected in all the patients and
the predictive markers are not available, there are still many limitations in the clinical management
of advanced RSar. Here, we summarize the potential of TILs and PD-L1 expression as a clinically
available biomarker for RSar.

6.2. Clinical Impact of TILs in Patients with RSar

We previously investigated the clinical significance and prognostic implications of intratumoral
PD-L1, PD-L2, PD-1, and Ki-67 expression in patients with RSar [54]. Among these markers, only high
expression of PD-1 in the TILs was a possible predictor of postoperative recurrence. Interestingly,
observation of several clinicopathological parameters showed that high levels of serum lactate
dehydrogenase (LDH) were significantly correlated with high intratumoral expressions of PD-L1 and
PD-L2 [54]. This novel finding implies that elevated levels of serum LDH might be associated with
response to the treatment of PD-1/PD-L1 blockade. Tseng et al. analyzed the intratumoral adaptive
immune response in well differentiated- and dedifferentiated-retroperitoneal liposarcomas using
isolation of TILs from surgically resected tumors followed by flow cytometry [74,75]. Although the
majority of TILs were CD4+ T cells, cytotoxic CD8+ T cells accounted for 20% of CD3+ T cells.
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Notably, 65% of CD8+ T cells were positive for the PD-1. Immune cell aggregates evaluated by IHC
was associated with worse prognosis in both well differentiated and dedifferentiated retroperitoneal
liposarcoma, suggesting that an adaptive immune response was present in the liposarcomas but may be
hindered by Immune cell aggregates among other possible microenvironmental factors [56]. Moreover,
Yan et al. investigated the density of TILs in various types of retroperitoneal liposarcomas [57].
The proportion of TILs was the highest in the dedifferentiated retroperitoneal liposarcoma and the
lowest in pleomorphic liposarcoma. The authors demonstrated that patients with higher FOXP3+ Treg
or PD-1/PD-L1+ cells tended to be a poor prognostic factor. Heterogeneous TILs distribution was
found in 50% patients and tended to correlate with favorable disease-free-survival [56]. In spite of the
accumulating evidence, the clinical impact of TILs in RSar still remains uncertain, especially in other
types of RSar such as leiomyosarcoma and undifferentiated pleomorphic sarcoma, formally known as
malignant fibrous histiocytoma.

6.3. Predictive Biomarkers for Response to ICIs in RSar

Because RSar is an extremely rare tumor, no clinical trial for the treatment with ICIs has evaluated
the clinical benefit only in advanced RSar. Majority of clinical trials included the STS and bone
sarcoma (BS). The SARC028 phase II study was the first clinical trial evaluating ICIs for advanced
sarcomas [73], in which 40 patients in each disease cohort were treated pembrolizumab. A tumor was
considered positive for PD-L1 expression if more than 1% of its cells showed membranous staining.
PD-L1 expression was observed in only 5% of patients; both were undifferentiated pleomorphic
sarcoma and responded to pembrolizumab treatment. Another combination therapy with talimogene
laherparepvec (T-VEC) plus pembrolizumab for locally advanced or metastatic sarcomas has shown
promising results [75]. T-VEC is a biopharmaceutical drug and shows anti-tumor effect by increase
in tumor-specific immune activation via augmenting antigen presentation and T-cell priming. Of all
patients showing the treatment response, pre-treatment tumor sample had aggregates of CD3+/CD8+

TILs at the infiltrating tumor edge. However, only 1 patient demonstrated PD-L1 positive at baseline;
this patient achieved a partial response. In contrast, 64% of the posttreatment tumor were PD-L1
positive and 55% of patients converted from PD-L1 negative to positive after treatment [75]. The phase
II study of the combination of axitinib plus pembrolizumab for advanced or metastatic sarcomas
was published in 2019 [76]. PD-L1 expression was positive in 52% of patients with evaluable tumor
biopsy samples. However, neither PD-L1 positivity nor increased tumour-infiltrating lymphocyte
score correlated with progression-free survival of longer than 6 months or achieving a partial response.
Currently, there is no predictive biomarker available for the treatment of ICIs in advanced sarcomas
including RSar.

7. Limitations and Current Perspective Regarding the Assessment of TILs

We focused exclusively on the potential of TILs as a prognostic or predictive marker.
Relevant studies have been performed in a retrospective manner and in relatively small cohorts.
The definitions of TILs, such as inclusion of intratumoral TILs and/or stromal TILs, and the scoring
methodology varied among studies. These inconsistencies hinder comparisons across studies and
extrapolation of findings to clinical practice. Large studies investigating the potential prognostic value
of TILs as assessed on HE staining are lacking. International Immuno-Oncology Biomarker Working
Group on Breast Cancer has developed the international guidelines regarding the assessement of TILs on
HE-stained slides without any specific staining [109]. The purpose of this group is to develop standards
on the assessment of immuno-oncology biomarkers to aid pathologists, clinicians and researchers in
their research and daily clinical practice. International Guidelines on TIL-assessment in solid tumors
Part 2 provided the recommendation in assessment of genitourinary carcinomas. According to the
guidelines [109], separate reporting of intratumoral TILs and stromal TILs is recommended—this is
based on the context of atezolizumab treatment in mUC, where the PD-L1 “immune cell” score is
derived from the stromal TILs score [110]. In addition, special care should be taken to avoid areas of
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tumor zones with necrosis, coagulation artifact, and previous biopsy sites, which is a common finding
in resected specimens of bladder tumor. However, detailed tutorial for RCC, PCa, and sarcoma is not
available because of insufficient data to make specific recommendations.

Early data showed the presence of TILs in UC was associated with a favorable prognosis [111].
As to early data of RCC, increased TILs, both CD4-positive and CD8-positive T cells, appear to related
with high risk of post-nephrectomy recurrence and poor prognosis [112–116]. However, accumulating
evidence, largely based on IHC quantification of different TIL subsets, have somehow turned conflicting
results on the prognostic relevance of TILs (Table 1). Majority of reports on TILs in PCa have focused on
the prognostic value of TILs, while few studies investigating the potential to predicting response to drug
therapies. Most reports have shown the evidence for a relationship between the high TILs and increased
risk of recurrence [117–119], metastasis [120], and poor cancer specific survival [121]. The result on the
composition of TILs in are heterogeneous and sometimes conflicting, and the relationship between
TILs and survival is still unclear in PCa [109]. Overall, we emphasis on the importance of uniform
assessment of TILs and uniform comparison of study results in research practices.

8. Conclusions

As, an “immunotherapy tsunami”, in particular ICIs, has overtaken the oncological field in this
decade, it is mandatory for Physicians to deepen knowledge about cancer immunity and tumor immune
microenvironment. This review highlights comprehensively the following two topics: (i) prognostic
impact of TILs and (ii) predictive maker for ICIs in four urological solid tumors: UC, RCC, PCa, and Sar.
Although there is accumulating evidence that the density of TILs can serve as a prognostic biomarker
and/or predictive biomarker for immunotherapies, inconsistency of TIL evaluation and interpretation
for the results seems to hinder its clinical application. Unfortunately, across different solid malignancies,
the response rate and predictive markers for ICIs may vary significantly. Multiple biomarkers including
tumor-infiltrating immune cells, PD-L1 expression, other immune checkpoint protein expression,
mRNA gene expression analysis, mismatch-repair deficiency, and tumor mutational burden may need
to overcome disease heterogeneity and complex tumor immunity. Both identification of positive
or negative predictive biomarkers of ICIs and development promising combination are required
urgently to refine the clinical management of advanced urological malignancies. Further studies with
large-scale cohorts and long follow-up periods to prove the clinical impact of novel prognostic/predictive
biomarkers, followed by their adoption in clinical practice.
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