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Understanding how proteins evolve is important, and the order of amino acids being
recruited into the genetic codons was found to be an important factor shaping the
amino acid composition of proteins. The latest work about the last universal common
ancestor (LUCA) makes it possible to determine the potential factors shaping amino
acid compositions during evolution. Those LUCA genes/proteins from Methanococcus
maripaludis S2, which is one of the possible LUCA, were investigated. The evolutionary
rates of these genes positively correlate with GC contents with P-value significantly
lower than 0.05 for 94% homologous genes. Linear regression results showed that
compositions of amino acids coded by GC-rich codons positively contribute to the
evolutionary rates, while these amino acids tend to be gained in GC-rich organisms
according to our results. The first principal component correlates with the GC content
very well. The ratios of amino acids of the LUCA proteins coded by GC rich codons
positively correlate with the GC content of different bacteria genomes, while the ratios
of amino acids coded by AT rich codons negatively correlate with the increase of GC
content of genomes. Next, we found that the recruitment order does correlate with the
amino acid compositions, but gain and loss in codons showed newly recruited amino
acids are not significantly increased along with the evolution. Thus, we conclude that
GC content is a primary factor shaping amino acid compositions. GC content shapes
amino acid composition to trade off the cost of amino acids with bases, which could be
caused by the energy efficiency.

Keywords: amino acid composition, amino acid cost, bacteria, evolutionary rate, last universal common ancestor,
GC content, metabolic efficiency

INTRODUCTION

Amino acid composition reflects the usage of twenty standard amino acids in proteins.
Understanding the changes of amino acid composition among homologous proteins is key to the
investigation of protein functioning, as the proteins can acquire new functions through amino
acid substitutions (Misawa et al., 2008). The amino acid compositions vary among proteins, even
among those homologous proteins. The amino acid composition was reported to be correlated
with the protein structure classes (Bahar et al., 1997; Horner et al., 2008; Du et al., 2014),
the metabolic efficiency (Akashi and Gojobori, 2002; Kaleta et al., 2013), and the translation
efficiency (Du et al., 2017). Sueoka (1961, 1962) firstly reported that there is a correlation between
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GC contents and amino acid composition of proteins, and then
the nucleotide bias causes the biased amino acid usage in bacterial
and viral genomes was broadly reported (Rooney, 2003; Bohlin
et al., 2013; Goswami et al., 2015). Cost-minimization could also
shape the amino acid composition (Seligmann, 2003; Raiford
et al., 2008; Bivort et al., 2009). Another factor, which influences
the amino acid gain and loss in protein evolution and thus causes
the biased amino acid usage is the order of amino acids being
recruited into the genetic codes (Jordan et al., 2005; Hurst et al.,
2006; Mcdonald, 2006; Liu et al., 2015). However, we still do not
know how the feature of amino acids contributes to shape their
biased compositions in proteins.

Life emerged and has been evolving, and the imprint of
evolution is recorded by the genomes (Martin et al., 2016). If
the amino acid composition of early life is known, it is possible
to infer the factors that cause the biased amino acid usage of
proteins during the evolution process. Brooks and Fresco (2002)
analyzed the amino acid frequencies in extant proteomes and
found that the frequencies of several amino acids increased
since the divergence of the last universal common ancestor
(LUCA). The LUCA, which could be inferred by comparing
the genomes of its descendants, is the most recent ancestor
from which all currently living species have evolved. Weiss
et al. (2016) traced the LUCA by phylogenetic criteria and
identified a set of genes from 355 families, which implies a very
specific lifestyle. This work places clostridia and methanogens
as the earliest-diverging organisms, which provides us with
a very intriguing insight into the LUCA (Mcinerney, 2016).
The hydrogenotrophic methanogenic archaeon Methanococcus
maripaludis S2 (MmarS2) is a well-studied organism which is
anaerobic, H2-dependent and uses the Wood-Ljungdahl pathway
(Goyal et al., 2014). Thus, it is possible to choose this organism as
one representative of LUCA to investigate the variation of amino
acid frequencies.

Because most essential genes are ancient and more
evolutionary conserved (Jordan et al., 2002; Chen et al., 2010),
we used essential genes as a representative set of ancient genes
and observed the amino acid composition of corresponding
proteins homologous to those proteins of MmarS2. Firstly, it is
shown that in these protein coding genes GC contents have more
significant effects on the amino acid deviation than the amino
acid recruitment order with LUCA protein and non-LUCA
proteins. Secondly, the gain and loss of amino acids for these
homologous proteins do not accord well with the amino acid
recruitment orders. Thus, the GC variations have more effects on
the amino acid usage bias than the recruitment order of amino
acids. The GC content influence the amino acid composition
maybe caused by the energy efficiency.

RESULTS

Homologous Proteins to LUCA and
Non-LUCA Proteins of MmarS2
Weiss et al. (2016) determined that the earliest-diverging
organisms belong to clostridia or methanogen, and they
supplied a list of genes which were putative LUCA genes.

M. maripaludis S2 (MmarS2) is the only methanogen organism
whose essential genes were determined experimentally (Luo
et al., 2014). The LUCA gene list contains 195 MmarS2
Clusters of Orthologous Groups of proteins (COGs). Only three
sequenced bacterial genomes have more consistent COGs to
that of LUCA genes than MmarS2 (Supplementary Table S1).
Methanosarcina acetivorans C2A uid57879 has 211 LUCA COGs,
Streptosporangium roseum DSM 43021 uid42521 has 201 ones
and Methanosarcina barkeri Fusaro uid57715 has 198 ones.
Additionally, the living environment of MmarS2 is similar to the
predicted living condition of LUCA. Thus, MmarS2 could be a
good representative of LUCA.

Next, we listed some LUCA genes/proteins and non-LUCA
genes/proteins for further analysis. There are 520 essential genes
determined under rich medium for MmarS2, and 85 ones of
them are included in the list of 355 LUCA genes which belong
to 21 types of functional categories (Weiss et al., 2016). The 85
essential genes of MmarS2 which will be seen as the representative
of LUCA genes belong to 17 different functional categories. The
four LUCA functional categories not included in the further
analysis are translation (2 COGs), energy metabolism, protein
modification, and cell wall related (Supplementary Table S2).
In contrast to non-LUCA genes, the 85 essential genes which
could be seen as the representative of LUCA genes supposed
to be more conserved and ancient (Yin et al., 2016). Then,
we determined their homologous genes from other organisms.
We chose bacterial and archaea genomes with at least 10 genes
having the gene name in the above LUCA gene list for further
analysis. Consequently, 527 genomes among 2000 sequenced
bacteria and archaea that met this criterion were included into
the analyses (Supplementary Table S3). The same gene as those
in the representative LUCA gene list tends to have variable GC
content preferred by corresponding organisms, and we showed
this tendency in six model genomes/genes (Figures 1A,B).
The six genomes are Amycolatopsis mediterranei U32 uid50565
(A. mediterranei), Bacillus cereus E33L uid58103 (B. cereus),
Bacillus thuringiensis serovar konkukian 97 27 uid58089
(B. thuringiensis), Methylacidiphilum infernorum V4 uid59161
(M. infernorum), Salinibacter ruber M8 uid47323 (S. ruber) and
Sulfobacillus acidophilus TPY uid68841 (S. acidophilus). They
have more homologous proteins with the LUCA protein set
than other genomes. Genes of the six model organisms have
different GC contents, while all the GC contents/evolutionary
rate (Ka) of protein coding genes in these genomes have small
coefficient variations (0.04∼0.12; 0.17∼0.26) (Figures 1A,C).
The six genes exist in more than 58 genomes. IleS is isoleucyl-
tRNA synthetase, purM is phosphoribosylaminoimidazole (AIR)
synthetase, glnA is Glutamine synthetase, argS is arginyl-tRNA
synthetase, hisA is uncharacterized protein related to proFAR
isomerase and alaS is alanyl-tRNA synthetase. The GC contents
for the six protein-coding genes alaS, ileS, argS, hisA, glnA
and purM from MmarS2 are 35.91, 34.65, 34.69, 33.88, 39.52,
and 33.56%. The GC contents/evolutionary rates of homologous
genes have high coefficient variation CV (0.22; 0.22∼0.32), which
means the genes with same name evolve to have a very different
GC content close to the average content of the genome in which
it exists (Figures 1B,D). The evolutionary tree of the six model
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FIGURE 1 | Genes have biased GC contents and evolutionary rates in and among genomes. (A) The GC content of genes homologous to LUCA genes. The CV is
short for Coefficient of Variation, which equals to standard deviation(x)/mean(x), while x is the list of GC contents of those genes in the LUCA list. Although
homologous genes originate from the same gene and have identical GC contents in the ancestor, these genes tend to evolve to have preferred GC contents for the
genomes. (B) Genes evolve to have variable GC content among genomes. By observing the GC content for evolved genes in genomes and among genomes, (A,B)
show that GC content may play an important role for genome evolution. (C) The Ka of gene stes homologous to genes in the same genomes tend to be less discrete
than that of the gene sets which contain homologous genes from different genomes (D), which means genes in one genome have similar evolutionary rates, while
the genes among genomes evolve biasedly. (E) Shows the evolutionary relationship between the six presented organisms with K = 6, while using the MmarS2 as
outgroup. (F) The six genes have different gene lengths. We chose these genes randomly, thus the evolutionary results may be not correlated with the gene length.

organisms shows that they have different evolutionary distances
to the MmarS2 (Figure 1E). All six LUCA genes with different
gene lengths are randomly chosen (Figure 1F).

However, the LUCA and non-LUCA may suffer the same
evolutionary stress. Thus, we also listed the homologous proteins
of 90 non-LUCA proteins of MmarS2, which are not in the list
of the predicted LUCA genes by Weiss et al. (2016), were also
determined (Supplementary Table S4). These non-LUCA has the
similar CV values of GC content and Ka. Thus, these homologous
LUCA and non-LUCA proteins may both be helpful to inspect
how the GC content together with other factors influences the
evolutionary process of genomes.

Proteins Evolve Among Genomes Under
Strong Effects of GC Content
From the above results, we observed that genes in the same
genomes tended to evolve to have similar GC contents. The
homologous genes from different genomes have various GC
content. Thus, the effect of GC content on protein evolution
could be important. Previous researches reported that local GC
content largely influences the recombination rates (Fullerton
et al., 2001), and the GC content is mainly determined by the
interactions among gene structure, recombination patterns, and
GC-biased gene conversion (Glémin et al., 2014). Furthermore,
Sueoka reported that amino acid compositions correlate with GC
contents in few bacterial genomes before the genetic codons being
elucidated (Sueoka, 1961, 1962). It was also reported that amino

acid usage and GC content also shape each other (Lightfield
et al., 2011; Khrustalev and Barkovsky, 2012). Here we tried to
investigate the effects of GC content on amino acid composition
during evolutionary process through LUCA proteins and non-
LUCA proteins in bacteria.

To investigate that the GC content has effects on amino
acid compositions of homologous genes, we firstly calculated the
change of frequencies for the twenty standard amino acids in
genes mentioned above, which are essential genes of MmarS2
and are present in more than sixty bacterial strains. For 47 ones
among 50 genes who have more than seven homologous genes,
their GC contents positively correlate with the corresponding
Ka values (Figure 2A, P < 0.005; Table 1). Only three genes
rfaG, nifH, and selD do not have significant correlation between
evolutionary rates and GC contents. GC contents were growing
along with Ka values under different linear determination
coefficients.

We further observed that sizes of the genomes containing
these homologous genes also positively correlate with the GC
contents of these homologous genes (Supplementary Figure S1).
For different genes, the amino acid compositions significantly
influencing the evolutionary rates are different. Considering that
huge genomes have more proteins to be translated. Amino acids
have different energy and material cost for synthesis, which
means some amino acids are much more expensive than others.
Thus, huge genomes incline to employ cheaper amino acids,
while cheap amino acids tend to be GC rich and genes with
higher GC content tend to be highly expressed (Chen et al., 2016).
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FIGURE 2 | GC content significantly contributes to the LUCA protein evolution. (A) Evolutionary rate (Ka) for six genes homologous to the LUCA genes from multi
genomes positively correlates with corresponding GC content. Higher GC content happens with higher Ka value. The red points are genes from MmarS2. (B) The
gain and loss tendency of amino acids encoded by the GC rich/AT rich codons under different GC deviations. We used the GC content of one gene to minus the GC
content of its homologous gene in MmarS2, and then we acquire the deviation of GC content. The deviation of amino acids is the amino acid frequencies of one
gene minus the amino acid frequencies of its homologous gene in MmarS2. More details can be found in the part of Section “Materials and Methods.” (C) The
correlation between the deviation of GC content and the deviation of amino acid composition. Amino acids A, R, P, and G are encoded by GC rich codons, while
amino acids Y, N, K, and I are encoded by AT rich ones.

Amino acid composition reflects the action of natural selection
to enhance metabolic efficiency, and cheaper amino acids tend
to be encoded by codons with high GC content. Consequently,
we observe the positive linear relationship between GC content
and Ka values, which may be caused by maximizing the metabolic
efficiency.

Although some of genes from MmarS2 (ileS vs. argS; hisA
vs. purM) show similar GC contents, the amino acids whose

compositions contribute to the evolutionary rates vary a lot
according to the Ridge regression results (Table 2). Linear
regression models were constructed between evolutionary rates
(Ka) and amino acid compositions of LUCA as well as non-LUCA
proteins using principal analysis regression (Supplementary
Table S4) to solve the multilinear problem. Firstly, six principal
components are extracted from 20 amino acid composition
values and then linear regression was performed between
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TABLE 1 | The correlation between evolutionary rates and GC content.

Gene name R P Gene name R P

fni 0.2321 2.4372E−02 purM 0.6882 3.3737E−68

thiH 0.8805 1.7266E−03 pheT 0.4847 1.0511E−12

ssuD 0.4681 2.1050E−02 rpsK 0.6360 5.0975E−57

hemA 0.6683 6.7149E−51 rpsI 0.7290 1.1689E−68

cysG 0.4130 6.2786E−02 ylqF 0.9256 2.7882E−03

rfaG 0.0309 8.4614E−01 uppS1 0.6528 4.4967E−03

hypF 0.8290 9.9017E−43 fusA 0.4858 2.9113E−28

nifH 0.0876 4.6742E−01 rpsJ 0.7263 4.3783E−84

leuA 0.4844 5.4731E−24 rplN 0.2635 1.7446E−09

glyS 0.6225 5.2589E−14 rplE 0.5115 3.7355E−35

gldA 0.6756 2.0399E−13 rpsH 0.2731 3.5679E−10

nrdD 0.2517 1.3107E−04 rpsE 0.7636 1.4015E−98

rplA 0.6025 1.2137E−49 Dcd 0.5760 2.8708E−28

alaS 0.6007 5.1704E−52 ileS 0.6564 4.1183E−68

prsA 0.2571 1.5232E−05 codA 0.9621 8.6068E−06

gcp 0.4890 3.1475E−06 pyrE 0.5863 1.1862E−44

tpiA 0.2963 3.5505E−03 pheS 0.6598 1.3323E−20

proS 0.3768 3.2182E−04 hypB 0.6436 2.5365E−20

spoVB 0.9663 1.2079E−18 pheA 0.5966 2.1879E−38

gatB 0.5897 6.8656E−38 selD 0.4904 5.3793E−02

lysC 0.4637 4.4213E−17 rplB 0.7030 2.2372E−77

argS 0.6057 3.5711E−54 Ffh 0.3552 1.9826E−23

sun 0.8789 4.3642E−28 speE 0.2516 1.3146E−04

mch 0.6761 4.0335E−03 trkA 0.4325 2.3957E−03

glnA 0.3781 2.8890E−18 hisA 0.7805 9.9555E−80

The items which have bad correlation between GC content and Ka are marked in red. These genes rfaG, nifH and selD have homologous genes in 42, 71 and 16
genomes.

the predicted values of the six principal components and
the Ka values. The linear models show that amino acid
compositions significantly contribute to the evolutionary rates
(>29%, P < 0.0005). All the first principal component for these
homologous genes has a very high correlation with their GC
contents (The mean of average | R| is 0.85, P < 0.0005). Amino
acids encoded by GC-rich codons frequently existing in the first
principal component show that the first principal component
represents the GC-content and thus GC contents decide the
evolutionary rate as the main factor.

Next, to detect the detailed amino acid gain and loss
during evolution according to GC content, we investigated the
composition variation of GC rich amino acids and AT rich
amino acids for homologous proteins. Comparing with proteins
of MmarS2, amino acid contents may increase or decrease
in corresponding homologous proteins. According to the GC
content deviation degree we classify the homologous genes from
different genomes into four groups. Genes with increased GC
content, especially those with GC content being 10% higher
than that of homologous genes belonging to MmarS2 (deviations
of GC contents: >10), have higher ratios of GC rich amino
acids and lower ratios of AT rich amino acids (Figure 2B). The
deviation of amino acid composition for GC rich amino acids
positively correlates with the deviation of GC content, while
the deviation of amino acid composition for AT rich amino
acids negatively correlates with the deviation of GC content

(Figure 2C). Finally, it can be deduced that genomes with
higher GC content may have higher ratios of GC rich amino
acids.

In conclusion, the LUCA proteins evolve under strong effects
of GC content, which probably is selected by metabolic efficiency
of amino acids. GC rich amino acids tend to increase along with
the increase of GC content of protein coding genes.

Effect of the Recruitment Order of Amino
Acids on the Evolution Tendency of
Amino Acid Composition
It is proved that GC content is one strong factor for promoting
protein evolution and shaping the amino acid composition.
However, the recruitment order of amino acids was considered
as a main component deciding the mutation direction of amino
acids (Jordan et al., 2005). The GC features for each amino
acid were determined based on corresponding genetic codons
(Osawa et al., 1992), and feature values for the recruitment
order, cost, and molecular weight were also acquired from
previous researches (Akashi and Gojobori, 2002; Jordan et al.,
2005). According to the feature values to each amino acid
(Supplementary Table S6), correlation analyses were performed
and GC contents negatively correlate with the recruitment order
of amino acids (R = −0.60, P = 0.005), the recruitment order
positively correlate with the cost (R = 0.78, P = 5.483E−05),
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TABLE 2 | The linear models between evolutionary rates and amino acid compositions.

Gene name Linear regression models Linear regression models

(Ridge regression) (Principal component regression)

R2 Variables significantly R2 Amino acid significantly

contribute to contribute to the first Principal

evolutionary rates component (positive; negative)

(positive; negative)

alaS 0.93 F,H,T; Y,M,W,E,C,D,I,P 0.7 A,D,G,H,S,R; C,E,I,K,N,Y

ileS 0.93 A,G,Q; D,C,V,W 0.84 A,D,G,M,P,R,W; E,F,I,K,L,N,S,Y

argS 0.77 Q; S,E,I 0.69 A,D,G,H,M,Q,P,R,T; C,E,F,I,K,N,S

hisA 0.88 Y,L,R,A; D,M,E 0.77 A,D,G,H,L,Q,P,R,T; E,F,I,K,M,N,S

glnA 0.64 S,A,C,Q; D 0.46 A,G,H,P,S,T; C,E,F,K,L,N

purM 0.72 P,N; H,T,I 0.55 A,D,G,H,L,Q,P,R,T,W,V; E,F,I,K,M,N,Y

All multiple linear models in this table have P-values less than 1.539E−06. Amino acids coded by GC-rich codons are A, P, R, and G, while amino acids coded by AT-rich
codons are F, I, N, K, M, and Y.

and the cost and molecular weight correlate well (R = 0.7942,
P = 4.899E−05). The correlation analysis between these features
show that GC content could have contradictory effects on
evolutionary rates than cost, molecular weight, and recruitment
order. The energy cost for synthesizing amino acids (Akashi and
Gojobori, 2002) and the molecular weight of amino acids also are
important factors influencing the evolutionary rates. However,
their correlation with the gain and loss of amino acid is very weak
(not significant). Then, we investigated the effects of amino acid
recruitment order on the evolutionary rates. Sixty-five genomes
were used in the following analysis. Firstly, it is investigated that
whether the ancient amino acids have higher frequency than the
newly recruited amino acids in all these researched genomes. The
contents for ancient amino acids and newly recruited ones in
proteins were compared, and the result showed that the ancient
ones do have higher ratios than that of the newly recruited ones
(Supplementary Figure S2, students’ t-test: P < 2.2E−16).

Next, it is investigated whether the recruitment order
influence the gain and loss of amino acids during evolution. The
correlation analysis result showed that only in 19.33% proteins
(1501 records from 65 genomes) the deviation of amino acids
correlates with the amino acid recruitment order (Figure 3A).
For comparison, it was shown that in 62.73% proteins the GC
content significantly correlate with the deviation of amino acids
(Figure 3B). The GC content of amino acids have more effects
on amino acid composition than the recruitment order of amino
acids. To further verify this, the gain and loss conditions for those
earliest and latest four amino acids in homologous proteins with
various GC variation were compared (Supplementary Table S5).
Four eldest amino acids (Asp, Ser, Glu, and Leu) tend to be
lost more often than being gained, while four newest amino
acids (Gln, His, Cys, and Trp) tend to be gained more during
evolution process (Figure 3C). When the change range of GC
content is 0 to 5 percent, old amino acids incline to be lost,
while new amino acids incline to be gained. When the change
range of GC content is higher than five percent, compositions
of these amino acids tend to be largely influenced by the GC
content. The ratio of GC content for codons influences the
corresponding amino acid composition variation. Each genome

has a preferred GC content, which promotes the variation of
amino acid composition than the recruitment sequence of amino
acids.

Old residuals have high levels of usage in all proteins, and new
ones have rather low level of usage. However, the amino acids
with lower levels of usage may cause the lower chance of amino
acid replacement occurrence. Thus, more investigation is needed.
The amino acid residuals were classified into three groups, the
GC-rich group was given values of “2,” and the AT-rich group
was given values of “0.” The group with average GC-content
was given values of “1,” and these amino acids are D, V, S, E, L,
T, Q, H, C, and W (Figure 3D). According to the amino acid
recruitment order, these amino acids are further grouped into two
sub-groups: group new, which include Q, H, C, W, and group
old, which include D, V, S, E, L, T. The amino acid frequencies
of “new” amino acids (Mean: 0.0191) are significantly lower than
that of “old” ones (Mean: 0.0653, P < 2.2E−16). So these “old”
amino acids do have higher frequencies than “lower” amino acids.
However, the mean deviation of amino acids for “old” amino acid
residuals is −0.0008, and that for “new” amino acids is 0.0048
(Figure 3E). The student’s t-test showed that the deviations of
amino acids for “new” ones are significantly higher than that of
the “old” ones (P < 2.2E−16) (Figure 3F). Thus, the amino acids
with a lower levels of usage may not cause the lower chance of
amino acid replacement occurrence. The conclusion we acquired
here is reliable.

In conclusion, we determined LUCA genes/proteins, non-
LUCA genes/proteins, and corresponding evolutionary rates with
setting the MmarS2 as the LUCA. The principal component
analysis showed that the first six components of compositions
for 20 amino acids can be applied to build a significant linear
models. The first principle component correlate well with GC
contents of genes. Further analysis found that the GC contents
correlate well with the Ka for genes, and the loss and gain of
amino acids changes along with the GC contents. The amino
acid frequencies coded by GC-rich codons positively correlate
with the deviation of GC-content, while the compositions of
amino acids coded by AT-rich codons negatively correlate with
the deviation of the GC-content. Thus, the strong effect of GC
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FIGURE 3 | The recruitment order of amino acids contributes less to the LUCA protein evolution than GC content. (A) The histograms for correlation indexes
between recruitment order of amino acids and the loss/gain value for 20 amino acids. Only in 19.33% proteins (1501 records from 65 genomes) the deviation of
amino acids correlates with the amino acid recruitment order. (B) The histograms for correlation indexes between GC content of amino acids and the loss/gain value
for 20 amino acids. In 62.73% proteins the GC content significantly correlates with the deviation of amino acids. (C) The boxplots of values of deviation of amino
acids for ancient amino acids and newly recruited amino acids. Four ancient amino acids D, S, E, L (Asp, Ser, Glu, Leu) tend to be lost during evolution in proteins
homologous to LUCA proteins, while four newly recruited amino acids Q, H, C, W (Gln, His, Cys, Trp) tend be gained. (D) The order and GC content features for 20
standard amino acids. The GC-rich amino acids are with values of 2, and the AT-rich amino acids are with values of 0. The early recruited amino acids are from 1 to
10, and the newly recruited amino acids are from 11 to 20. (E) The amino acid compositions for old amino acids (D, V, S, E, L, T) are significantly higher than that of
new amino acids (Q, H, C, W) for 2774 bacteria and archaea genomes. (F) The deviation of amino acids for old amino acids (D, V, S, E, L, T) are significantly lower
than that of new amino acids (Q, H, C, W) for 1501 proteins. These proteins were used in panels (A,B). Although new amino acids have lower amino acid levels, they
may have higher deviations. Thus, the low levels of new amino acid compositions may not cause the lower chance of amino acid replacement occurrence.
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FIGURE 4 | The amino acid compositions for possible LUCA organisms and all other microorganisms. Clostridium (48 genomes) and Methano (51 genomes) are
possible LUCA organisms, and Others (2675 genomes) are some bacteria and archaea genomes. Amino acids Q, H, C, M, and W are new amino acids and
encoded by codons at average GC contents. The Methano group has less Q, H, W amino acids than others. Amino acids C and M of Methano and Clostridium are
a little higher may because they have more sulfur or living in a circumstance without higher sulfur. The Methano here is short for Methanoproducents.

contents on the protein evolution is proved. Next, we found that
the recruitment order of amino acids has effects on amino acid
composition during evolution. Its effect is weaker than that of
GC content. Finally, as one feature of amino acids, GC contents
has stronger effects on the protein evolution than other important
features like recruitment order and cost.

DISCUSSION

Previously published research explained the gain and loss of
amino acid variation during evolution with a neutral hypothesis,
claiming that the trend in protein evolution was not driven
by any simple trend at the DNA level (Jordan et al., 2005).
In this paper, we investigated the evolution process of several
orthologous genes and found that it was the GC content rather
than amino acid recruitment order that determined the gain and
loss of amino acid variation.

We used the conserved genes of MmarS2 as LUCA genes
and investigated the evolution of both LUCA and non-LUCA
genes. The MmarS2 is one of the possible LUCAs (Weiss et al.,
2016). However, all lives are evolving after their first emergence.
Thus, the MmarS2 genome we used may has a big difference
from the origin. But the physiology and habitat for the LUCA
is similar to that of MmarS2’s, and thus the evolution under
such condition may not make it have a genome being biased too
much. In addition, we chose those conserved essential genes for
the investigation to make the results robust. According to the
amino acid recruitment order, the amino acids Gln (Q), His (H),
Cys (C), and Trp (W), which are encoded by codes of average
GC content, should be newly recruited and thus should have
lower compositions in LUCA. Fifty-one Methanoproducents
(including MmarS2) have significantly lower Gln, His, and Trp

contents than all other bacteria do (Figure 4). Meanwhile,
Clostridium, the other possible LUCA phyla (Weiss et al., 2016)
has similar amino acid compositions with Methanoproducents,
and these four amino acids have higher contents in Clostridium
proteomes than that of Methanoproducents. Thus, the MmarS2
could be considered as one closest species to LUCA. Next, we
investigated the LUCA and non-LUCA genes, and concluded that
the genomic composition and metabolic economy factors that
shape relative amino acid compositions are qualitatively the same
for LUCA and non-LUCA genes. The linear regression models
also showed that both of them suffer strong selective power of GC
contents during evolution. However, we chose essential LUCA
proteins of MmarS2 for some analysis, which are supposed to be
more conserved.

It was proved that GC contents contribute to the evolution
rate as the main feature of amino acids. However, what cause
the GC content variation? It was reported that GC contents
are correlated with many genomic features like replication
timing (Deschavanne and Filipski, 1995) and aerobiosis (Naya
et al., 2002). The GC content of genes also depends on their
positions in archaeal and bacterial genomes, and positions near
the replication terminus tend to be A+T enriched in bacteria
and G+C enriched in archaea (Daubin and Perrière, 2003).
We do find that for those homologous genes to LUCA, there
do exist a correlation between gene position and GC contents
(significantly for 74% gene groups researched). The position also
shows some correlation with the evolutionary rate Ka in this
paper (only for 54% gene groups). The primary cause for the
GC content variation may be the energy efficiency, which is
the basic of evolution. For four amino acids encoded by GC-
rich codons G, A, P, and R, the first two have lower costs and
the last two have higher costs (the compositions of the later
have lower compositions than the former from Figure 4). For
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amino acids encoded by AT-rich codons I, M, N, F, K and Y, N
has a very low synthesis cost (Figure 3D and Supplementary
Table S6). However, the average cost of GC rich amino acids
is lower than that of AT-rich amino acids (Student’s t-test:
P = 0.0306). Chen et al. (2016) reported that GC rich codons
encode energetically cheaper amino acids, while at the same
time G + C base pairs are more expensive than A +T/U
pairs. A research in Arabidopsis thaliana and Arabidopsis lyrata
showed that transcription-related mutations and GC content
drive variation in nucleotide substitution rates (DeRose-Wilson
and Gaut, 2007). The relationship between gene expression and
GC-content in mammals was weak in some cases (Sémon et al.,
2005). These researches may reflect that different trade-offs are
related with energy efficiency. The GC content influences the
evolutionary of proteins because of energy cost, and both the
synthesis of bases and amino acids are involved in this process.
Thus, highly GC-rich proteins may mean less cost for the
synthesis of proteins, but also a higher cost for the synthesis of
nucleotides. We observed a positive liner relationship between
GC contents and Ka values for homologous genes from different
genomes (Figure 1A). Corresponding Ka values grow with the
GC contents of their homologous genes, and their homologous
genes have GC contents close to genomes’ average. Ka is the
ratio of the number of non-synonymous substitutions per non-
synonymous site, thus higher Ka means more changes of amino
acid sequences. It shows GC content correlates with the evolution
process of amino acid sequences. Early proteins may have less
choice of genetic codons for amino acids, and more AT rich
codons means lower cost on transcriptions. Along with more and
more codons for amino acids are recruited, the cost of amino
acids is also under selection. The codons for amino acids have
different GC content. Some amino acids like Ala, Arg, Gly, and
Pro are GC rich, while Asn, Ile, Lys, Met, Phe, and Tyr are AT
rich. During evolution, biased GC content will reflect on amino
acid composition.

In this paper, we only surveyed the phenomenon among
archaea and bacteria, and focused on few factors related to the
evolution of amino acid composition including GC content,
amino acid recruitment order, amino acid weight, and cost of
amino acid synthesis. The factors influencing the amino acid
composition in eukaryotes may be more complicate. Further
investigation of the factors shaping amino acid composition
during evolution is a basic problem to understand evolution.
Additionally, more wet experiments would be involved in
the future investigations for the evolution of amino acid
composition.

MATERIALS AND METHODS

Related Species and Genes
The LUCA gene list is obtained from the work of Weiss
et al. (2016), which provides a relatively reliable LUCA gene
set. The genome MmarS2 was downloaded from GenBank1

1ftp://ftp.ncbi.nlm.nih.gov/genomes/genbank/archaea/Methanococcus_
maripaludis/

(Benson et al., 2003). Its essential gene list was acquired from
DEG (Luo et al., 2014), a database of essential genes2. We
determined the LUCA genes in the MmarS2 through the names
of COGs or genes. There are 85 essential MmarS2 genes/proteins
which are on the list of LUCA genes/proteins, which are seen
as genes of a representative LUCA gene/protein list. Finally, we
acquired sequences for these genes/proteins.

Next, we downloaded 2774 bacteria/archaea genomes from
GenBank in 2017. Because Weiss et al. (2016) did not supply
sequences for LUCA genes/proteins, we determined the LUCA
genes in genomes through their gene names and/or COGs
they belong to. There are 1196 genomes which have the
same gene names as that of the LUCA gene/protein list, and
there are only 124 genomes which have over 170 genes on
the LUCA gene/protein list. Then, we acquired protein and
ribonucleotide sequences of genes having same gene names
to LUCA genes in these genomes. After that, we need to
pair them with genes from the representative LUCA gene list
we determined before. Here, we used the sequence alignment
tool BLAST to pair these genes (Altschul et al., 1990),
and we found out homologous proteins of MmarS2 in 527
genomes (1196 genomes minus 669 genomes whose proteins
have same names as that of LUCA proteins but are not
homologous to those from representative LUCA protein list)
(Supplementary Table S3).The similar procedure were used
to determine homologous proteins of non-LUCA proteins in
MmarS2.

Finally, we got homologous proteins of 90 non-LUCA and 23
LUCA, from which we can observe the variations of amino acid
compositions and evolutionary rate Kas among proteins. These
results were used further to compare the evolutionary result
of amino acid compositions for proteins among genomes and
among proteins.

Evolutionary Rates
Orthologous gene pairs were identified based on reciprocal
best hits using the protein-protein basic local alignment search
tool BLAST service Blastp3 (Altschul et al., 1990; McGinnis
and Madden, 2004) with criteria of E < 10−5, 80% minimum
residues that could be aligned, and at least 30% identity. A local
blast database was constructed with sequences of researched
proteome. Every two proteomes (One is of MmarS2, which
only includes those essential LUCA proteins) were used to
find homologous genes in each turn, and during the BLAST
step, the two proteomes were used to construct local BLAST
database in turn. The acquired lists of homologous proteins
are highly reliable. Protein sequences encoded by identified
orthologous gene pairs were aligned with ClustalW (Larkin
et al., 2007), and then back-translated into nucleotide sequences
based on their original sequences. Numbers of substitutions per
non-synonymous site (Ka) and numbers of substitutions per
synonymous site (Ks) were calculated using the PAML package
(Yang, 1997, 2007) with default parameters (yn00 model was
employed).

2http://www.essentialgene.org
3https://blast.ncbi.nlm.nih.gov/Blast.cgi
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Deviation of Amino Acids and Deviation
of GC Contents
We used the deviation of amino acid to depict the gain and
loss of amino acids. If the deviation of amino acid is negative,
it means the ratio of special amino acid is decreased/lost.
If the deviation of amino acid is positive, it means the
ratio of special amino acid is increased/gained. Amino acid
composition for each protein was calculated. There are 20
standard amino acids. The ratio of each amino acid in the
protein sequence is equal to the amino acid frequency. The
deviation of amino acids is the difference between the amino
acid composition of one protein to its homologous protein.
We use the amino acid composition of proteins in the 65
genomes to minus the amino acid composition of proteins in
MmarS2 to acquire the deviation of amino acids. This value
reflects the gain and loss ratios for the twenty standard amino
acids, and also reflects the evolution selection on amino acid
compositions.

Each gene for these proteins has a different GC content. We
use the GC contents of genes in the 65 genomes to minus the
GC contents of genes in MmarS2 to acquire the deviation of GC
contents. This value reflects the tendency of GC content for genes
in different genomes, which could be under selection.

Amino Acid Features
The analyses are based on the GC feature of codons for special
amino acid, the amino acid recruitment order, the molecular
weight, and the energy cost for synthesizing special amino
acid.

Some amino acids are encoded by GC-rich codons, and some
are by AT-rich codons. Thus, if the first two bases of the codons
are mainly G and C, the amino acid will be grouped to GC-rich
group, and if the first bases two of the codons are mainly A and T,
the amino acid will be grouped to AT-rich group. The rest amino
acids are grouped into another groups. We give GC-rich amino
acids value of 2, AT-rich amino acids value of 1 and others 0. The
GC content for amino acid A, C, E, D, G, F, I, H, K, M, L, N, Q, P,
S, R, T, W, V, and Y are 2, 1, 1, 1, 2, 0, 0, 1, 0, 0, 1, 0, 1, 2, 1, 2, 1, 1,
1, and 0.

The amino acid recruitment order is the order of amino acids
originated during the long term evolution, which was acquired
from the work of Jordan et al. (2005). To exclude the effect of GC
content, we compared the special “old” (D, S, E, L) and “new” (Q,
H, C, W) amino acid residues, which are encoded by codons with
average GC content.

The amino acid cost, which is energy cost for synthesizing
amino acids, are different. We used the amino acid cost from
E. coli (Akashi and Gojobori, 2002). All feature values are
provided in Supplementary Table S6.

Software
We used basic local alignment search tool BLAST to find
homologs or for similarity search (Altschul et al., 1990;
McGinnis and Madden, 2004), ClustalW to align sequences
(Thompson et al., 1994), and PAML to calculate evolutionary
rate Ka. All these software /packages were called through

Python scripts (Oliphant, 2007). We also used R version 2.7
to do statistical analysis4 such as the principal component
analysis and correlation analysis. We extracted the six principal
components and then used the least square method to
construct a linear model between them and the evolutionary
rate Ka. All correlation analyses are based on Pearson
correlation.
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