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Abstract: Breast cancers (BC) can mutate, allowing metastatic tumors (MT) to sometimes differ to
primary tumors (PT) in gene expression. Despite contemporary metastatic breast cancer (MBC) therapy,
subtype conversion seems prognostically disadvantageous. We strived to determine the influence of
mRNA-assessed intrinsic subtype stability comparing PT and MT biopsies and circulating tumor cell
(CTC)-based liquid biopsies on progression free survival (PFS) and overall survival (OS). Additional
analyzed prognostic factors were PT subtype, MT subtype and hormone receptor loss. Kaplan-Meier
curves and the log rank tests were used to compare PFSs and OSs. The proportions of luminal B and
triple negative subtype MTs were increased compared to those observed in PTs. Fifteen patients were
found to have tumors that underwent intrinsic subtype conversion and their OS was significantly
decreased (p = 0.038). No such difference was observed when it comes to PFS. The majority of these
tumors switched to a more aggressive intrinsic subtype. No significant differences in PFSs or OSs
were observed between subtype converters with triple negative PTs compared to those with luminal
subtype PTs. The same is true of subtype stable patients. Total CTC, iCTC and aCTC counts decreased
with therapy, but there were no significant differences between subtype converters and subtype stable
patients. Our data confirm a poorer overall survival of the intrinsic subtype converters and emphasize
the importance of acquiring biopsies and re-biopsies of all available metastatic lesions alongside with
CTC-based liquid biopsies for earlier recognition of patients with poorer prognosis and in need of
altered individualized therapy regimens.
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1. Introduction

Breast cancer (BC) remains an important cause of morbidity and mortality in women worldwide [1].
Metastatic breast cancer (MBC) is still associated with a dismal prognosis despite numerous technological
advances and ongoing research efforts on a global scale [2]. In an era of individualized medicine, numerous
targeted therapeutic regimens have been instituted and are being employed on a daily basis [3,4]. Furthermore,
distinct BC intrinsic subtypes were defined in order to better guide therapy [5,6]. Triple negative tumors in
particular, due to the lack of adequate drug targets, were shown to be associated with an unfavorable
prognosis [7,8]. The same statement used to be true for any BC expressing HER2 prior to the introduction
of various HER2-targeted therapies [7,9,10].

It has been recognized that a BC can, during its natural history, change its molecular subtype
and consequently downregulate or change its receptor expression making it a proverbial moving
target [11–14]. Biopsies of metastatic tumor (MT) tissues have confirmed suspicions that MTs can
indeed have a genetic makeup different to that of the primary tumor (PT). That being said, MBC therapy
is currently dependent on the MT’s biomarker profile [15]. However, some authors have posited that
despite modern therapeutic modalities, intrinsic subtype conversion remains disadvantageous from a
prognostic perspective [7,10,14,16]. Furthermore, the question remains whether all such conversions
are equally disadvantageous [17,18].

Circulating tumor cells (CTCs) can be detected in peripheral venous blood samples in patients
with MBC and sampling of such cells could possibly serve as a surrogate for a biopsy of the MT and
this is why some authors have dubbed CTC enumeration a “liquid biopsy”. In our previous study,
we were able to show that both patients with luminal and triple negative tumors had a significant
downregulation of apoptotic circulating tumor cells (aCTCs) in their sera [19].

In this sequel study, our goal was to determine the influence of RT-qPCR based intrinsic subtype
conversion on progression free survival (PFS) and overall survival (OS) and compare it to the impact
of intact and apoptotic circulating tumor cells on survival. In addition, we evaluated the association
between particular primary tumor intrinsic subtypes and PFS and OS in both the intrinsic subtype
stable patients and the subtype converters. In addition, we analyzed the differences between subtype
converters and subtype stable patients in regard to total CTC, iCTC and aCTC counts both at baseline
and after specific therapy.

2. Results

Thirty-four patients fulfilled the biologically and methodologically highly demanding enrollment
criteria in the analyzed timeframe. The mean age at the time of PT biopsy was 52.3 ± 9.7 years, while
the age at which a metastatic focus had been diagnosed and biopsied was 58.1 ± 10.6 years. None of
the patients in our cohort had a Grade 1 tumor, while G2 tumors were most common at 53% (Table 1).
Luminal A and luminal B subtype PTs were both found in 38.2% of patients, while 20.6% had a triple
negative PT subtype. Compared to PTs, higher frequencies of luminal B and triple negative MTs and
a lower frequency of luminal A MTs were observed (Table 1). None of the patients had a PT or MT
that was of the HER2 enriched subtype. Fifteen patients (44.1%) had tumors that underwent intrinsic
subtype conversion.



Diagnostics 2020, 10, 369 3 of 10

Table 1. Patient and tumor characteristics.

Mean Age at PT Biopsy, Years, Mean ± SD 52.3 ± 9.7

Mean Age at MT Biopsy, Years, Mean ± SD 58.1 ± 10.6

Tumor Grade Frequency (%)

G1 0 (0%)
G2 18 (53%)
G3 12 (35%)
GX 4 (12%)

Primary Tumor Intrinsic Subtype Frequency (%)

Luminal A 13 (38.2%)
Luminal B 13 (38.2%)

Triple-negative 7 (20.6%)
NA 1 (2.9%)

Metastatic Tumor Intrinsic Subtype Frequency (%)

Luminal A 5 (14.7%)
Luminal B 14 (41.2%)

Triple-negative 8 (23.5%)
NA 7 (20.6%)

Subtype Dynamics Frequency (%)

Subtype stable 11 (32.4%)
Subtype conversion 15 (44.1%)

NA 8 (23.5%)

PFS, Months, Median (Range) 6 (1–49)

OS, Months, Median (Range) 17 (1–52)

OS was found to be significantly decreased (log rank test, Chi square = 4.3, p = 0.038) in patients
whose tumors had undergone subtype conversion (Figure 1). The median OS for subtype stable
patients was 23 months (range: 1–52) compared to 11 months (range: 1–46) in subtype converters.
However, the stability of a BC’s intrinsic subtype was not associated with a significant difference in
PFS (log rank test, Chi square = 0.171, p = 0.68).
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Figure 1. Differences in (a) overall survival (OS) and (b) progression free survival (PFS) between
subtype stable patients and subtype converters.

PFS was shorter in subtype converters with triple negative PTs compared to those with luminal
subtype PTs—a median of 4 months (range: 1–10 months) compared to 9 months (range: 2–24 months),
respectively. This difference proved not to be statistically significant (log rank test, Chi square = 2.345,
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p = 0.126) (Figure 2). Data on only a single patient with a triple negative subtype stable BC were
available. Hence, statistical analysis of the curves depicted on the left in Figure 2 would not be useful.
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Figure 2. Differences in PFSs between different primary tumors (PT) subtypes in subtype stable patients
and subtype converters.

OS was also shorter in subtype converters with triple negative PTs when compared to luminal
type PTs—a median of 8 months (range: 1–13 months) compared to 12 months (range: 1–46 months),
respectively (Figure 3). However, analysis of the Kaplan–Meier curves did not demonstrate a statistically
significant difference (log rank test, Chi square = 2.359, p = 0.125). A single subtype stable triple
negative patient was identified limiting a statistical analysis of OS curves in the left pane of Figure 3.
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Figure 3. Differences in OS between different PT subtypes in subtype stable patients and in
subtype converters.

No differences in OSs between different MT subtypes in subtype converters were noted (log rank
test, Chi square = 1.033, p = 0.309) as demonstrated in Figure 4. The same holds true when it comes to
PT hormone receptor (HR) loss (log rank test, Chi square = 0.415, p = 0.520).

The proportion of CTC-positive patients decreased in the entire cohort between the baseline and
follow-up—i+aCTC positive from 67.6 to 32.4%, aCTC positive from 47.1 to 20.6% and iCTC from
67.6 to 32.4% positive patients. In addition, the median i+aCTC, aCTC and iCTC counts decreased
non-significantly after therapy—20 to 6 i+aCTC (p = 0.096); 4.5 to 1 aCTC (p = 0.8) and 15.5 to 3.5 iCTC
(p = 0.24), respectively (Table 2).
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Figure 4. Additional factors influencing overall survival in subtype converters—(a) metastatic tumor
(MT) subtype and (b) hormone receptor (HR) loss.

In both the subtype converter and subtype stable subgroups the i+aCTC, aCTC and iCTC counts
decreased on therapy but the reductions were not statistically significant, albeit more pronounced
in the subtype converter subgroup (Table 2). Interestingly, median differences between initial and
follow-up aCTC and iCTC counts showed a median increase in said counts only in the subtype
converter subgroup. No statistically significant differences were observed in initial and follow-up
i+aCTC, aCTC or iCTC counts between those experiencing tumor subtype conversion and those
without it. However, subtype stable patients had achieved higher absolute counts in all categories
of CTCs.

Table 2. Circulating tumor cells (CTC) dynamics.

CTC Counts Subtype Stable Subtype Converters pbg Total

i+aCTC1 10.65 (0–280) 25 (3–350) 0.11 20 (0–350)

i+aCTC2 3 (0–35) 9 (0–1140) 0.57 6 (0–1140)

pwg 1 0.11 / 0.096

∆ i+aCTC 0 (−280–19.7) −5.5 (−263–1055) 0.79 −3 (−280–1055)

aCTC1 2.5 (0–200) 4 (0–170) 0.26 4.5 (0–200)

aCTC2 0 (0–23) 1 (0–250) 0.34 1 (0–250)

pwg 1 0.73 / 0.8

∆ aCTC 0 (−200–16) −1 (−143–239) 0.74 0 (−200–239)

iCTC1 8.15 (0–80) 19 (0–180) 0.12 15.5 (0–180)

iCTC2 1 (0–15) 7 (0–890) 0.38 3.5 (0–890)

pwg 1 0.18 / 0.24

∆ iCTC 0 (−80–3.7) −7 (−120–816) 0.74 −4.5 (−120–816)

∆ aCTC—difference in aCTCs; ∆ i+aCTC—difference in i+aCTCs; ∆ iCTC—difference in iCTCs; aCTC1—baseline
aCTCs; aCTC2—follow-up aCTCs; i+aCTC1—baseline i+aCTCs; i+aCTC2—follow-up i+aCTCs; iCTC1—baseline
iCTCs; iCTC2—follow-up iCTCs; pwg—statistical significance of the within group comparison; pbg—statistical
significance of the between group comparison.

3. Discussion

Our data point towards a poorer overall survival of the intrinsic subtype converters (Figure 1).
These observations are supported by several recent studies implicating hormone receptor dynamics
as an independent prognostic factor of MBC at all stages of tumor progression [7,8,10,13,14,17,18].
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In confirmation of previous studies, intrinsic subtype change occurred in a minority of patients (44.1%)
during disease recurrence [20]. The majority of those converters changed to a more aggressive intrinsic
subtype. This explains the diminution of OS in this group.

Shorter OSs in subtype converters compared to subtype stable patients did not seem to be due to the
PT or MT intrinsic subtypes, or HR loss as demonstrated in Figures 3 and 4. These findings are surprising
given that multiple authors have shown that triple negative PTs have an unfavorable prognosis even if
subtype conversion is not taken into account [7,8,13,21,22]. However, since a single patient had a triple
negative subtype stable BC, it is not possible to draw any useful conclusions regarding the impact of
PT subtype on OS in subtype stable patients. Similarly, a reduction in hormone receptor expression
during a BC’s evolution through mutation has been associated with a worse prognosis in a number of
studies [7,10,14,17,18,23,24]. As ESR1, PGR, ERBB2 and MKI67 reflect only a subset of prognostically
relevant gene expressions, the general subtype change (weather to triple negative or to luminal subtypes)
might reflect a general tendency towards mutations and therefore a more aggressive state [25–28].

We did not find any association between PFS and intrinsic subtype stability (Figure 1). Likewise,
PFSs did not differ between patients with luminal and triple negative PTs in both the subtype converter
and subtype stable subpopulations as shown in Figure 2. There does not seem to be any other comparable
data published in this context thus far. However, our cohort is not big enough to ensure an adequately
powered study. Thus, the differences discussed in this paragraph could well exist but remain undetected
by an underpowered study such as ours.

We have noted higher total CTC, aCTC and iCTC counts in subtype converters compared with
subtype stable patients in our study. Also, more substantial reductions in i+aCTCs, aCTCs and iCTCs
were seen in subtype converters. However, these changes were not statistically significant. Other authors
have observed higher total CTC counts in subtype converters [29,30]. CTCs are not a monolithic cell
population, but a conglomerate of viable and apoptotic cells respectively defined as iCTCs and aCTC.
Apoptotic CTCs seem to derive from therapy-induced apoptosis and apparently from spontaneous tumor
apoptosis since there have also been detection in patients with no response to systemic therapy [31].
Nevertheless, patients with MBC had significantly lower numbers of aCTC compared to patients with
early breast cancer [32].

We recognize that our study has several limitations. Firstly, the cohort size (34 patients) is small
which correlates to a reduced study power which reflects in the fact that our study yielded several
“null” results. However, we looked at events that are very rare even on a global scale. Furthermore,
the study was very expensive, and the cohort inclusion criteria was extremely logistically and technically
demanding, requiring the availability of biopsies of both primary and metastatic lesions with consecutive
analysis of their mRNA profiles as well as enumeration of serum aCTCs, iCTCs and total CTCs for each
patient in our cohort. We emphasize that the biomarker status of the primary tumor and the metastasis
was analyzed by RT-qPCR and not the conventional immunohistochemistry adding to the scientific value
of our study. Therefore, this cohort should be interpreted in the context of proof of principle.

As stated previously, our study yielded several “negative” results which might be perceived to
be of lesser importance compared to studies with statistically significant results. On the contrary,
our study can be interpreted in several ways that could inform clinical decision making and guide
future research. If the observed differences in OS are not correlated to CTC counts or PT subtypes,
subtype conversion itself could be the driving force behind unfavorable outcomes. In that respect,
we would like to highlight that one of the implications of our study could be that in some cases of
metastatic breast cancer the conversion of intrinsic subtype can have even a higher impact on survival
than the count of apoptotic or intact CTCs emphasizing the importance of biopsies and re-biopsies
of all available metastatic lesions resulting with potential earlier recognition of patients with poorer
prognosis and in need of altered individualized therapy regimens. This is an insight with valuable
practical consequences for clinical decision making and it is of utmost importance to us that it gets
interpreted as our message to the community.
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Further, even statistically nonsignificant results might reflect a clinically important real-world
difference in a study as small as ours due to the suboptimal study power. Thus, one would be wise to
study the data as a whole and not just the p values. For instance, therapeutic measures seem to have
invariably led to a reduction in CTC counts with the effect more pronounced in subtype converters
which is an interesting observation requiring further study. Additionally, subtype converters had
higher baseline and final iCTC, aCTC and total CTC counts, possibly reflecting their worse prognosis.
None of these observations were proven to represent a statistically significant difference between the
groups and within the groups, but might be relevant none the less.

The limited cohort size compromised the power of our Kaplan-Meier analyses. Also, data on
therapeutic interventions and comorbidities were not analyzed in our study. Further analysis on a
bigger patient cohort is warranted in order to further elucidate the mechanisms behind the negative
impact of intrinsic subtype conversion on overall survival.

Subgroup analyses according to the modality of systemic therapy were elaborated in Table 2 of our
prequel paper [19]. The largest subgroup of the cohort had received chemotherapy (70.6%), followed by
endocrine therapy (26.5%) and anti-HER2 therapy (2.9%). The CTC-positive counts rapidly decreased
after one cycle of cytotoxic treatment, from 41.2% to 17.6% for the apoptotic CTC fraction and from
58.8% to 29.4% for intact CTCs. The comparably lower rates of CTCs in patients under endocrine
treatment showed a decreasing trend from 8.8% to 2.9% for intact CTCs and from 5.9% to 2.9% for
apoptotic CTCs [19].

4. Materials and Methods

This study enrolled patients treated for MBC at the Heidelberg University Hospital, Germany
from April 2011 to May 2015. Both PT and MT biopsy specimens, as well as a blood sample obtained
no more than 12 months since metastases were diagnosed, had to be available for a patient to be
included in the study. The tissue samples were all formalin-fixed and paraffin-embedded and stored
with corresponding blood samples at the tissue bank of the National Center for Tumor Diseases (NCT,
Heidelberg, Germany). The study was approved by the ethics committee of the Medical Faculty
Heidelberg of the Heidelberg University (approval no. S-295/2009, issued on 19 November 2009).

Each tissue sample was examined by a pathologist in order to confirm that it truly contains cancerous
tissue. A single whole-face 10 µm-thick section of each tumor block was then subjected to processing via
a RNA extraction kit (RNXtract®, BioNTech Diagnostics GmbH, Mainz, Germany). Having extracted
a RNA sample we then analyzed it utilizing a commercial RT-qPCR kit (MammaTyper®, BioNTech
Diagnostics GmbH) in an attempt to quantify the relative gene expression of ESR1, PGR, ERBB2 and
MKI67 and two reference genes (B2M and CALM2) according to a pre-established protocol. Cut-offs
for ERBB2, ESR1 and PGR were determined as described in our previous study [33]. We could then
define the intrinsic tumor subtype using framework previously outlined by Goldhirsch et al.—luminal A,
luminal B, HER 2 positive (also referred to as HER 2 enriched) and triple negative (TN) [21].

Total (i+aCTC), intact (iCTC) and apoptotic circulating tumor cell (aCTC) enumerations were
performed on a peripheral blood sample at baseline and after cycle one of systemic therapy using
CellSearch™ system (CellSearch™ Epithelial Cell Kit/CellSpotter™Analyzer, Janssen Diagnostics, LLC,
Raritan, NJ, USA) and the CellSearch™ assay (CellSearch™ Epithelial Cell Kit/CellSpotter™ Analyzer,
Janssen Diagnostics, LLC). A ferrofluid coated with antibodies against EpCAM was used to separate
epithelial cells which were subsequently labeled with the nuclear dye 4′,6-diamidino-2-phenylindole
and immunostained with monoclonal antibodies specific for keratins and CD45. Trained observers using
a semi-automated fluorescence-based microscopy system enumerated CTCs. Morphologically intact
CTCs were designated iCTCs. The aCTCs were characterized by morphological criteria—disintegrated
nuclei and/or a speckled pattern on keratin staining and/or M30 antibody staining. Patients were
considered CTC positive if 5 or more CTCs per 7.5 mL were detected. Aside from the aforementioned
methodology, researchers are working with microarrays of carbon nanotube surfaces as a new type of
antigen-independent capture technique [34].
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Demographic data and clinical characteristics were described as frequencies, percentages, means
and standard deviations (normally distributed data), medians and ranges (non-normally distributed
data). Progression free survival (PFS) and overall survival (OS) were compared between patients who
experienced no intrinsic subtype conversion and those who did. We also compared PFSs and OSs between
patients with luminal type, HER 2 positive and triple negative intrinsic subtype stable PTs. The identical
analyses were conducted in a subpopulation of intrinsic subtype converters. The data was plotted and
analyzed using Kaplan-Meier curves and the log rank test. Total CTC, aCTC and iCTC numbers and
statuses were compared using the Chi-squared test, Sign test and the MWU test.

5. Conclusions

Intrinsic subtype conversion might be associated with a decreased overall survival rate. No other
factors seem to unequivocally and statistically significantly influence overall survival in our study
even though non-significantly decreased median overall survival was observed in patients with triple
negative primary tumors. Total CTC, iCTC and aCTC counts were non-significantly higher in the
subtype converters.

The hypothesis-generating nature of the findings from the present study emphasizes the
importance performing biopsies and re-biopsies of all available metastatic lesions and mRNA-based
monitoring of a possible intrinsic subtype shift paired with CTC-based liquid biopsies within the
clinical decision-making process, resulting with earlier recognition of patients at risk and potentially
leading to quicker optimization in individualized treatment of subtype-converted metastatic breast
cancer patients.
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