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Abstract: The utility of clinically available antifungals is limited by their narrow spectrum of activity,
high toxicity, and emerging resistance. Antifungal drug discovery has always been a challenging area,
since fungi and their human host are eukaryotes, making it difficult to identify unique targets for
antifungals. Novel antifungals in clinical development include first-in-class agents, new structures
for an established target, and formulation modifications to marketed antifungals, in addition to
repurposed agents. Membrane interacting peptides and aromatherapy are gaining increased attention
in the field. Immunotherapy is another promising treatment option, with antifungal antibodies
advancing into clinical trials. Novel targets for antifungal therapy are also being discovered, allowing
the design of new promising agents that may overcome the resistance issue. In this mini review, we
will summarize the current status of antifungal drug pipelines in clinical stages, and the most recent
advancements in preclinical antifungal drug development, with special focus on their chemistry.

Keywords: antifungals; drug discovery; drug repurposing; drug targets; invasive aspergillosis
treatment

1. Introduction

For decades, fungal infections have been difficult health conditions to treat. This fact
can be attributed to the narrow spectrum and high toxicity of clinically used antifungals,
long duration of treatment and the high emergence of resistance towards available agents.
The seriousness of fungal infections was brought back to light during the unfortunate
COVID-19 pandemic, in the form of secondary life-threatening infections in the intensive
care units [1]. Candida, Cryptococcus, and Aspergillus are the most common causative
organisms of life-threatening human fungal infections [2]. Candida auris is a multi-drug
resistant fungus [3]. Lomentospora prolificans has intrinsic resistance towards all clinically
used antifungals. Aspergillus fumigatus is becoming more resistant to treatment, making
it more difficult to treat aspergillosis, with mortality rate reaching 100% in some cases.
Early detection and treatment of fungal meningitis and chronic pulmonary aspergillosis
can save millions of lives around the world. Fungal infections have become a silent crisis,
and prompt efforts are needed before it is too late. In this review, we will highlight current
state-of-the-art developments in antifungal pipeline, both in clinical and preclinical stages,
with special focus on their chemistry, in order to provide the reader with a comprehensive,
up-to-date source that will influence future synthetic efforts.

2. Clinically Used Antifungals

The limited number of available antifungals with there narrow safety margin con-
tributes to the increasing morbidity and mortality of invasive fungal infections. Clinically
used antifungals can be classified according to their mechanism of action, as shown in
Figure 1.
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Figure 1. Clinically used antifungals grouped according to their mechanism of action with the most 
common agents in practice as examples. 

Among all antifungals, only polyenes, flucytosine, azoles, and echinocandins are li-
censed for the treatment of invasive, life-threatening fungal infections (refer to Figure 2 
for chemical structures) [4]. Amphotericin B is the clinically used polyene that is preserved 
as a second-line agent due to its high nephrotoxicity, which can lead, in some cases, to 
kidney failure. Several lipid-incorporated formulations of amphotericin B were developed 
as an attempt to reduce its nephrotoxicity; however, the high cost of such formulations 
limits their utility. Nystatin is a polyene macrolide antifungal that is used topically or 
orally to treat oropharyngeal candidiasis (for local effect, as it is not absorbed via the oral 
route) [5]. The major drawbacks of the pyrimidine antifungal flucytosine are the rapid 
development of resistance and high toxicity, both hepatological and hematological [6]. 
Due to their fungistatic mode of action, azoles are associated with a high rate of resistance, 
yet their wide safety margin contributes to their popularity. Azoles include compounds 
with either imidazole moiety, such as clotrimazole, or triazole moiety, such as fluconazole. 
Among the classical antifungals, the echinocandins were the last to be discovered in 1970s, 
taking them 30 years to progress from bench to bedside, to be marketed later in the year 
2000 [7]. Although echinocandins have low rates of resistance, recently some fungi, espe-
cially non-albicans candida, started to develop resistance towards echinocandins by ac-
quiring mutations [8]. The long stagnant phase in antifungal development ended with The 
Food and Drug Administration (FDA) approval of tavaborole in 2014 (refer to Figure 2 for 
chemical structure). Tavaborole is the first oxaborole and first tRNA synthetase-inhibitor 
antifungal to be approved for clinical use. It exerts its antifungal activity by inhibiting the 
cytosolic leucyl-transfer RNA synthetase (LeuRS), which plays a vital role in protein syn-
thesis. It is licensed for topical use for the treatment of onychomycosis [9]. 
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Figure 1. Clinically used antifungals grouped according to their mechanism of action with the most
common agents in practice as examples.

Among all antifungals, only polyenes, flucytosine, azoles, and echinocandins are
licensed for the treatment of invasive, life-threatening fungal infections (refer to Figure 2
for chemical structures) [4]. Amphotericin B is the clinically used polyene that is preserved
as a second-line agent due to its high nephrotoxicity, which can lead, in some cases, to
kidney failure. Several lipid-incorporated formulations of amphotericin B were developed
as an attempt to reduce its nephrotoxicity; however, the high cost of such formulations
limits their utility. Nystatin is a polyene macrolide antifungal that is used topically or
orally to treat oropharyngeal candidiasis (for local effect, as it is not absorbed via the oral
route) [5]. The major drawbacks of the pyrimidine antifungal flucytosine are the rapid
development of resistance and high toxicity, both hepatological and hematological [6]. Due
to their fungistatic mode of action, azoles are associated with a high rate of resistance,
yet their wide safety margin contributes to their popularity. Azoles include compounds
with either imidazole moiety, such as clotrimazole, or triazole moiety, such as fluconazole.
Among the classical antifungals, the echinocandins were the last to be discovered in
1970s, taking them 30 years to progress from bench to bedside, to be marketed later in the
year 2000 [7]. Although echinocandins have low rates of resistance, recently some fungi,
especially non-albicans candida, started to develop resistance towards echinocandins by
acquiring mutations [8]. The long stagnant phase in antifungal development ended with
The Food and Drug Administration (FDA) approval of tavaborole in 2014 (refer to Figure 2
for chemical structure). Tavaborole is the first oxaborole and first tRNA synthetase-inhibitor
antifungal to be approved for clinical use. It exerts its antifungal activity by inhibiting
the cytosolic leucyl-transfer RNA synthetase (LeuRS), which plays a vital role in protein
synthesis. It is licensed for topical use for the treatment of onychomycosis [9].
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Figure 2. The chemical structures of amphotericin B (an example of a polyene); caspofungin (an 
example of an echinocandin); flucytosine; fluconazole (an example of an azole); and tavaborole. 

3. Novel Antifungals (In Clinical Settings) 
The previously mentioned limitations of available antifungals urge the need for novel 

agents that can overcome these problems. Novel antifungals include first-in-class agents, 
new structures for a known target, new derivatives/analogues in an established class of 
drugs, and modification to the formulations of approved agents, in addition to repur-
posed agents (refer to Figure 3). Obtaining first-in-class designation significantly speeds 
up approval process and in-return market availability. Chemistry-wise, new antifungals 
with new structures include cyclic peptides (hexapeptides such as rezafungin and VL-
2397 and depsipeptides such as aureobasidin A), triterpenoids (ibrexafungerp), tetrazoles 
(VT-1129, VT-1161, VT-1598), orotomides (olorofim), siderophores (VL-2397), and ar-
ylamidines (T-2307). Each agent will be discussed separately (ordered according to Figure 
3) with a focus on their chemical aspects. 

Figure 2. The chemical structures of amphotericin B (an example of a polyene); caspofungin (an ex-
ample of an echinocandin); flucytosine; fluconazole (an example of an azole); and tavaborole.

3. Novel Antifungals (In Clinical Settings)

The previously mentioned limitations of available antifungals urge the need for novel
agents that can overcome these problems. Novel antifungals include first-in-class agents,
new structures for a known target, new derivatives/analogues in an established class of
drugs, and modification to the formulations of approved agents, in addition to repurposed
agents (refer to Figure 3). Obtaining first-in-class designation significantly speeds up
approval process and in-return market availability. Chemistry-wise, new antifungals with
new structures include cyclic peptides (hexapeptides such as rezafungin and VL-2397 and
depsipeptides such as aureobasidin A), triterpenoids (ibrexafungerp), tetrazoles (VT-1129,
VT-1161, VT-1598), orotomides (olorofim), siderophores (VL-2397), and arylamidines (T-
2307). Each agent will be discussed separately (ordered according to Figure 3) with a focus
on their chemical aspects.
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chemical structures). Pre-clinical data show T-2307 as very potent antifungal and a per-
haps superior agent to azoles and polyenes in the treatment of invasive fungal infections 
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3.1. Aryldiamidines—T-2307

T-2307 is a first-in-class antifungal that exerts its fungicidal activity by inhibiting
respiratory chain complexes and thus disrupting mitochondrial membrane potential. It is
selectively transported into fungal cells through a polyamine transporter [10]. Structurally,
it is an aromatic diamidine that is structurally related to the antiprotozoal agent pentami-
dine with a characteristic plane of symmetry. Pentamidine is used to treat pneumocystis,
leishmaniasis, and trypanosomiasis by a similar mechanism (refer to Figure 4 for chemical
structures). Pre-clinical data show T-2307 as very potent antifungal and a perhaps superior
agent to azoles and polyenes in the treatment of invasive fungal infections [11]. Further
information on T-2307 activity is summarized elsewhere [12].
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3.2. Fosmanogepix and Manogepix

Fosmanogepix is the N-phosphonooxymethylene prodrug of manogepix (APX001A)
that is hydrolyzed by systemic phosphatases (refer to Figure 5 for chemical structures).
Manogepix was first identified during lead optimization studies to improve the potency
of 1-[4-butylbenzyl]isoquinoline, a hit structure found to suppress the expression of sur-
face glycosyl phosphatidylinositol (GPI)-mannoproteins, specifically the Gwt1 protein, in
Saccharomyces cerevisiae and Candida albicans, and subsequently inhibit their growth [13,14].
Therefore, manogepix is a first-in-class antifungal that inhibits the fungal Gwt1 protein.
Gwt1 is an enzyme that catalyzes inositol acylation, which is an early step in the glyco-
sylphosphatidylinositol (GPI)-anchor biosynthesis pathway [15]. In 2019, fosmanogepix
obtained orphan drug designation. Further information on fosmanogepix activity is re-
viewed elsewhere [16].
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3.3. Nikkomycin Z

The discovery of nikkomycin Z goes back to the 70s. Structurally, nikkomycin Z
resembles uridine diphosphate (UDP)-N-acetyl glucosamine, which is a precursor of
chitin, and, thus, nikkomycin Z is a competitive inhibitor of chitin synthase (refer to
Figure 6 for chemical structures) [17]. As a stand-alone drug, nikkomycin Z has poor
in vitro fungicidal activity against Candida. However, taking into consideration that chitin
is a major component of fungal cell walls, nikkomycin Z has synergistic activity with
other antifungal cell-wall inhibitors, such as echinocandins [18]. Further information on
nikkomycin activity is summarized elsewhere [19].

Pharmaceuticals 2021, 14, x FOR PEER REVIEW 5 of 21 
 

 

3.2. Fosmanogepix and Manogepix 
Fosmanogepix is the N-phosphonooxymethylene prodrug of manogepix (APX001A) 

that is hydrolyzed by systemic phosphatases (refer to Figure 5 for chemical structures). 
Manogepix was first identified during lead optimization studies to improve the potency 
of 1-[4-butylbenzyl]isoquinoline, a hit structure found to suppress the expression of sur-
face glycosyl phosphatidylinositol (GPI)-mannoproteins, specifically the Gwt1 protein, in 
Saccharomyces cerevisiae and Candida albicans, and subsequently inhibit their growth 
[13,14]. Therefore, manogepix is a first-in-class antifungal that inhibits the fungal Gwt1 
protein. Gwt1 is an enzyme that catalyzes inositol acylation, which is an early step in the 
glycosylphosphatidylinositol (GPI)-anchor biosynthesis pathway [15]. In 2019, fosmano-
gepix obtained orphan drug designation. Further information on fosmanogepix activity 
is reviewed elsewhere [16]. 

 
Figure 5. The chemical structures of (a) 1-[4-butylbenzyl]isoquinoline, (b) manogepix, and (c) 
fosmanogepix. 

3.3. Nikkomycin Z 
The discovery of nikkomycin Z goes back to the 70s. Structurally, nikkomycin Z re-

sembles uridine diphosphate (UDP)-N-acetyl glucosamine, which is a precursor of chitin, 
and, thus, nikkomycin Z is a competitive inhibitor of chitin synthase (refer to Figure 6 for 
chemical structures) [17]. As a stand-alone drug, nikkomycin Z has poor in vitro fungi-
cidal activity against Candida. However, taking into consideration that chitin is a major 
component of fungal cell walls, nikkomycin Z has synergistic activity with other antifun-
gal cell-wall inhibitors, such as echinocandins [18]. Further information on nikkomycin 
activity is summarized elsewhere [19].  

 
Figure 6. The chemical structures of (a) Nikkomycin Z and (b) Uridine Diphosphate (UDP)-N-acetyl 
glucosamine. 

3.4. Orotomides—Olorofim 
The orotomides are a new class of antifungals that exert their fungicidal activity via 

a novel mechanism of targeting dihydroorotate dehydrogenase, which is a vital enzyme 
in fungal pyrimidine biosynthesis. Subsequently, nucleic acid and phospholipid synthesis 
is disrupted [20]. One agent belonging to this new class is olorofim (F901318). Olorofim is 
a potent antifungal agent that has time-dependent activity against drug resistant Aspergil-
lus spp. and other uncommon molds with promising results in invasive and refractory 
fungal infections (refer to Figure 7 for chemical structure) [21]. Olorofim is 2000-fold more 

Figure 6. The chemical structures of (a) Nikkomycin Z and (b) Uridine Diphosphate (UDP)-N-acetyl
glucosamine.

3.4. Orotomides—Olorofim

The orotomides are a new class of antifungals that exert their fungicidal activity via a
novel mechanism of targeting dihydroorotate dehydrogenase, which is a vital enzyme in
fungal pyrimidine biosynthesis. Subsequently, nucleic acid and phospholipid synthesis is
disrupted [20]. One agent belonging to this new class is olorofim (F901318). Olorofim is a
potent antifungal agent that has time-dependent activity against drug resistant Aspergillus
spp. and other uncommon molds with promising results in invasive and refractory fun-
gal infections (refer to Figure 7 for chemical structure) [21]. Olorofim is 2000-fold more
selective toward fungal dihydroorotate dehydrogenase than the human enzyme homo-
logue [20]. Having a unique mechanism of action and potent antifungal activity against
hard-to-treat fungi granted olorifim orphan drug designation (ODD) by the U.S. Food and
Drug Administration (FDA) in March 2020 for the treatment of invasive aspergillosis and
Lomentospora/Scedosporium infections and later in June 2020 for the treatment of coccid-
ioidomycosis. Similarly, The European Medicines Agency Committee for Orphan Products
granted orphan drug status to olorofim for the treatment of invasive aspergillosis and rare
mold infections caused by Scedosporium spp. Further information on olorofim’s mechanism
of action, pharmacokinetic profile, and clinical efficacy is summarized elsewhere [22].
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3.5. Cyclic Peptides—VL-2397

VL-2397 (previously annotated as ASP2397) is a natural cyclic hexapeptide isolated
from Acremonium persicinum cultures [23]. It was identified as a potential antifungal while
screening various natural secondary metabolites in a silkworm infection model [23]. Struc-
turally, VL-2397 resembles fungal ferrichrome siderophores (high-affinity, iron-chelating
compounds secreted from microorganisms that serve as transporters to transport iron
across cell membranes) and enters the fungal cells through specific transporters known
as siderophore iron transporter 1 (Sit1) (refer to Figure 8 for chemical structures) [24]. Sit1
transporters are not present in mammalian cells, limiting possible toxicity to human cells.
Once inside the cell, VL-2397 disrupts important intracellular processes through unknown
mechanisms, and hence exerts its fungicidal activity [24].

Pharmaceuticals 2021, 14, x FOR PEER REVIEW 6 of 21 
 

 

selective toward fungal dihydroorotate dehydrogenase than the human enzyme homo-
logue [20]. Having a unique mechanism of action and potent antifungal activity against 
hard-to-treat fungi granted olorifim orphan drug designation (ODD) by the U.S. Food and 
Drug Administration (FDA) in March 2020 for the treatment of invasive aspergillosis and 
Lomentospora/Scedosporium infections and later in June 2020 for the treatment of coccidioi-
domycosis. Similarly, The European Medicines Agency Committee for Orphan Products 
granted orphan drug status to olorofim for the treatment of invasive aspergillosis and rare 
mold infections caused by Scedosporium spp. Further information on olorofim’s mecha-
nism of action, pharmacokinetic profile, and clinical efficacy is summarized elsewhere 
[22]. 

 
Figure 7. The chemical structures of olorofim. 

3.5. Cyclic Peptides—VL-2397 
VL-2397 (previously annotated as ASP2397) is a natural cyclic hexapeptide isolated 

from Acremonium persicinum cultures [23]. It was identified as a potential antifungal 
while screening various natural secondary metabolites in a silkworm infection model [23]. 
Structurally, VL-2397 resembles fungal ferrichrome siderophores (high-affinity, iron-che-
lating compounds secreted from microorganisms that serve as transporters to transport 
iron across cell membranes) and enters the fungal cells through specific transporters 
known as siderophore iron transporter 1 (Sit1) (refer to Figure 8 for chemical structures) 
[24]. Sit1 transporters are not present in mammalian cells, limiting possible toxicity to hu-
man cells. Once inside the cell, VL-2397 disrupts important intracellular processes 
through unknown mechanisms, and hence exerts its fungicidal activity [24]. 

 
Figure 8. The chemical structures of (a) VL-2397 and (b) ferrichrome siderophore. To better visualize 
the structural resemblance, common fragments with ferrochrome siderophore are highlighted in 
grey. 

3.6. Cyclic Peptides—Aureobasidin A 
Aureobasidin A is a natural cyclic depsipeptide isolated from the fungus Aureobasid-

ium pullulans R106 that targets the essential inositol phosphorylceramide (sphingolipid) 
synthase in fungi (refer to Figure 9 for chemical structure) [25]. Interestingly, this broad-
spectrum antifungal also exerts significant antiprotozoal activity against the proliferative 
tachyzoite form of Toxoplasma [26]. Structurally, Aureobasidin A consists of eight α-
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3.6. Cyclic Peptides—Aureobasidin A

Aureobasidin A is a natural cyclic depsipeptide isolated from the fungus Aureobasid-
ium pullulans R106 that targets the essential inositol phosphorylceramide (sphingolipid)
synthase in fungi (refer to Figure 9 for chemical structure) [25]. Interestingly, this broad-
spectrum antifungal also exerts significant antiprotozoal activity against the proliferative
tachyzoite form of Toxoplasma [26]. Structurally, Aureobasidin A consists of eight α-amino
acid units and one hydroxy acid unit. Upon acid hydrolysis, Ikai and colleagues identi-
fied these units to be 2(R)-hydroxy-3(R)-methylpentanoic acid, beta-hydroxy-N-methyl-
L-valine, N-methyl-L-valine, L-proline, allo-L-isoleucine, N-methyl-L-phenylalanine, L-
leucine, and L-phenyl-alanine [25]. Several Aureobasidin A analogues have been prepared
by Kurome and colleagues. They found that analogues with 4–6 carbon chain ester deriva-
tives at the γ-carboxyl group of Glu6 or aIle6 exhibited the best antifungal activity [27].
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3.7. MGCD290

MGCD290 (chemical structure is not presented in the literature) is an oral fungal
Hos2 histone deacetylase (HDAC) inhibitor that also targets non-histone proteins, such
as Hsp90, all of which play important roles in gene regulation [28]. Interfering with such
fungal proteins suppresses fungal stress responses, which favors the use of MGCD290 as
an adjuvant therapy to cell wall/membrane inhibitors [29]. Despite the in vitro synergic
activity between MGCD290 and azoles/echinocandins, MGCD290 failed to show clinical
importance in clinical settings, and hence its further development was suspended after a
phase II clinical trial [28,30].

3.8. Tetrazoles

Tetrazoles are a new azole-like group bearing difluoromethyl-pyridines moiety, in-
cluding the agents VT-1129 (quilseconazole), VT-1161 (oteseconazole), and VT-1598 (refer
to Figure 10 for chemical structures). Tetrazoles are more selective to fungal CYP51 (lanos-
terol demethylase) rather than human enzymes, unlike triazoles, and hence have lower
side effects and drug–drug interactions than triazoles [31]. VT-1161 and VT-1598 form
H-bonds with the His377 of Candida albicans CYP51 and with the His374 of Aspergillus
fumigates CYP51B [32]. The rationale behind the design of tetrazoles by W. J. Hoekstra et al.
was to replace the metal binding group in triazoles (MBG, which is triazole) which has
strong MBG/metal interaction with another MGB that has weaker MBG/metal interaction
(tetrazole), as an attempt to improve selectivity. VT-1129 is a potent oral inhibitor for Cryp-
tococcus species, including drug resistant strains with half-lives of six days [33]. VT-1161
is being investigated as a promising antifungal agent against both fluconazole-sensitive
and fluconazole-resistant Candida albicans with clinical application in treating tinea pedis,
onychomycosis, and vaginal candidiasis [34]. VT-1161 has half-life of 48 h [34]. VT-1598
was found to have anticandidal activity, especially against Candida auris [35].
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3.9. Triterpenoids—Ibrexafungerp

During high-throughput screening of natural products produced by endophytic fungi,
enfumafungin was identified as a promising antifungal hemiacetal triterpenoid glycoside.
Structural modifications to improve pharmacokinetic properties and, most importantly,
oral bioavailability led to the development of the semi-synthetic derivative ibrexafungerp
(previously known as SCY-078 or MK-3118) (refer to Figure 11 for chemical structure).
Ibrexafungerp exerts its antifungal activity, similarly to echinocandins, via inhibiting β-
glucan synthase, yet it has a distinct chemical structure. It is fungicidal against Candida spp.
and fungistatic against Aspergillus spp. [36]. Echinocandins are administered intravenously
due to their poor per oral stability, which necessitates switching the patient to an oral,
and perhaps less potent, antifungal upon discharge. Nevertheless, there is the emerging
problem of resistance that urges the need for a safer agent that can be administered at
higher doses. Thus, being an orally administered agent, ibrexafungerp is superior to known
echinocandins when it comes to patients’ convenience.
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3.10. Triazoles

Since they are the most widely used antifungal class, there were several attempts to
improve the efficacy of triazoles. Isavuconazonium sulfate is a water-soluble prodrug of
isavuconazole, suitable for both oral and IV administration [37]. The [N-(3-acetoxypropyl)-
N-methylamino]-carboxymethyl group is linked by an ester functionality to the triazole
nitrogen of isavuconazole. The prodrug is cleaved by human plasma esterases releasing
isavuconazole and low levels of cleavage by-product (refer to Figure 12) [38]. Isavuconazole
has long half-life, broad spectrum of activity, and good efficacy [38]. It was FDA approved
in 2015 for the treatment of aspergillosis and invasive mucormycosis.
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Figure 12. Hydrolysis reaction of the prodrug (a) isavuconazonium by mammalian plasma esterases
to yield, (b) isavuconazole, and (c) by-product.

Albaconazole is another 7-chloro triazole under development for the treatment of acute
candida vulvovaginitis and onychomycosis (refer to Figure 13 for chemical structure). It
has improved pharmacokinetic properties that resulted in excellent oral bioavailability [39].
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Iodiconazole is a new topical triazole for the treatment of dermatophytosis in humans
(refer to Figure 13 for chemical structure). It has a broad spectrum and potent activity
against different fungal strains [40].
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3.11. BSG005

BSG005 is a natural antifungal isolated from Streptomyces noursei. Structurally, BSG005
is an improved version of the polyene nystatin A (heptaene nystatin analogue) (refer
to Figure 14 for chemical structures) [41]. It exerts fungicidal activity against a wide
range of fungal strains, including azole- and echinocandin- resistant Aspergillus spp. and
Candida spp., by a similar mechanism to nystatin. BSG005 does not cause nephrotoxicity,
overcoming the main drawback of polyenes [41].
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3.12. Cyclic Peptides—Rezafungin

Rezafungin (previously known as CD101) is a novel echinocandin, another cyclic
hexapeptide derivative. It is an analogue of the echinocandin anidulafungin obtained
by replacing the hemiaminal region at the C5 ornithine position of anidulafungin with
choline ether (refer to Figure 15). This chemical modification led to an increased stability
towards host degradation and subsequently prolonged the half-life, allowing once-weekly
dosing [42]. When incubated in human plasma for 44 h at 37 ◦C, rezafungin showed a
stability of 79–94%, while anidulafungin had 7–15% stability [43]. The prolonged pharma-
cokinetic property of rezafungin prolonged tissue exposure and hence permitted the use
of rezafungin in prophylaxis regimens instead of the regular azoles [44]. This additional
choline ether prevented the formation of toxic intermediates, favoring rezafungin safety
and allowing its administration at higher doses to prevent resistance [43].
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3.13. SUBA Itraconazole

Super-bioavailability-itraconazole (SUBA itraconazole) overcame the low bioavail-
ability issue of itraconazole by dispersing itraconazole in a pH-dependent polymer matrix
as capsules. This change to the formulation increased the bioavailability of itraconazole
by 173% [45]. SUBA itraconazole was granted FDA approval in 2018 for the treatment of
aspergillosis, histoplasmosis, and blastomycosis in patients with contraindications to the
use of amphotericin B (intolerant or refractory).

3.14. Topical Terbinafine Solution

Oral terbinafine is a gold-standard treatment for onychomycosis; however the treat-
ment is lengthy, as it takes terbinafine a long time to concentrate in the nail plate and bed, in-
creasing the potential for the development of systemic side effects and resistance. One solu-
tion was to prepare terbinafine as a solution for topical use (MOB-01) [46]. Pharmacokinetic
studies showed that, when compared with oral terbinafine, topical terbinafine achieves
higher concentrations in the nail plate (≈10,003 times more) and nail bed (≈403 times more)
with limited or no systemic absorption. Similar examples include two new ophthalmic
solutions for the treatment of candida infections; one containing hexamidine diisethionate
0.05% (keratosept) [47], and the other containing povidone-iodine 0.6% (IODIM®) [48].

3.15. Amphotericin B Cochleate

Amphotericin B cochleate is a polyene formulation of amphotericin B that is stable
against gastric degradation and hence is suitable for oral administration [49]. Cochleates
are made up of phosphatidylserine with phospholipid-calcium precipitates in a multilayer
system that has spiral configuration. When the cochleates reach the blood stream, the
spiral structure opens once the calcium concentration drop in the cochleate, releasing the
encapsulated amphotericin B [49]. The possibility to administer amphotericin B via the oral
route overcame infusion-related complications and offered a practical, patient-convenient,
broad-spectrum antifungal treatment.

3.16. Metal Complexes and Chelates

Metal complexes may be a novel promising class of antifungals due to improved prop-
erties, especially those related to stereochemistry, redox potential, and lipophilicity [50].
Such an approach may provide an easy solution to overcome the issue of fungal resis-
tance. Successful examples of established antifungals complexed with metal ions include
organoruthenium complexes conjugated with three different azoles (namely clotrimazole,
tioconazole, and miconazole) reported by Kljun et al. [51]. The resulting mono-, bis-, and
tris–azoles complexes had millimolar inhibitory concentrations against Culvularia lunata.
Another example is reported by Stevanovic et al., who showed that a fluconazole zinc
(II) complex had significantly better antifungal activity against Candida krusei and Candida
parapsilosis than fluconazole [52]. Other new metal coordinates, not complexed with known
antifungals, are at preclinical stages [53,54]. On the other hand, Polvi and colleagues
screened a library of pharmacologically active compounds that do not themselves possess
antifungal activity as an attempt to identify compounds that can potentiate the efficacy
of caspofungin against echinocandin-resistant Candida albicans strains. They identified
the broad-spectrum chelator diethylenetriamine pentaacetate (DTPA) as a promising com-
pound that synergizes with capsofungin (refer to Figure 16 for chemical structure). They
justified this potentiating activity of DTPA by magnesium chelation [55]. The potential of
metal-based compounds as antifungals is thoroughly reviewed elsewhere [56].
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The current status for each of the antifungals discussed in this review, including the
name of companies and clinical trial registration numbers, are summarized in Table 1
below.

Table 1. The spectrum of activity, route of administration, production company, and current status of antifungals in clinical
development. Clinical registration numbers were obtained from www.clinicaltrials.gov (accessed on 26 November 2021).

Agent Spectrum of
Activity

Route of
Administration Company/Sponsor Current Status

Clinical Trial
Registration

Number

T-2307 Broad spectrum IV Toyama Chemical
Ltd.

Phase I completed (as
stated in [57], but no

actual data available in
the literature)

Not available

Fosmanogepix

Candida spp.
(except C. krusei)
and Aspergillus

spp.

PO/IV Amplyx
Pharmaceuticals Phase II recruiting NCT04240886

Nikkomycin Z Candida spp. and
Aspergillus spp. PO University of

Arizona

Phase I completed;
however lack of

funding and
volunteers caused the
termination of phase II

studies

NCT00834184

Olorofim
Aspergillus spp.
and uncommon

molds
PO/IV F2G Ltd.

Phase II
Phase III planned (not

yet recruiting)

NCT03583164
NCT05101187

VL-2397
Aspergillus spp.

and some Candida
spp.

IV Vical
Biotechnology

No current
development plans

(phase II trial
terminated early,

because of a business
decision)

NCT03327727

Aureobasidin A

Board spectrum
and proliferative

tachyzoite form of
toxoplasma

(antiprotozoal)

PO/IV Takara Bio Group Preclinical Not available

MGCD290 Candida spp. and
Aspergillus spp. PO MethylGene, Inc.

Further development
suspended after phase

II clinical trial
NCT01497223

VT-1129 Candida spp. and
Cryptococus spp. PO

Viamet
Pharmaceuticals

Inc.
Preclinical Not available

VT-1161
Candida spp.,

coccidioides spp.,
and Rhizopus spp.

PO Mycovia
Pharmaceuticals Phase III completed NCT03561701

www.clinicaltrials.gov
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Table 1. Cont.

Agent Spectrum of
Activity

Route of
Administration Company/Sponsor Current Status

Clinical Trial
Registration

Number

VT-1598

Candida spp.,
Aspergillus spp.,
and Cryptococus

spp.

PO

Mycovia
Pharmaceuticals

Clinical trial
sponsored by

National Institute
of Allergy and

Infectious Diseases
(NIAID)

Phase I NCT04208321

Ibrexafungerp Candida spp. and
Aspergillus spp. PO/IV Scynexis, Inc. Phase III NCT03059992

Isavuconazole Broad spectrum
PO

(Isavuconazonium
sulfate PO/IV)

Basilea and
Astellas

Clinical trials
sponsored by

Memorial Sloan
Kettering Cancer
Center and M.D.

Anderson Cancer
Center,

respectively.

Phase II trials
completed

FDA approved in 2015
for the treatment of

aspergillosis and
invasive

mucormycosis

NCT03149055
NCT03019939

Albaconazole Broad spectrum PO
Palau Pharma
Clinical trial

sponsored by GSK
Phase II completed NCT00730405

Iodiconazole Broad spectrum Topical

Second Military
Medical University

and Anhui Jiren
Pharmaceutical

Phase III (as stated in
[58], but no actual data

available in the
literature)

Not available

BSG005 Broad spectrum IV Biosergen AS Phase I NCT04921254

Rezafungin

Candida spp.,
Aspergillus spp.,

and Pneumocystis
jirovecii

IV Cidara
Therapeutics, Inc. Phase III NCT03667690

NCT04368559

SUBA-
itraconazole Broad spectrum PO Mayne Pharma

Ltd.

Phase II
FDA approved in 2018

for the treatment of
aspergillosis,

histoplasmosis, and
blastomycosis in

patients
contraindicated to

amphotericin B

NCT03572049

Topical
terbinafine

solution
Onychomycosis Topical 10%

solution Moberg Pharma Phase III NCT02859519

Amphotericin B
cochleate Broad spectrum PO Matinas

BioPharma Phase II NCT02629419

4. New Compounds as Potential Antifungals (In Preclinical Stages)

Several research groups, both in academia and the industry, are focused on developing
new, potentially active antifungals. We will briefly mention some of the most recent
(published in 2021), successful synthetic efforts from academia (refer to Table 2 for general
structures).
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Ravu and colleagues recently reported the synthesis and in vitro antifungal evaluation
of a series of phloeodictine analogues [59]. Phloeodictines are marine-derived alkaloids,
and the phloeodictine-based 6-hydroxy-2,3,4,6-tetrahydropyrrolo[1,2-a]pyrimidinium moi-
ety with an n-tetradecyl side chain at C-6 has shown antifungal activity and serves as a
template for further derivatization. They identified three promising analogues (compounds
24, 36, and 48 in the original paper) with potent activity (MIC ≈ 1 µM) against Candida
neoformans and low toxicity against mammalian Vero cells (IC50 > 40 µM) [59].

Choi et al. tested their in-house library where they identified a 2-amino-N-(2-(3,4-
dichloro-[1,1-biphenyl]-4-yl)ethyl)-pentanamide hydrochloride (compound 22h in the origi-
nal paper) as a promising hit with potent, fast fungicidal activity against Candida neoformans
(MIC ≈ 2.5 µM) and Candida albicans (MIC ≈ 5 µM) [60]. The latter compound also showed
synergistic in vitro activity with clinically available antifungals and potent in vivo efficacy
in a subcutaneous infection mouse model and an ex vivo human nail infection model. The
authors claim that their hit compound exerts its antifungal activity by interfering with
fungal cell wall integrity.

On the other hand, Kato et al. prepared thiazoyl guanidine derivatives that inhibit
fungal ergosterol biosynthesis [61]. Their hit compound N-(2′-(4-(methylsulfonyl)phenyl)-
[4,4′-bithiazol]-2-yl)-tetrahydropyrimidin-2(1H)-imine (compound 6h in original paper)
is structurally related to the antifungal abafungin and showed potent in vitro antifungal
activity against Aspergillus fumigatus (MIC = 4.7 µM) with a favorable pharmacokinetic
profile. In addition, the latter compound exhibited antifungal activity comparable to
voriconazole in a murine model of Aspergillus fumigatus infection.

Furthermore, Li and colleagues prepared a series of carboline fungal histone deacety-
lase (HDAC) inhibitors in an attempt to develop a promising compound for the com-
binational treatment of azole-resistant candidiasis [62]. Among all synthesized com-
pounds, 2-(4-(3-(8-chloro-1,2,3,4-tetrahydro-9H-pyrido[3,4-b]indol-9-yl)propoxy)phenyl)-
N-hydroxyacetamide (compound D12 in original paper) showed excellent in vitro and
in vivo synergistic antifungal activity with fluconazole to treat azole-resistant candidiasis.

Fungal fatty acid (FA) synthase and desaturase (responsible for introducing double
bonds to yield unsaturated FAs) are essential enzymes for the growth and virulence of
fungal pathogens [63]. They are structurally distinct from their mammalian homologues,
making them suitable targets for antifungal development. DeJarnette et al. performed
whole-cell screening using Candida albicans with varying levels of FA synthase or de-
saturase [64]. They identified four acyl hydrazides as the most promising candidates
(compounds 2, 40, 41, and 48 in the original paper) with broad-spectrum activity against
Candida albicans, Candida auris, and mucormycetes, including activity against azole-resistant
Candida and low in vitro cytotoxicity in HepG2 liver cancer cell line.

Lastly, Lowes and colleagues designed and synthesized dual inhibitors targeting
fungal acetohydroxy-acid synthase and NLRP3 inflammasome [65]. Their design rationale
was based on the structural similarities between the two types of inhibitors. Fungal
acetohydroxy-acid synthase is the common enzyme in the branched-chain amino acid-
synthesis pathway [66], while NLRP3 inflammasome is a mammalian cytosolic receptor that
mediates innate inflammatory responses to offending fungi by releasing mature interlukein-
1 beta (IL-1β) upon activation [67]. The authors established the essential molecular scaffold
required for dual activity for the first time, which shall serve as a template for future
synthetic efforts. Among their prepared inhibitors, they identified 2-((1-(4-fluorophenyl)-3-
oxo-3-phenylpropyl)thio)benzoate (compound 10 in original paper) as the most promising
dual inhibitor, since it significantly decreased IL-1β release (IC50 = 2.3 ± 0.8 µM) without
affecting mammalian cell viability (viability = 101.5 ± 1.4%) and exerted potent in vitro
antifungal activity against Candida albicans (MIC = 6.4 ± 2.6 µM).
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Table 2. The general structures of some of the most recent (published in 2021), successful synthetic efforts from academia.

Structural Type General Structure * Target Ref.
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* Adapted with permission from refs. [59–62,64,65]. Copyright 2021 American Chemical Society.

Aside from the mentioned small molecules with intracellular targets, membrane-
interacting antifungal antimicrobial peptides (AMPs) are another example of a promising
class of antifungals. AMPs generally consist of 12 to 54 amino acids with a net positive
charge at physiological pH [68]. They are amphipathic in nature, which enhances their
interaction with target membranes [69]. Since they target fungal plasma membranes or cell
walls, they have the advantage of avoiding intracellular resistance mechanisms. AMPs
are selective, with multiple modes of action (for example interaction with membrane
phospholipids, sphingolipids, or proteins), and low toxicity to mammalian cells. Detailed
information on antifungal AMPs has recently been reviewed elsewhere [70].

In addition, several studies were conducted to explore the role of essential oils in
treating fungal infections. In their recent work, Donadu et al. investigated the antifungal
activity of the essential oil of the Colombian rue, Ruta graveolens (REO) [71]. They found
that REO exerts fungicidal activity against Candida tropicalis and fungistatic activity against
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Candida albicans by disrupting cellular membrane integrity. REO also showed synergistic
activity with amphotericin B [71]. Furthermore, an oil macerate of Helichrysum microphyllum
Cambess. subsp. tyrrhenicum Bacch., Brullo & Giusso showed potent inhibiting activity on
candida growth, making it a promising agent to be used topically in the treatment of
candidiasis [72]. Another example is the essential oil of Austroeupatorium inulaefolium, which
showed strong species-dependent antifungal activity against Penicillium brevicompactum
and Fusarium oxysporum [73].

5. Repurposing

Repurposing established drugs with possible antifungal activity and pushing them
into the antifungal development pipeline saves time and resources, especially given that
the pharmacokinetic and pharmacodynamic profiles are already known for such agents.
The most promising candidates to be used in antifungal regimens are the selective estrogen
receptor modulator tamoxifen (used for breast cancer) and the serotonin reuptake inhibitor
sertraline (used for depression) (refer to Figure 17 for chemical structures). Tamoxifen
showed anticryptococcal activity and may be a promising synergistic agent with flucona-
zole [74]. The most advanced repurposing attempt is for sertraline. An ongoing phase III
trial is investigating the role of sertraline as an adjuvant therapy to the standard treatment
for cryptococcal meningitis (NCT01802385). Furthermore, AR-12 is a celecoxib derivative
that was assessed for safety in a phase I oncology clinical trial (refer to Figure 16 for chemi-
cal structure). However, it showed consistent antifungal activity against certain yeasts and
molds, and thus it was repurposed as a promising adjuvant therapy to fluconazole in the
treatment of invasive fungal infections [75].
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6. Immunotherapy

Immunotherapy is a new promising strategy to modulate the host immune system
and strengthen the innate and adaptive immune response to fight fungal infections. Im-
munotherapy approaches in treating fungal infections include the administration of recom-
binant growth factors and cytokines, granulocyte and granulocyte-macrophage colony-
stimulating factors, and antibodies. Immunocompromised patients can also benefit from
cell therapy, during which innate and adaptive immune cells are introduced to enhance
the immune response against the offending fungi. In this review we will focus on anti-
fungal antibodies, which are also known as antifungal passive immunotherapy. Other
immunotherapy approaches are reviewed elsewhere [76].

Currently, there only two antifungal antibodies in clinical development. MAb 2G8 is a
monoclonal antibody that targets laminarin (consisting mainly of β glucans). It binds to the
walls of Candida albicans and Cryptococcus neoformans, inhibiting their growth and capsule
formation [77]. Mambro and colleagues reported the development of a new humanized
monoclonal antibody derived from MAb 2G8 that specifically targets β-1,3 glucans of
pathogenic fungi, such as Candida spp. [78]. The new derivative showed potent in vitro
antifungal activity against Candida auris.

Efungumab (also known as mycograb) is a single-chain variable-fragment antibody
that targets heat shock protein 90 (HSP90). Efungumab was tested in combination with
amphotericin B in clinical settings, where it showed a reduction in the mortality and an
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improvement in the survival of patients infected with Candida. It must be noted that
efungumab was also investigated in clinical trials as an adjuvant to docetaxel in patients
with breast cancer (NCT00217815).

One step beyond antifungal antibodies is radio-immunotherapy, where the antifungal
antibody is linked to radioisotopes in order to specifically release fungicidal radiation
in fungal cells [79]. This approach showed promising results in treating drug-resistant
Cryptococcus neoformans infections [79].

7. New Promising Targets for Antifungal Development

Their classification as eukaryotes makes fungal infections a more challenging condition
to treat in the drug discovery pipeline. It is important to discover unique targets that are
present in fungi and not in humans in order to improve the selectivity and subsequently the
safety profile of such agents. One interesting approach to discover new antifungals is what
Novartis did by screening their chemical dark matter database for potential antifungals.
Chemical dark matter libraries include molecules that have no bioactivity in human targets
and thus are of increased value in screening for active molecules against other eukaryotes.
During their screening campaign, Novartis have identified a novel antifungal agent and a
novel fungal target pathway, which is hemebiosynthesis. The identification of molecular
targets opened the window for medicinal chemists to design inhibitors following a target-
based drug design approach.

Another example of a new, promising fungal pathway for antifungal drug develop-
ment is a sphingolipid synthesis pathway. Sphingolipid synthesis is highly preserved
among eukaryotes; however, a number of vital structures are unique to fungi, making them
promising treatment targets. In fungi, sphingolipids such as inositolphosphoryl ceramide
(IPC) and glucosylceramide (GlcCer) play an important role in fungal pathogenicity and
fungal growth [80]. Structures that inhibit the enzymes responsible for the synthesis of the
latter two sphingolipids were found to disrupt the virulence of Candida albicans, Crypto-
coccus neoformans, and Aspergillus spp. [81,82]. Promising pre-clinical molecules targeting
sphingolipid biosynthesis include sphingosine N-acyltransferase (e.g., australifungin) [83],
IPC inhibitors (e.g., the antifungal non-glycosidic macrolide galbonolide A (also known
as rustmicin)) [84], GlcCer synthase inhibitors (e.g., D-threo-PDMP) [81], and GlcCer in-
hibitors (e.g., BHBM) [85], among others (refer to Figure 18 for chemical structures). For
such agents, human toxicity is of great concern, except for IPC inhibitors, since mammals
do not express IPC [80].
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targets shall be of great benefit, especially in treating cryptococcosis caused by Cryptococcus
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neoformans or Cryptococcus gattii in immunocompromised patients with HIV, since such
inhibitors are also antiretrovirals. In addition to identifying a new promising target, the
authors identified promising inhibitors derived from an N-terminally carboxybenzylated
phenylstatine scaffold (refer to Figure 18e for general structure). Other fungal targets,
such as the Ras pathway, trehalose pathway, metabolic glyoxylate cycle, high-osmolarity
glycerol pathway, etc., are also under investigation.

8. Conclusions and Remarks

When comparing older antifungals with the newer ones mentioned in this review, one
can sense the influence of the powerful recent advances in structural biology and medicinal
chemistry on phenotypic target discovery, drug discovery, and target-based drug design.
It must be noted that in order to truly evaluate the efficacy of new antifungals in treating
life-threatening infections, infection-specific biomarkers should be relied on rather than
death as an endpoint, since such targeted patients have multiple health comorbidities.
By doing so, we ensure that no potential hit is lost as a false negative. One important
observation from the examples of antifungals in development mentioned earlier in text is
the presence of halogen atoms, especially fluorine and chlorine, in their chemical structures.
This suggests the significant importance of halogen bonding for the interactions with their
corresponding targets.
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