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prognosis of patients with osteosarcoma 
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H I G H L I G H T S  

• Cuproptosis-related lncRNAs prognostic model demonstrated exceptional prognostic efficacy for osteosarcoma patients. 
• The biological function of identified differentially expressed genes with cuproptosis-related lncRNAs’ risk model was closely related to the PI3K-Akt pathway. 
• Cuproptosis-related lncRNAs were associated with osteosarcoma CAFs. 
• Erlotinib, MP470, and WH-4-023 might potentially effectively target the PI3K-Akt pathway drugs for OS.  

A R T I C L E  I N F O   

Keywords: 
Osteosarcoma 
lncRNA 
Cancer-associated fibroblasts 
Cuproptosis 
Prognoses 

A B S T R A C T   

Background: Osteosarcoma is the most common primary pediatric and adolescent bone malignancy. An imbal-
ance in copper homeostasis caused by copper ion accumulation could increase intracellular toxicity and regulate 
cancer cell growth. This study aimed to identify long non-coding RNAs (lncRNAs) associated with cuproptosis to 
predict prognosis and target drug use to improve patient survival. 
Methods: RNA sequencing and relevant clinical information of ninety-three osteosarcoma patients were obtained 
from the TARGET database. We then identified thirteen prognostic cuproptosis-related lncRNAs(CRLncs) using 
coexpression and univariate Cox analyses. The prognostic risk model with three CRLncs was constructed using 
the least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression analysis. Patients 
were divided into low-risk and high-risk subgroups using the median risk score. The tumor microenvironment 
(TME) and immune status of identified subgroups were analyzed using ESTIMATE, CIBERSORT, MCP-counter, 
xCELL, EPIC, and ssGSEA analyses. Functional analyses were conducted to elucidate the underlying mecha-
nisms, including GO, KEGG, GSVA, and GSEA analyses. Also, the relationships between the model, tumor im-
munity, and drug sensitivity were explored. Lastly, the expression level of ZNF37BP, AL353759.1, and 
AC005034.5 was validated in vitro. 
Results: We constructed a model containing three CRLncs (ZNF37BP, AL353759.1, and AC005034.5) and vali-
dated its excellent prognostic and predictive power. The AUC curves for 1-year, 3-year, and 5-year survival 
probabilities were 0.76, 0.84, and 0.89, respectively. Patients in the high-risk group had a shorter overall survival 
(OS) time than those in the low-risk. The stroma score and cancer-associated fibroblasts (CAFs) were significantly 
higher in the low-risk group. Immune cells such as T cells CD4 naive, T cells gamma delta, NK cells resting, 
dendritic cells resting, and mast cells activated were significantly upregulated in the high-risk group. Based on 
functional analyses, the PI3K-Akt pathway was identified as a critical metabolic pathway in osteosarcoma. 
Additionally, we obtained three potentially effective drugs for OS: erlotinib, MP470, and WH-4-023 targeting the 
PI3K-Akt pathway. The expression level of ZNF37BP was significantly elevated in OS cell lines than in normal 
osteoblast hFOB1.19 cells, and that of ATP7A, LIPT1, AL353759.1, and AC005034.5 were decreased consider-
ably in OS cell lines. 
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Conclusion: Cuproptosis-related lncRNAs are correlated with the CAFs of osteosarcoma, and this could serve as a 
foundation for OS survival prediction and treatment.   

1. Introduction 

Osteosarcoma is the most common primary pediatric and adolescent 
bone malignancy [1]. A high mortality rate is associated with this type of 
cancer, especially among patients with lung metastases and resistant to 
treatment. Currently, neoadjuvant chemotherapy and surgery are the 
primary treatments for osteosarcoma [2]. However, there has been little 
progress in improving survival outcomes for osteosarcoma patients in 
the past three decades. Hence, exploring new targets and features for 
improving patients’ clinical efficacy and survival with OS is imperative. 

The tumor microenvironment (TME) plays a crucial role both in 
tumor progression and in therapy response [3]. Increasing evidence 
suggests that the bone microenvironment affects osteosarcoma metas-
tasis. In the TME, stromal cells, especially cancer-associated fibroblasts 
(CAFs), which are significant components of the tumor microenviron-
ment, play pivotal roles in tumor progression [4]. Although the CAFs are 
thought to be associated with osteosarcoma TME, research is lacking. 
Novel markers associated with CAFs characteristics of OS that could 
predict outcomes and assist in patient management are urgently needed. 

Cuproptosis, a recently discovered mode of cell death, is distinct 
from ferroptosis, necroptosis, and apoptosis [5]. Excess copper in the 
cell binds to lipoylated components of the tricarboxylic acid(TCA) cycle, 
triggering proteotoxic stress and death of the cells [6]. It provides new 
insights into regulating intracellular copper levels in cancer treatment 
[7]. Meanwhile, several copper-containing coordination compounds are 
promising antitumor agents [8]. Emerging evidence has demonstrated 
that lncRNAs are crucial regulators of osteosarcoma development, pro-
gression, and invasion [9]. Deregulated expression of lncRNAs has been 
found to participate in the regulation of various signaling transduction 
pathways. 

In this study, we developed a prognostic cuproptosis-related lncRNA 
model that could robustly predict survival time for OS patients and was 
associated with CAFs for osteosarcoma. We may provide new clues 
regarding molecular mechanisms underlying osteosarcoma, shedding 
new light on treatment strategies and promoting the individual-based 
treatment of osteosarcoma. 

2. Materials and methods 

2.1. Data collection and screening Cuproptosis–Related genes 

RNA-sequencing (RNA-seq) data and corresponding clinical infor-
mation (Table 1) were obtained from the Therapeutically Applicable 
Research to Generate Effective Treatments (https://ocg.cancer.gov/pro 
grams/target). The lncRNA and mRNA expression profiles were 
extracted from the expression data of ninety-three osteosarcoma pa-
tients. All gene expression levels were normalized using log2 (TPM + 1). 
Thirteen cuproptosis-related genes（CRGs)were obtained from a previ-
ous report [5] and the Molecular Signatures Database (MSigDB) gene 
sets [10]. OS-related CRGs were determined by intersecting the CRGs 
with genes from the TARGET-OS transcriptome data. 

2.2. Screening Cuproptosis–Related LncRNAs and Construction of the 
coexpression network 

We used the “limma” package to perform coexpression analysis of 
the expression CRGs to lncRNAs to obtain the CRLncs matrix, and 
“ggalluvial” was used to plot the Sankey relationship between CRGs and 
CRLncs by Pearson’s correlation analysis (|Pearson R| >0.5 and p <
0.001). 

2.3. Risk model construction and validation 

By using the survival package in R, we calculated the hazard rat 
through univariate Cox regression(uniCox) analysis of CRGs and CRLncs 
associated with OS prognosis. The performed least absolute shrinkage 
and selection operator regression (LASSO-Cox) analysis was then con-
ducted on the prognosis-related CRLncs screened by uniCox analysis to 
prevent overfitting. An optimal value was determined by the minimum 
lambda. In addition, an analysis of multivariate Cox regression(multi-
Cox) was performed to determine the risk model’s CRLs. The CRLncs 
prognostic signature score was calculated as follows: Risk Score = Σ (βi 
× Expi) (β: coefficients, Exp: lncRNA expression level). Since few oste-
osarcoma datasets contain CRLs, we randomly divided the samples with 
survival data into a test set and a training set using the “caret” package. 
We developed a risk prognosis model for the total sample, training 
group, and test group. According to the median CRL risk scores, we 
divided all samples into high- and low-risk groups. Kaplan-Meier sur-
vival analysis was performed by “survivor” and “survminer” packages to 
compare patients’ overall survival(OS) time between high-risk and low- 
risk groups. Time-dependent receiver operating characteristic(ROC) 
analysis of OS was used to assess the sensitivity and accuracy of the 
predictive model by the “ timeROC ” package. The principal component 
analysis(PCA), t-distributed stochastic neighbor embedding(t-SNE), and 
uniform manifold approximation and projection(UMAP) analysis of all 
osteosarcoma samples were performed to observe whether the model 
could distinguish OS patients into high- and low-risk groups accurately. 

2.4. Establishment of CRLncs prognostic nomogram for osteosarcoma 

We integrated clinical characteristics(age, gender, and tumor 
metastasis) and the CRLncs signature risk score to investigate the in-
dependent prognostic factors via univariate and multivariate Cox 
regression. We then developed a prognostic nomogram based on these 
independent prognostic factors to predict 1-, 3-, and 5-year overall 
survival. Model calibration was performed using the calibration plot. 

2.5. Functional enrichment analysis and KEGG pathway network 
construction 

Differentially expressed genes(DEGs) between the high-risk and low- 
risk groups were identified (|log2(fold change)|>1.5 and FDR < 0.05) 
with the “limma” R package and functionally annotated based on the 
Gene Ontology(GO) and the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) with the “clusterProfiler” R package(p < 0.05, and FDR < 0.25), 
and was visualized in Metascape [11]. Many pathways are involved in 
the complex pathogenesis of DEGs; hierarchical relations and connec-
tivity relations are among these pathways. In order to explore the 
possible core pathways of DEGs, we further used Cytoscape software to 
construct a pathway-pathway network with KEGG pathway enrichment 
terms. 

2.6. Assessment of immune cell infiltration and immune 
microenvironment 

In exploring the differences in immune cell infiltration in the two risk 
groups of osteosarcoma patients, we simultaneously utilized five algo-
rithms(ESTIMATE, CIBERSORT, MCP-counter, xCELL, and EPIC) to es-
timate the immune cell infiltration. We also performed the ssGSEA 
algorithm to quantify the immune functions. Finally, TIDE(tumor im-
mune dysfunction and exclusion) algorithm (https://tide.dfci.harvard. 
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edu/) was used to predict response to immunotherapy and the CAF 
proportion in the low- and high-risk score subgroups [12]. 

2.7. Drug sensitivity prediction 

R packages of “limma,” “ggpubr,” and “pRRophetic” were used to 
predict potential chemotherapeutic agents to treat OS on high- and low- 
risk OS subgroups, with an initial screening criterion of p < 0.001 [13]. 

2.8. Cell culture 

The human fetal osteoblast cell line(hFOB1.19) and human OS cell 
lines(MG63 and 143B) were obtained from Shenzhen Advanced 
Biomechanics and Materials Lab(Shenzhen, China). A separate medium 
was used for each cell line (Shenzhen Advanced Biomechanics and 
Materials Lab; Shenzhen, China). The hFOB1.19 was used as an osteo-
blast cell, the MG63 was used as a non-metastatic OS cell, and 143B was 
used as a metastatic OS cell. We cultured human OS cells at 37 ◦C in an 
incubator with 5 % CO2 and human FOB1.19 cells at 34 ◦C in an incu-
bator with 5 % CO2. 

2.9. Quantitative real-time PCR(qRT-PCR) 

In accordance with the manufacturer’s instructions, total RNA was 
extracted from OS cells and hFOB1.19 by using TRIZOL(Gibco, USA); 
the total RNA was isolated using RNAiso Plus(AgBio. China) and then 
synthesized cDNA by using the cDNA Synthesis Kit(AgBio. China). qPCR 
was performed with an SYBR Green Real-time PCR Master Mix ki(AgBio. 
China). All PCR tests were performed on the StepOnePlus Real-Time 
PCR systems(Applied Biosystems Inc., USA). Glyceraldehyde-3- 
phosphate dehydrogenase(GAPDH) acted as the internal reference for 
normalization. All primers used for qRT–PCR were synthesized by 
Sangon Biotech(Sangon Biotech, Shanghai, China). Table 2 outlines the 
primer sequences we used. 

2.10. Statistical analysis 

Statistical analyses were performed via R(version 4.2.1) and 
GraphPad Prism(version 8.4.3). We conducted each experiment at least 
three times independently. The measurement results were expressed as 
mean ± standard deviation (SD). Statistical analysis was conducted by 
Student’s t-tests and one-way ANOVAs.Statistical significance is defined 
by *p < 0.05, **p < 0.01,and ***p < 0.001. 

3. Results 

3.1. Identification of Prognosis-Related CRGs and Co-expressed CRLncs 
in osteosarcoma 

Thirteen OS-related CRGs were identified. By univariate Cox anal-
ysis, two prognosis-related CRGs (FDX1 and PDHA1) were identified(p 
< 0.05) (Fig. 1A). We identified 264 lncRNAs (|Coefficient| > 0.5 and p 
< 0.001) that were co-expressed in OS(Fig. 1B). By univariate Cox 
analysis, thirteen prognosis-related lncRNAs were identified(p < 0.05), 
of which six lncRNAs were identified as protective factors with a hazard 
ratio(HR) < 1, while the other seven lncRNAs were considered as risk 
factors. The correlation between CRGs and prognostic CRLncs in the 
TARGET-OS cohort was visualized through the Sankey diagram by 
packages of “ggalluvial” [14]. 

3.2. Construction and validation of the prognostic signature 

Subsequently, we performed LASSO analysis to avoid overfitting and 
construct the best prognostic signature. According to the optimal 

Table 1 
Characteristics of patients in TARGET-OS cohort.  

Characteristics Alive(N 
= 57) 

Dead(N 
= 36) 

Total(N 
= 93) 

p-value FDR 

Gender    1 1 
Female 25 

(26.88 
%) 

15 
(16.13 
%) 

40 
(43.01 
%)   

Male 32 
(34.41 
%) 

21 
(22.58 
%) 

53 
(56.99 
%)    

Race    0.24 0.71 
American Indian or 
Alaska Native 

0(0.0e +
0 %) 

1(1.08 
%) 

1(1.08 
%)   

Asian 4(4.30 
%) 

2(2.15 
%) 

6(6.45 
%)   

Black or African 
American 

5(5.38 
%) 

4(4.30 
%) 

9(9.68 
%)   

White 38 
(40.86 
%) 

17 
(18.28 
%) 

55 
(59.14 
%)   

Unknown 10 
(10.75 
%) 

12 
(12.90 
%) 

22 
(23.66 
%)    

Age    0.41 0.81 
<18 years 42 

(45.16 
%) 

30 
(32.26 
%) 

72 
(77.42 
%)   

>18 years 15 
(16.13 
%) 

6(6.45 
%) 

21 
(22.58 
%)   

Metastasis    1.10E- 
03 

5.70E- 
03 

Metastatic 7(7.53 
%) 

16 
(17.20 
%) 

23 
(24.73 
%)    

Non-metastatic 50 
(53.76 
%) 

20 
(21.51 
%) 

70 
(75.27 
%)   

Primary tumor site    0.03 0.14 
Arm/hand 4(4.30 

%) 
3(3.23 
%) 

7(7.53 
%)   

Leg/foot 53 
(56.99 
%) 

29 
(31.18 
%) 

82 
(88.17 
%)   

Pelvis 0(0.0e +
0 %) 

4(4.30 
%) 

4(4.30 
%)    

Table 2 
Primer sequences for RT-qPCR.  

Genes Forward Reverse 

GAPDH GCACCGTCAAGGCTGAGAAC TGGTGAAGACGCCAGTGGA 
ATP7A TGACCCTAAACTACAGACTCCAA CGCCGTAACAGTCAGAAACAA 
LIPT1 GCTGGATGTGCAGGCTACC GCAATGGTGATAGGCAGTAGTC 
AC005034.5 TGTGTGCAGTCTATTGAGGGT TGACAAGGTAGCATCAAATCCC 
ZNF37BP-F ACCTTCCGTCAGAAGTCAGC ACCCAGAGTAATTTCCCTCGTTT 
AL353759.1 CTCGCGCCAAAGCGAAATC CTGCGTAGTTGCCTTTACGGA  
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penalty parameter(λ = 0.0402642963670375) value, eleven CRLncs 
participated in further multivariate Cox regression analysis to determine 
the optimal number of CRLncs used to establish the risk model 
(Fig. 2A–D). Finally, we identified three lncRNAs(ZNF37BP, 
AC005034.5, and AL353759.1). Here are the calculations used to 
calculate the risk score: Risk score =(0.956917270253414 * ZNF37BP 
exp.) + (-0.707198563219447 * AC005034.5 exp.) +

(-0.833381321267523 * AL353759.1 exp.). A median risk score of each 

patient was used to divide them into high-risk and low-risk groups. 
Using the “caret” package, the total sample group was divided into low- 
risk and high-risk groups(N = 46 and 47, respectively). In the training 
group, there were 24 participants at high risk(N = 24) and 23 partici-
pants at low risk(N = 23). Twenty-three participants were assigned to 
the high-risk and 23 to the low-risk group of the test group. 

Using three CRLncs, we compared the expression, distribution of risk 
scores, and survival status between two risk groups in the total group, 

Fig. 1. Identification of prognosis-related CRGs and co-expressed CRLncs in Osteosarcoma. (A) Univariate cox analysis of the survival rate of OS using the thirteen 
CRGs. (B) Correlation between CRGs and co-expressed prognostic CRLncs. (C) Sankey diagram plot of CRGs and CRLncs. 

Fig. 2. Construction of prognostic risk model. (A) Univariate Cox analysis with CRLncs. (B-C) LASSO analysis with optimal penalty lambda value, (D) Three 
prognostic CRLncs (ZNF37BP, AC005034.5, and AL353759.1) was identified under multiCox analysis. 
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the training group, and the test group, to assess the predictive power of 
the risk model. The established risk model successfully classified the 
patients into high-risk and low-risk groups. We observed a significant 
decrease in survival as the risk score increased; patients in the low-risk 
group had better overall survival than those in the high-risk group 
(Figs. 4A, 5A, and 6A). As expected, AC005034.5 and AL353759.1 are 
protective factors that tended to be downregulated as the risk score 
increased. ZNF37BP was a risk factor, and the expression showed an 
upregulated trend with the increase in risk score. 

The PCA, t-SNE, and UMAP analyses revealed that all TARGET OS 
cohort patients were separated into clusters depending on high- and low- 
risk scores, illustrating the model’s accuracy(Fig. 3A–C). We obtained 
the risk scores based on the risk score calculation formulas provided in 
the literature and compared the different receiver operating 

characteristic(ROC) curves for predicting OS survival in the TARGET-OS 
cohort. We found that our CRLncs score had a 3-year area under the 
curve (AUC) = 0.851, which was higher than FRLncs score (AUC =
0.704, P = 0.124, deLong’s test), LMGs score (AUC = 0.685, P = 0.074, 
deLong’s test), NRLncs score (AUC = 0.723, P = 0.009, deLong’s test), 
PRS score (AUC = 0.797, P = 0.299, deLong’s test) (Fig. 7A). We 
assessed the quality of each five models by the Akaike information cri-
terion (AIC), and with the AIC values of 251.0236(the lowest value of 
our CRLncs score), 282.7302 (FRLncs score), 284.6824(the highest 
value of LMGs score), 279.9217(NRLncs score), and 265.0673(PRS 
score). Also, the improvement in the prediction of prognostic outcomes 
was evaluated by calculating the net reclassification index(NRI). As a 
whole, our CRLncs model yielded an NRI of 64.4 % (compared to the 
FRLncs model), 55.8 %(compared to the LMGs model), 46.3 % 

Fig. 3. (A-C) The PCA, t-SNE, and UMAP analyses revealed that all TARGET OS cohort patients were separated into clusters depending on high- and low-risk scores, 
illustrating the model’s accuracy. 

Fig. 4. Total sample group. (A) Distribution of survival status and risk score and the heatmap illustrating the expression of the three candidate CRLncs in the high- 
and low-risk groups. (B) Survival curve of the osteosarcoma patients in the two groups, (C) the time-dependent ROC curve of the risk model. (D) UniCox regression 
analysis (E) and multiCox regression analysis of the clinicopathological characteristics in the total sample cohort. 
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(compared to the NRLncs model), and 34.2 %(compared to the PRS 
model). The NRI statistic suggests that our CRLncs model better predicts 
OS survival than the FRLncs score, LMGs score, NRLncs score, and PRS 
score models. 

In comparing the survival rates of high-risk and low-risk patients, the 
Kaplan–Meier survival analysis revealed a relatively high survival rate 
in low-risk patients in the total sample group, training group, and test 
group (Figs. 4B, 5B, and 6B). In the total sample group, the AUCs at one 
year were 0.76, 3 years were 0.84, and 5 years were 0.89 (Fig. 4C). ROC 
curves for the training group showed a higher AUC at one year (0.76), 
three years (0.84), and five years (0.89) (Fig. 5C). ROC curves for the test 
group had higher AUCs at one year (AUC = 0.79), three years (AUC =
0.84), and five years (AUC = 0.92) (Fig. 6C). 

3.3. Relationship between the CRLncs signature and the 
clinicopathological characteristics 

A heatmap was used to illustrate the relationships between the 
clinicopathological characteristics of the two risk subgroups (Fig. 7C). 
There was no significant difference between patients of different ages, 
sexes, primary tumor sites, or metastatic status in terms of risk score, 
indicating no association between risk score and clinical characteristics 
(Fig. 8A). However, in different sex, age, and metastasis subgroups, 
patients with high-risk scores had worse OS than patients with low-risk 
scores (Fig. 8B–F). 

We used univariate and multivariate Cox regression analyses to test 
the independent prognostic value of CRLncs-scores under the influence 
of other clinical factors. As shown in Figs. 4D, EA, 5D, E, and 6D, E, 
CRLncs-score and metastasis were independent prognostic indicators for 

patients with osteosarcoma. The ROC curves show that the CRLncs-score 
(AUC = 0.851) has a higher prediction accuracy than age(AUC =
0.0.461, P = 1.249e-07, deLong’s test), gender(AUC = 0.461, P =
8.384e-07, deLong’s test), primary tumor site(AUC = 0.412, P = 2.449e- 
07, deLong’s test) and metastasis(AUC = 0.685, P = 0.008474, deLong’s 
test), as shown in Fig. 7B. As a result of these findings, the CRLncs risk 
model appears to have high predictive value in the TARGET cohort. 

3.4. Identification of the composite prognostic nomogram 

We integrated the CRLncs-score with clinical variables to improve 
the accuracy of predicting the prognosis of osteosarcoma patients. As 
shown in(Fig. 9A), the composite nomogram improved significantly in 
assessing survival relative to the clinical model. Then, the calibration 
curve was used to evaluate the predictive power of the nomogram 
model. The calibration curve indicated that the error between the actual 
risk and the predicted risk is minimal, suggesting the nomogram model 
owns high accuracy in predicting OS (Fig. 9B). Decision curve analysis 
(DCA) indicated that the “nomogram” curve was higher than the gray 
line, “Age” curve, “Gender” curve, “ Metastasis ” curve, and “CRLncs- 
score” curve, suggesting that the patients could benefit from the 
nomogram model at a high-risk threshold from 0 to 1, and the clinical 
benefit of the nomogram model was higher than the “ Age ” “ Gender ” “ 
Metastasis, ”and “ CRLncs-score ” curve (Fig. 9C). The clinical impact 
curve on the ground of the DCA curve shows the “Number high risk” 
curve was close to the “Number high risk with event” curve at the high- 
risk threshold from 0.3 to 1, which indicated that the nomogram model 
has an excellent predictive power (Fig. 9D). 

Fig. 5. Training group. (A) Distribution of survival status and risk score and the heatmap of the three candidate CRLncs. (B) K-M plot in the two groups. (C) ROC plot 
of the risk model. (D) UniCox regression analysis (E) and multiCox regression analysis of the clinicopathological characteristics in the training cohort. 
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3.5. Functional analysis of DEGs based on CRLncs-score 

To further explore and investigate the underlying biological pro-
cesses and signaling pathways, we identified a total of 167 DEGs by the 
cut-off of log2|FC| > 1.5 and FDR < 0.05, of which 129 genes were 
down-regulated, and 38 genes were upregulated in the TARGET OS 
cohort between two CRLncs risk score subgroups. GO analysis revealed 
that the 167 DEGs were mainly involved in focal adhesion, extracellular 
matrix organization, blood vessel development, ossification, and regu-
lation of leukocyte differentiation (Fig. 10A). In the KEGG pathway 
analysis, these DEGs were primarily associated with pathways in cancer, 
ECM-receptor interaction, PI3K-Akt signaling pathway, tight junction, 
and microRNAs in cancer (Fig. 10B). The PPI analysis further screened 
three submodels, mainly involved in ECM-receptor interaction, immune 
response, and tumor development(Fig. 10 C-D). Additionally, we con-
structed the KEGG pathway interaction network to reveal DEGs’ hier-
archical and connectivity relations. As shown in (Fig. 10F), the PI3K-Akt 
signaling pathway, focal adhesion, ECM-receptor interaction, and 
vascular smooth muscle contraction could be the critical biological 
processes that affect the prognosis of osteosarcoma patients. As indi-
cated, these DEGs were closely associated with immunity disorders in 
osteosarcoma patients, which may be the underlying mechanism for 
predicting the prognosis of osteosarcoma patients. 

3.6. Differences in the tumor microenvironment 

The ESTIMATE algorithm showed that the immune score(p = 0.97), 
estimate score(p = 0.18), and tumor purity (p = 0.18) did not differ 
significantly between the two subgroups. In contrast, the stroma score(p 

= 0.0075) was lower in the high-risk group(Fig. 11A). With the 
MCPCounter, xCELL, EPIC, and TIDE algorithms, we revealed that the 
abundance of fibroblasts or CAFs significantly differed between the two 
subgroups (Fig. 11B). The difference in immune cell infiltration was 
calculated using CIBERSORT and ssGSEA algorithms (Supplementary 
Fig. 1). We observed that the two groups significantly differed between B 
cells naive, T cells CD4 naive, T cells gamma delta, NK cells resting, 
dendritic cells resting, and mast cells activated. Notably, the immune 
cells and function did not differ significantly between the two types 
(Fig. 11C, D). Moreover, the subsequent GSVA and GSEA analysis 
showed that the CAF-derived exosomes signature, PI3K-AKT-MTOR 
pathway, degradation of ECM, osteoblast proliferation, TGF-β, bone 
development, and bone remodeling were enriched (Fig. 10E, F). 

3.7. Drugs with potential efficacy in OS 

A sensitivity analysis revealed significant sensitivity to erlotinib 
(EGFR inhibitor, p = 0.00065), MP470(multitarget tyrosine kinase in-
hibitors, p = 9.4e − 06), and WH40222(potent and selective Lck and Src 
inhibitor, p = 0.00028) in both high- and low-risk populations. Patients 
with low risk responded better to erlotinib and MP470, while those with 
high risk responded better to WH4-023. (Fig. 11E). The predicted sen-
sitive drugs were closely correlated to the above-enriched pathways. 
Our results demonstrate that the CRLncs-score can be used to predict 
chemotherapy drug sensitivity in osteosarcoma patients. 

3.8. Expression of CRGs and CRLncs validation in OS 

We selected three OS cell lines to assess the expression levels of CRGs 

Fig. 6. Test group. (A) Distribution of survival status and risk score and the heatmap of the three candidate CRLncs. (B) K-M plot in the two groups. (C) ROC plot of 
the risk model. (D) UniCox regression analysis (E) and multiCox regression analysis of the clinicopathological characteristics in the test cohort. 
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and CRLncs. The control group was the normal osteoblast hFOB1.19, the 
MG63 was used as a non-metastatic OS cell, and 143B was used as a 
metastatic OS cell. The expression levels of ATP7A, LIPT1, AL353759.1, 
and AC005034.5 were significantly lower in MG63 and 143B cells than 
in normal osteoblast hFOB1.19 cells. Conversely, ZNF37BP expression 
levels were significantly increased in MG63 and 143B cell lines (Fig. 12). 

4. Discussion 

Osteosarcoma is the most common primary pediatric and adolescent 
bone malignancy [1]. This type of cancer is characterized by a high 
mortality rate, especially for patients with resistant lung metastases. In 
osteosarcoma, the bone microenvironment plays a crucial role in its 
onset and development [15]. Increasing evidence suggests that the bone 
microenvironment affects osteosarcoma metastasis [16]. CAFs are 
essential stromal components of the TME that regulate the antitumor 
activity of tumor-infiltrating immune cells, including innate and adap-
tive immune cells [17]. Many studies have shown that interactions be-
tween immune cells and other immune components can modulate the 
tumor immune microenvironment(TIME) and thus inhibit the antitumor 
immune response [18]. Although CAFs are thought to be associated with 

osteosarcoma TME, research is lacking [19–21]. Consequently, a novel 
marker associated with CAFs characteristics of OS is urgently needed for 
predicting outcomes and assisting in patient management. 

Copper is an essential nutrient for many cellular functions. Multiple 
proteins are also regulated by it allosterically in many signaling path-
ways. Recently, researchers have found that tumors require a higher 
level of copper than healthy tissues [15]. And a copper-dependent cell 
death known as “cuproptosis” was recently reported by Tsvetkov et al. 
[5]. Excess copper in the cell binds to lipoylated components of the TCA 
cycle, triggering proteotoxic stress and death of the cells. It provides new 
insights into regulating intracellular copper levels in cancer treatment. 
In a recent study, copper-targeting drugs may help improve anti-cancer 
immunotherapies. LncRNAs are crucial to osteosarcoma development, 
progression, and invasion [22]. Deregulated expression of lncRNAs has 
been found to participate in the regulation of various signaling trans-
duction pathways in osteosarcoma [23]. In light of this, we investigate 
the correlation between the tumor microenvironment, immune micro-
environment, and CRLncs to improve prognosis and treatment for OS. 

The current study focused on the relationships between CRLncs, 
CAFs, the immune microenvironment, chemotherapy sensitivity, and 
prognosis in osteosarcomas. Using univariate Cox regression, Lasso Cox 

Fig. 7. Three years ROC comparison of five prognostic risk models and clinicopathological characteristics in the TARGET-OS cohort. (A-B) Comparison ROC plot of 
five prognostic risk models and clinicopathological characteristics. (C) A heatmap plot of three CRLncs expression levels and a correlation between CRLncs scores and 
clinicopathological factors. 
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Fig. 8. Association of risk score and clinical characteristics. (A) No significant difference was identified in OS patients with different ages, sex, primary tumor sites, 
and metastases. (B-F) Independence analysis and K-M plot of the CRLncs model in different sex(B, C), age(D, E), and metastasis(F, G) subgroups. 
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regression, and multivariate Cox regression, we developed a unique 
CRLncs risk model including three lncRNAs(ZNF37BP, AC005034.5, and 
AL353759.1). The CRLncs model appeared to be a reliable predictor of 
OS patients’ prognosis. A high-risk score was indicative of a poorer 
prognosis than a low-risk score. Many risk models have been developed 
for OS currently, such as necroptosis-associated lncRNA signature [24]), 
ferroptosis-related lncRNA signature [25], lipid-metabolism gene 
signature [26], and pyroptosis-related gene signature [27], however, 
our study arrived at a unique conclusion compared to the above studies. 
The results of our 3-year ROC analysis (AUC = 0.84) confirmed that the 
signature could have accurate and sensitive predictive efficacy. 
Furthermore, we calculated and compared the AIC values and NRIs, 
which allowed us to comprehensively compare the predictive effec-
tiveness of different models. Our CRLncs model exhibited the lowest AIC 
value and yielded an increase in NRI. In multivariate cox regression 
analysis combined with clinical characteristics, both the CRLncs risk 
score and tumor metastasis were independent prognostic factors for the 
overall survival of osteosarcoma patients in both the training and vali-
dation sets. We constructed a nomogram including clinicopathological 
variables and risk scores. We found that the CRLncs risk score was the 
highest weighted score in this nomogram, followed by metastasis. The 
nomogram showed perfect agreement between observed and predicted 
rates for 1-, 3-, and 5-year overall survival. The CRLncs risk score has 
only three lncRNAs included; however, it has a higher and more stable 
predictive capacity; we believe it is more likely to be applied to clinical 
practice. 

To further evaluate how the CRLncs regulates OS, we then compared 
the gene expression levels between high-risk and low-risk CRLncs scores. 
A total of 167 essential genes were identified. GO, KEGG and PPI anal-
ysis of the identified DEGs implied that dysregulation of the extracel-
lular matrix organization, immunity, and bone remodeling might 

mediate tumorigenesis and progression of osteosarcoma by cuproptosis- 
related lncRNAs. Additionally, the KEGG pathway interaction network 
result revealed that the PI3K-Akt signaling pathway, focal adhesion, 
ECM-receptor interaction, and vascular smooth muscle contraction 
might be the critical biological processes that affect the prognosis of 
osteosarcoma patients. Further, the subsequent GSVA and GSEA analysis 
showed that the CAF-derived exosomes signature, the PI3K-Akt 
signaling pathway, degradation of ECM, osteoblast proliferation, 
angiogenesis, TGF-β, bone development, and bone remodeling ranks 
high in the low-risk score group. Synthesizing the above findings, we 
could reasonably assume that the PI3K-Akt signaling pathway may be 
the central pathway associated with osteosarcoma development, and the 
dysregulation crosstalk between the cancer-associated fibroblasts and 
immune cells in the TME resulted in the impairment of TIME and bone 
remodeling, thereby leading to a poor prognosis in osteosarcoma. 

The heterogeneity of the TME plays an essential role in tumor 
development, including infiltrating immune cells, extracellular matrix, 
tumor purity, and noncellular components [3]. A variety number of 
mechanisms are involved in how CAFs promote the growth and invasion 
of cancer cells in the tumor microenvironment [28]. Consequently, we 
studied the role of the CRLncs risk score in predicting the CAFs and 
immune microenvironment landscape of osteosarcoma. The ESTIMATE 
algorithm showed that neither immune score, estimate score, nor tumor 
purity significantly differed between the two subgroups. However, our 
investigation revealed that the stroma score and the abundance of fi-
broblasts or CAFs were significantly higher in the low-risk group. Using 
the CIBERSORT algorithm, we revealed a higher level of tumor infil-
tration in the high-risk group for T cells CD4 naive, T cells gamma delta, 
NK cells resting, dendritic cells resting, and mast cells activated. How-
ever, the ssGSEA algorithm did not show significant differences in im-
mune cells or function between the two subgroups. Combined with the 

Fig. 9. Construction and calibration of the nomogram. (A) Nomogram integrated the risk score and clinical characteristics. (B) The calibration curve to assess the 
predictive power of the nomogram model. (C) DCA curve to evaluate the clinical value of the nomogram model. (D) Clinical impact curve based on the DCA curve to 
assess the nomogram model. 
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functional and previous survival analyses, we could reasonably assume 
that CAFs may contribute to the worse prognosis among osteosarcoma 
patients. 

The combination of modern surgery and systemic chemotherapy has 
improved osteosarcoma treatment dramatically, but survival has not 
changed significantly [29]). Apoptotic escape and chemoresistance have 
been a concern in osteosarcoma [30]. Oncologists have seen better 
outcomes with targeted chemotherapy instead of cytotoxic chemo-
therapy. Target inhibitors, like erlotinib and MP470, inhibit the growth 
of various cancer cell lines. Researchers found that a combination of 
MP470 and erlotinib inhibits tumor growth by inhibiting the HER 
family/PI3K/Akt pathway. However, there is little evidence of experi-
ence with these two drugs in patients with osteosarcoma. Several new 
Src inhibitors have been introduced to combat OS; however, the results 
seem promising [31]. Erlotinib and MP470 were more sensitive in the 
low-risk group in this study; patients with a high-risk score, however, 
were more susceptible to WH − 4–023. This study suggests that erloti-
nib, MP470, and WH − 4–023 may be potential therapeutic drugs for OS 
and provide a direction for further research. 

Finally, it was experimentally verified in vitro that the expression 
levels of ATP7A, LIPT1, AL353759.1, and AC005034.5 were 

significantly down-regulated in MG63 and 143B OS cells than in normal 
osteoblast hFOB1.19 cells. On the contrary, the expression level of 
ZNF37BP was elevated in OS cells than in normal osteoblast cells. 
Furthermore, we have found that the expression levels of ATP7A, LIPT1, 
AL353759.1, AC005034.5, and ZNF37BP were significant between 
MG63 and 143B OS cells. Based on the above findings, we could 
reasonably assume that these five genes were associated with tumor 
progress and prognosis. To a certain extent, this corresponds to the 
reliability of our bioinformatics analysis. 

This study has some limitations. First, the mechanisms underlying 
CRLncRNAs in OS remain unclear and need further investigation. 
Despite having been internally validated by the whole group, the 
training group, and the testing group, the external validation was not 
performed in other databases due to a lack of lncRNA expression profiles 
and OS datasets. Thirdly, the expression levels of two CRGs and three 
CRLncs were validated by qRT–PCR in two OS cell lines and one normal 
osteoblast hFOB1.19 cell; more samples, more OS cell lines would be 
helpful for a more solid analysis of the evidence. Further research is 
needed to verify these lncRNAs’ prognostic utility in animals and clinical 
trials. 

Fig. 10. Functional analysis of DEGs based on CRLncs-score. The circular plot and visualization of the biological process were enriched by GO analysis(A), and the 
signaling pathways were enriched by KEGG analysis(B). The PPI network construction(C, D) and heatmap illustrating the GSVA analysis (E) result of DEGs were 
shown. (F) GSEA analysis visualization. (G) KEGG pathway interaction network revealed the hierarchical and connectivity relations of the DEGs’. 
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Fig. 11. TME and TIME analysis based on CRLncs-score. (A) Differential analysis of tumor microenvironment by ESTIMATE algorithm. (B). Inferred CAF proportion 
scores of OS patients by four algorithms (see Methods). EPIC, MCP-Counter, xCell, and TIDE indicated the assumed CAF proportion. The stroma score (A) and CAFs 
(B) were significantly higher in the low-risk group. Immune cell(C) and immune function(D) differential analysis were shown using ssGSEA algorithms. (E) Selecting 
suitable targeting drugs for different risk- groups of patients. 

Fig. 12. Q-PCR analysis for the expression of CRGs and CRLncs in osteoblast hFOB1.19 and OS cell lines. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, each 
experiment was repeated three times. 
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5. Conclusion 

Three cuproptosis-related lncRNAs were used to construct a robust 
prognostic, predictive model, which showed remarkable prognostic 
value for OS patients. Based on the tumor microenvironment and 
immune-related analyses, these three CRLncs can guide the CAFs of OS, 
and three potential OS-targeted drugs were identified as well. Our study 
offers valuable insight into predicting the OS patients’ prognoses and 
may even assist their treatment. 
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