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ABSTRACT

HIV-1 integration favors recurrent integration gene
(RIG) targets and genic proviruses can confer cell
survival in vivo. However, the relationship between
initial RIG integrants and how these evolve in pa-
tients over time are unknown. To address these
shortcomings, we built phenomenological models
of random integration in silico, which were used to
identify 3718 RIGs as well as 2150 recurrent avoided
genes from 1.7 million integration sites across 10 in
vitro datasets. Despite RIGs comprising only 13% of
human genes, they harbored 70% of genic HIV-1 inte-
grations across in vitro and patient-derived datasets.
Although previously reported to associate with
super-enhancers, RIGs tracked more strongly with
speckle-associated domains. While depletion of the
integrase cofactor LEDGF/p75 significantly reduced
recurrent HIV-1 integration in vitro, LEDGF/p75 pri-
marily occupied non-speckle-associated regions of
chromatin, suggesting a previously unappreciated
dynamic aspect of LEDGF/p75 functionality in HIV-
1 integration targeting. Finally, we identified only
six genes from patient samples––BACH2, STAT5B,
MKL1, MKL2, IL2RB and MDC1––that displayed en-
riched integration targeting frequencies and har-
bored proviruses that likely contributed to cell sur-
vival. Thus, despite the known preference of HIV-1 to
target cancer-related genes for integration, we con-
clude that genic proviruses play a limited role to di-
rectly affect cell proliferation in vivo.

INTRODUCTION

Retroviral replication proceeds through an obligate inte-
grated DNA or proviral intermediate. Integration can have

far-reaching consequences on the host organism. Dysreg-
ulation of cellular protooncogene expression can signifi-
cantly stimulate cell growth, leading to clonal expansion
and tumor formation in animals infected with murine
leukemia virus (MLV; see Supplementary Table S1 for a
list of non-standard abbreviations used in this manuscript)
or avian sarcoma-leukosis virus (1–3). Clonal expansion
of cells infected with human T cell lymphotropic virus 1
similarly underlies adult T cell leukemia (4,5). Although
most cells infected with human immunodeficiency virus 1
(HIV-1) die as a consequence of active virus production, a
small fraction become latently infected and persist under
antiretroviral therapy (ART) (6–11). It has been estimated
that at least 40% of cells latently infected with HIV-1 un-
dergo clonal expansion (12–15) and that clonal expansion
initiates soon after HIV-1 infection (16). The persistence
of the latent cell reservoir is the principle barrier to curing
HIV-1 infection (6,7,17).

Retroviral integration is non-random, with different virus
types favoring particular aspects of host chromatin. For ex-
ample, gammaretroviruses such as MLV favor gene pro-
moters and active enhancers while lentiviruses, which in-
clude HIV-1, favor interior regions of actively transcribed
genes [reviewed in (18) and (19)]. Viral integrase and cap-
sid protein interactions with host proteins primarily deter-
mines HIV-1 integration targeting preferences. HIV-1 in-
tegration favors transcriptionally active speckle-associated
domains (SPADs) and disfavors heterochromatin such as
lamina-associated domains (LADs) (20–23). Cleavage and
polyadenylation specificity factor 6 (CPSF6), which func-
tions in mRNA 3′ end cleavage and polyadenylation, is a di-
rect binding partner of HIV-1 capsid (24,25). In the absence
of this interaction, viral preintegration complexes (PICs)
mislocalize from interior regions of cell nuclei to the nuclear
periphery, with concomitant changes from SPAD-proximal
to LAD-proximal integration (20,21,26,27). Genic integra-
tion also relies on the interaction of integrase with lens
epithelium-derived growth factor (LEDGF)/p75 (28–30).
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In LEDGF/p75 knockout (LKO) cells, residual intragenic
integration occurs toward gene 5′ end regions, indicating
that LEDGF/p75 directs HIV-1 integration to the inte-
rior regions of gene bodies (27,31). LEDGF/p75 interacts
with numerous splicing factors (31) and can facilitate tran-
scription elongation in vitro (32), indicating potential roles
for mRNA splicing and/or transcriptional elongation in
LEDGF/p75-dependent integration targeting.

Characterization of recurrently targeted genes (also
known as recurrent integration genes or RIGs) has also in-
formed HIV-1 integration targeting preferences (20–22,33).
RIGs were first defined via cross-sample occurrence as
genes targeted for integration in at least two independent
studies (22,33). A potential drawback of this approach was
susceptibility to type I or false positive identification errors.
Comparatively long genes, for example, might artificially
score due to their size. Alternative approaches for RIG iden-
tification took random targeting frequencies into consider-
ation, effectively minimizing type I errors (20,21). However,
given the common approach of utilizing only limited subsets
of available data (e.g. the top 100 RIGs compared across 3–
4 samples), such approaches were susceptible to type II or
omission of true positive errors.

Here, we devised a novel approach to comprehensively
classify genes targeted for integration in a way that mini-
mizes both type I and type II errors. To decrease the likeli-
hood of type I errors, RIGs were distinguished from non-
RIGs by comparing observed versus expected integration
frequencies from effectively all possible matched random
datasets simultaneously. By applying this approach to 10 in
vitro integration datasets, we determined that gene target-
ing patterns are similar across cell types and uncovered re-
peatedly avoided genes, which we termed recurrent avoided
genes (RAGs). The likelihood of type II errors was mini-
mized by combining identified RIGs and RAGs from each
dataset cumulatively. From this, we estimate we have identi-
fied 84% and 45% of all RIGs and RAGs, respectively, in the
human genome. Comparisons with integration sites derived
from patients prior to ART treatment and during ART sup-
pression revealed that ∼70% of genic integration events in
vitro and in vivo occurred in identified RIGs, despite the fact
that RIGs account for only ∼13% of human genes. We also
show that RIGs in vitro are highly likely to be recurrently
targeted in vivo. These data highlight general similarities in
genic targeting preferences during the initial phase of HIV-1
infection, modeled here in vitro, and HIV-1 infection in pa-
tients. To glean additional insight across these datasets, we
mapped integration sites with respect to 10 compartmental-
ized regions of cell nuclei (34) to produce one of the highest
resolution assessments of the genic landscape of HIV-1 in-
tegration to-date.

Our methodology additionally allowed us to comprehen-
sively analyze patient-derived genes for characteristic fea-
tures of selection bias based on integration site overrep-
resentation, orientation bias, and clustering to specific re-
gions. Such information has been used previously to iden-
tify genes that, when integrated into, conferred cellular
survival in patients on ART (12,13,35–37). Our analysis
identified six genes––BACH2, STAT5B, MKL1, MKL2,
IL2RB and MDC1––that met these criteria. These results
highlight the fact that the vast majority of genic proviruses

in ART-treated patients are unlikely to directly contribute
to infected cell survival.

Finally, we applied our RIG-calling methodology to
datasets derived from HIV-1-infected wildtype (WT), LKO,
and CPSF6 knockout (CKO) HEK293T cells, as well as
WT, LKO, and CKD (CPSF6 knockdown) Jurkat T cells.
The results of these comparisons highlight a previously un-
derappreciated role for LEDGF/p75 in recurrent HIV-1 in-
tegration targeting.

MATERIALS AND METHODS

Reagents

Antibodies for immunoblotting included rabbit anti-
CPSF6 (Abcam, Cambridge, UK; catalogue number
Ab175237), horse radish peroxidase (HRP)-conjugated
anti-rabbit IgG (Agilent Technologies, Inc., Santa Clara,
CA; catalogue number P0448) and HRP-conjugated anti-
�-actin (Millipore Sigma, Burlington, MA; catalogue num-
ber A3854-200UL). Additional immunoblotting reagents
included 20X Bolt MOPS SDS running buffer (Thermo
Fisher Scientific, Waltham, MA; catalogue number B0001),
Bolt 4–12% Bis–Tris Plus gels (Thermo Fisher Scientific cat-
alogue number NW04122BOX), Bolt transfer buffer (20x)
(Thermo Fisher Scientific catalogue number BT00061),
Immun-Blot(R) PVDF membrane (Bio-Rad Laboratories,
Hercules, CA; catalogue number 1620177), PageRuler pre-
stained protein ladder (Thermo Fisher Scientific cata-
logue number PI26616) and complete EDTA-free pro-
tease inhibitor cocktail (Millipore Sigma catalogue number
1836170001).

Restriction endonucleases MseI (New England Biolabs,
Ipswich, MA; catalogue number R0525L) and BglII (cat-
alogue number R0144L) were used to fragment genomic
DNA for integration site sequencing. Sequences of DNA
oligonucleotides used for ligation-mediated (LM)-PCR,
which were obtained from Integrated DNA Technologies
(Coralville, IA), are detailed in Supplementary Table S2.
T4 DNA ligase (New England Biolabs catalogue num-
ber M0202T) was used to ligate DNA linkers to sheared
genomic DNA and Advantage 2 PCR polymerase mix
(Takara Bio USA, Inc., Mountain View, CA; catalogue
number 639202) was used for subsequent PCR amplifica-
tion using dNTPs acquired from Qiagen Inc. (German-
town, MD; catalogue number 201901).

Small-interfering RNAs (siRNAs) targeting CPSF6
mRNA (GAAUUGAGUCCAAGUCUUA; catalogue
number A-012334-13-0020) and non-targeting (NT) con-
trol (UGGUUUACAUGUCGACUAA; catalogue number
D-001910–01-05 ) were purchased from Dharmacon, Inc.
(Lafayette, CO).

Dulbecco’s modified Eagle’s medium (DMEM) and
RPMI 1640 medium were obtained from Thermo Fisher
Scientific (respective catalogue numbers 11965084 and
11875085). Fetal bovine serum (FBS) was also from
Thermo Fisher Scientific (catalogue number 10437028).
Penicillin-streptomycin was from Corning Life Sciences
(Corning, NY; catalogue number 30–002-CI). PolyJet DNA
reagent was from Thermo Fisher Scientific (catalogue num-
ber 504788) while Cell Line Nucleofector Kit V was from
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Lonza Group AG (Basal, CH; catalogue number VCA-
1003).

HIV-1 concentration was determined via p24 antigen
capture kit (Advance Bioscience Laboratories, Rockville,
MD; catalogue number 5447). Viruses were treated with
TURBO DNase (Thermo Fisher Scientific catalogue num-
ber AM2239) prior to infection and infected cells were lysed
using Passive Lysis Buffer (Promega Corporation, Madi-
son, WI; catalogue number E1941). D-Luciferin potassium
salt was from BD Biosciences (San Jose CA; catalogue num-
ber 556878). Protein concentration in cell extracts was de-
termined via Pierce BCA protein assay kit (Thermo Fisher
Corporation catalogue number 23225).

Biological resources

HEK293T cells and Jurkat E6-1 T cells were acquired from
American Type Culture Collection (respective ATCC cat-
alogue numbers CRL-3216 and TIB-152). Plasmid DNAs
pNLX.Luc.R-.�AvrII (38), pNLENG1-ES-IRES (39) and
pCG-VSV-G (30) were used to make single-round HIV-1 re-
porter viruses.

Cells and viruses

HEK293T cells maintained in DMEM supplemented to
contain 10% FBS, 100 IU/ml penicillin, and 100 �g/ml
streptomycin were propagated in humidified incubators at
37◦C in the presence of 5% CO2. Jurkat E6-1 T cells were
cultured in RPMI 1640 medium under otherwise identical
conditions.

For transfection with siRNA, 106 Jurkat T cells were
resuspended with nucleofection buffer containing the re-
quired supplement from Cell Line Nucleofector Kit V. Cells
were mixed with 50 nM siRNA and electroporated with nu-
cleofector I according to the manufacturer’s instructions.
After electroporation, cells were plated in six-well plates
containing 2 ml pre-warmed RPMI 1640 media and incu-
bated for 3 days to allow recovery prior to immunoblotting
and virus infection.

For immunoblotting, cell pellets were lysed in 1× ly-
sis buffer (50 mM Tris–HCl, pH 8.0, 250 mM NaCl, 1%
IGEPAL CA-630, 0.5% sodium deoxycholate, 0.1% sodium
dodecyl sulfate supplemented with complete EDTA-free
protease inhibitor cocktail). Total cell protein (5 �g) frac-
tionated through 4–12% polyacrylamide Bis–Tris gels was
transferred to polyvinylidene difluoride (PVDF) mem-
branes. CPSF6 protein expression was detected with
anti-CPSF6 antibody followed by HRP-conjugated anti-
rabbit IgG antibody. Beta-actin was detected using HRP-
conjugated anti-beta-actin antibody.

Single-round derivatives of HIV-1NL4-3 carrying firefly lu-
ciferase (HIV-Luc) or green fluorescent protein (HIV-GFP)
were used to infect cells essentially as previously described
(40). In brief, HEK293T cells plated in 10 cm dishes were
co-transfected the following day with 7.5 �g pNLX.Luc.R-
.�AvrII (HIV-Luc) (38) or 13.5 �g pNLENG1-ES-IRES
(HIV-GFP) (39) along with 1.5 �g pCG-VSV-G (30) using
PolyJet DNA reagent. Virus-containing cell supernatants
were concentrated by ultracentrifugation and assessed for
p24 content as described (41). Genomic DNAs for integra-
tion site libraries were isolated at 5 days post-infection (dpi)

for HEK293T cells and 2 dpi for CPSF6 CKD Jurkat T cells
and corresponding control siNT cells. Jurkat cell infectivi-
ties at 2 dpi quantified from respective luciferase activities
were normalized to the total concentration of protein in cell
extracts.

Integration site datasets

In silico datasets that mimicked experimental fragmentation
methods were constructed using custom Python scripts es-
sentially as previously described (41,42). To simulate ran-
dom fragmentation (e.g. sonication), fragment lengths were
defined by a theoretical normal distribution with a mean
length of 400 bp and a standard deviation of 50 bp. For
pattern fragmentation (e.g. restriction digestion), fragment
length depended on the presence of the relevant enzyme
recognition sequence(s) up to a defined maximum distance
downstream of the theoretical random integration event. To
ensure a representative sampling of the entire genome, the
maximum distance for each enzyme cocktail was defined as
20,000 bp. To mimic the size selection protocols in standard
next-generation sequencing pipelines, fragments were sub-
sequently filtered to include only those less than or equal
to 900 bp and greater than or equal to 20 bp. After filter-
ing, fragments were aligned to human genome (hg19) us-
ing STAR (43). Final random integration site libraries for
the simulated restriction enzyme digestions contained 13.6
million unique integration sites for MseI/BglII and 7.2 mil-
lion unique integration sites for NheI/AvrII/SpeI/BamHI
(Supplementary Table S2). The final random integration
site library for simulated random fragmentation contained
9.1 million unique integration sites (Supplementary Ta-
ble S2). The relevant Python scripts and example files for
rigrag-compatible intersection with gene annotations are
available on GitHub (https://github.com/gbedwell/).

Random integration datasets used for model generation
were constructed by randomly sampling N number of sites
from the relevant master file 10 times. Each final dataset
consisted of 10 individual random integration files con-
taining N sites each. N-values used for model generation
were 10,000, 15,000, 20,000, 30,000, 40,000, 50,000, 60,000,
70,000, 80,000, 90,000, 100,000, 150,000, 200,000, 300,000,
400,000, 500,000, 600,000, 700,000, 800,000, 900,000 and
1,000,000. Genic integration sites for each file in each
dataset were determined by intersecting each file with cu-
rated gene coordinates derived from the GENCODE v19
annotation set using BEDtools v2.27.1 (44,45). To con-
struct the curated list of gene coordinates, the original
GENCODE annotation file was filtered to contain all anno-
tated protein coding, lincRNA, snoRNA, snRNA, rRNA,
Ig variable chain, and TcR genes. This file contained 34,763
annotated coordinates corresponding to 33,579 unique
genes. For genes annotated more than once on the same
chromosome, the longest annotation was included in the
final annotation file. Genes annotated more than once on
separate chromosomes or genes containing more than one
annotation of the same size were removed from the study.
The final annotation file, which contained 33,429 uniquely
annotated genes, is available on GitHub. Because of the ex-
panded number and types of annotations included in this
genome annotation file, calculated genic integration values

https://github.com/gbedwell/
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for all samples (including random) were ∼6% greater than
previously published (20,27,40,41,46).

Of the 10 integration site datasets derived from WT trans-
formed and primary cells infected in vitro in this study,
the following 8 were published previously: HEK293T #1
(20,27), HEK293T #3 (31), Jurkat #2 (40), Jurkat #3
(40), peripheral blood mononuclear cells (PBMCs) (47,48),
monocyte-derived macrophages (MDM) (46), elite con-
troller (EC) primary CD4+ T cell (49), and HIV nega-
tive primary CD4+ T cell (49) (see Supplementary Ta-
ble S2 for numbers of integration sites as well as genomic
DNA fragmentation and library construction methodolo-
gies). Matched HEK293T #1, HEK293T LKO, HEK293T
CKO, and HEK293T double knockout (DKO) datasets
were previously described (20,27), as were matched Ju-
rkat #2, LKO Jurkat #1, and LKO Jurkat #2 datasets
(40) (Supplementary Table S2). Remaining integration site
datasets were generated herein from genomic DNA isolated
from infected HEK293T cells (#2) and Jurkat T cells (NT
#1, NT #2, CKD #1, and CKD #2) according to estab-
lished ligation-mediated PCR protocols (41); these genomic
DNAs were fragmented using MseI/BglII restriction en-
donucleases (Supplementary Table S2). DNA sequencing
(150-bp paired end) was performed on the HiSeq Illumina
platform at Genewiz.

The ART-treated patient-derived integration site dataset
was built by concatenating unique integration sites from
three published datasets (13,37,50). One of these datasets
was itself a concatenation of several independent datasets
(37). The untreated patient-derived integration site dataset
was previously published in (37) (Supplementary Table
S2). All patient-derived datasets were downloaded from
the Retrovirus Integration Database (https://rid.ncifcrf.gov)
(51) or obtained from the Microsoft Excel Workbook pub-
lished in (37). Genic integration sites for all cell- and patient-
derived integration site datasets were determined in the
same manner as random genic integration sites. In order to
accurately assess explicit integration site targeting, all inte-
gration sites used in this study were defined as the 5 bp re-
gion recognized and cleaved by the integrase enzyme.

Comparison with genomic features

Gene densities across the human genome were calcu-
lated using the Homo.sapiens annotation package avail-
able through Bioconductor (http://bioconductor.org). Gene
expression levels in CD4+ T cells were obtained from
the Schmiedel blood cell gene data downloaded from The
Human Protein Atlas (https://www.proteinatlas.org/about/
download) (52). The SPIN (Spatial Positioning Inference
of the Nuclear genome) annotations described in reference
(34) were downloaded from GitHub (https://github.com/
ma-compbio/SPIN) and converted to hg19 coordinates us-
ing LiftOver (https://genome.ucsc.edu/cgi-bin/hgLiftOver).
The SPAD annotation set was constructed as previously de-
scribed (21,40,53). To facilitate consistent comparisons be-
tween SPADs and other files, overlapping features in the
SPAD annotation file were combined into a single feature
using BEDtools. The final CD4+ T cell super-enhancer (SE)
annotation file was built by combining and demultiplex-
ing the annotations from the ‘CD4 Naı̈ve Primary 7Pool’
and ‘CD4 Memory Primary 7Pool’ datasets from dbSU-

PER (54) (https://asntech.org/dbsuper/). LEDGF/p75 oc-
cupancies were calculated using a published LEDGF/p75
ChIP-seq dataset (32). For this dataset and all other ChIP-
seq datasets, occupancy was defined as the number of bp
occupied in a given region divided by the region size. Occu-
pancy per gene was calculated similarly, with gene lengths
used in place of region size. The absolute distance from
integration sites to the nearest LEDGF/p75-occupied re-
gion in the same gene was calculated in BEDtools (45). For
comparison of the overall distributions of LEDGF/p75 oc-
cupied regions across RIGs with the overall distribution
of integration sites across RIGs, the relative midpoints of
each LEDGF/p75-occupied region or integration site, re-
spectively, was calculated. The locations of these midpoints
were expressed as a value between 0 and 1, which corre-
sponded to the transcriptional start and end sites of the
analyzed RIGs, respectively. Validation of SPIN annota-
tions derived from K562 cells (34) with respect to HIV-1
integration sites was largely performed on publicly avail-
able data downloaded from the ENCODE project (55,56)
(https://www.encodeproject.org/), 4DN Web Portal (https:
//www.4dnucleome.org/), UCSC Table Browser (57) (https:
//genome.ucsc.edu/cgi-bin/hgTables), and dbSUPER (54).
The datasets used for these comparisons are listed in Sup-
plementary Table S1. Additional previously published ge-
nomic datasets included: HEK293T cell transcriptomics via
RNA-seq analysis (27), K562 cell SPADs (53), and HT1080
cell LADs (58).

Computational resources

All data analysis and visualization pertaining to model gen-
eration and analysis was performed in R v3.6.3 and RStudio
v1.4.869. The following packages and their corresponding
dependencies were loaded and used during the analyses:
dplyr v1.0.2 (https://dplyr.tidyverse.org/), tidyr v1.1.2
(https://tidyr.tidyverse.org/), ggplot v3.3.2 (https://ggplot2.
tidyverse.org/), purrr v0.3.4 (https://purrr.tidyverse.org/),
forcats v0.5.0 (https://forcats.tidyverse.org/), data.table
v1.13. (https://github.com/Rdatatable/data.table/),
ggsignif v0.6.0 (https://github.com/const-ae/ggsignif/),
scales v1.1.1 (https://github.com/r-lib/scales/), ggre-
pel v0.8.2 (https://github.com/slowkow/ggrepel/),
broom v0.7.2 (https://broom.tidymodels.org/), min-
pack.lm v1.2–1 (https://cran.r-project.org/web/
packages/minpack.lm/index.html/), cowplot v1.1.0
(https://github.com/wilkelab/cowplot), nls.multstart v.1.2.0
(https://github.com/padpadpadpad/nls.multstart), and
rigrag v0.0.0.9. All packages except rigrag are available on
CRAN (https://cran.r-project.org); rigrag is available on
GitHub (https://github.com/gbedwell/rigrag).

Quantification of duplicate western blots was done in Fiji
(https://imagej.net/Fiji).

Statistical analyses

Model generation. For each dataset (10 files of N sites
each), the mean integration frequency across all files, and
the standard deviation of integration frequency across all
files were calculated for each gene. The mean integration
frequency and the standard deviation of integration fre-
quency were then plotted as a function of gene length and
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fit to appropriate functions to obtain expected values for a
given gene length. Linear fits were performed using the lm()
function in the stats package (https://www.r-project.org/).
Nonlinear fits were performed by nonlinear least squares
fitting using the nls multstart() function in the nls.multstart
package (https://github.com/padpadpadpad/nls.multstart).
As expected for random integration, mean integration fre-
quency increased linearly with gene length. The spread
of integration frequency values about the mean for each
dataset was calculated by first expressing all integration fre-
quency values as a distance from the corresponding ex-
pected mean value. Distance values were then expressed
as a ratio of the expected standard deviation. The maxi-
mum ratio value for each gene was then multiplied by the
corresponding expected standard deviation to summarize
the magnitude of spread above the mean. These data were
plotted against gene length and fit to a power law of the
form y = Nxa . The fitted curve in this instance repre-
sents an expected value but does not account for the max-
imum spread of possible values. In order to better describe
the actual upper limits of the data, we calculated the ex-
treme upper whisker of the residuals distribution, defined
as 0.75Q + 3 ∗ I QR. This constant value can be added to
the best fit spread above the mean value to generate the fi-
nal upper boundary above the mean integration frequency.
The lower boundary of the model was assumed to be sym-
metrical to the upper boundary. All individual dataset fits
for each fragmentation strategy are shown in Supplemen-
tary Figure S1, where best-fit lines are shown in red and the
spread upper whisker is shown in blue. Because there is a
theoretical lower limit of 0 for integration frequency, for fi-
nal model construction, negative values generated when cal-
culating the lower spread were taken to be 0. In addition, for
each dataset, the gene length distributions for genes harbor-
ing 0 integration events were analyzed and the extreme up-
per whiskers were calculated. This information was incor-
porated into the final models as the gene length below which
the lower limit of integration frequency is 0. The spread up-
per whisker and zero point fits are shown in Supplementary
Figure S2A and B.

Once all of the relevant parameters were calculated for
each dataset, parameter values were plotted against the
total number of integration sites in each dataset and fit
to appropriate functions. In all instances, parameters were
found to be well described by simple mathematical func-
tions. Power law fits were performed via nonlinear least
squares fitting as described above. The utility of these fits
is that, in principle, they allow parameter estimation for
any sized integration site dataset. The intercept of the mean
integration frequency, the N-parameter for spread estima-
tion, the spread residual upper whisker, and the zero point
for each dataset were well-described by a power law of the
form y = Nxa + k (Supplementary Figure S2A, B, D and
E). The slope of the mean integration frequency and the a-
parameter for spread estimation was fit by a piecewise com-
bination of two power laws (Supplementary Figure S2C and
F). The general form is,

y =
{

N1xa1 i f x < c
N2xa2 i f x ≥ c

where c is a breakpoint that was optimized for each fit. All
global fits are shown in Supplementary Figure S2. To gener-
ate the final models, the fitted equations for each global pa-
rameter were combined as appropriate to express all dataset
parameters as a function of total sample size. These final
equations for parameter estimation were combined as ap-
propriate to generate a complete model of random integra-
tion. All of the generated models are incorporated into the
R package rigrag. Example usage of rigrag, as well as the
package itself, is available on GitHub.

RIG, RAG and non-outlier gene determinations in cell-derived
integration site datasets. For each cell-derived integration
site dataset, a model of random integration was gener-
ated using the appropriate model in rigrag. The genic in-
tegration frequencies for each gene represented in a given
dataset were then compared to the expected random inte-
gration frequency values. Genes integrated into at frequen-
cies greater than the upper boundary of the corresponding
random model and genes integrated into at frequencies less
than the lower boundary were considered outliers and were
called RIGs and RAGs, respectively. Genes integrated into
at frequencies within the model boundaries were called non-
outliers. Despite differences in cell types and fragmentation
methods, values of integration sites/gene correlated reason-
ably well (r = 0.5–0.9) across all datasets (Supplementary
Figure S3), indicating the general comparability of these
datasets. Because of these general similarities, RIGs, RAGs,
and non-outlier genes from the 10 in vitro datasets derived
from infecting WT transformed and primary cell types were
pooled to generate the final lists of RIGs, RAGs, and non-
outlier genes. These lists are provided in Supplementary
Table S3. We note that a small fraction of genes (134 of
21,428 analyzed, 0.6% of total) displayed variable behavior
in that they scored as either a RIG or a RAG in different
datasets. Owing to the high degree of variability in classifi-
cation and to avoid categorizing these genes into both RIG
and RAG outlier populations simultaneously, we explicitly
defined these as non-outlier genes, and removed them from
RIG and RAG gene lists in downstream analyses. These
genes, along with the number of times they were identified
as a RIG, RAG, or non-outlier across datasets, are listed in
Supplementary Table S3. For CKO/CKD, LKO and DKO
cell comparisons, RIGs, RAGs, and non-outlier genes were
determined in a similar manner. The relative gene category
distributions between average in vitro, untreated, and ART-
suppressed patient datasets were compared using a T-test.
Because mean and variance estimates were available for the
average in vitro data but not the untreated or ART patient-
treated datasets, equal variance was assumed.

Estimation of genome-wide RIGs and RAGs. To estimate
the total number of RIGs and RAGs in the human genome,
we analyzed the cumulative number of identified RIGs and
RAGs versus the cumulative number of genic integration
sites. These plots were fit to rectangular hyperbolae of the
form,

y = mx
k + x

https://www.r-project.org/
https://github.com/padpadpadpad/nls.multstart
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where m represents the maximum number of RIGs or
RAGs and k is the number of genic sites half-way to maxi-
mum.

Comparison with genomic features. The degree of overlap
between integration sites and relevant genomic regions, as
well as the distance from genic integration sites to the closest
relevant genomic region, were determined using BEDtools
v2.27.1 (45). Principal component analysis of SPIN annota-
tion overlap frequencies was performed using the prcomp()
function in R (https://www.r-project.org/). Significance was
determined between gene density distributions, gene expres-
sion level distributions, and LEDGF/p75 occupancy dis-
tributions using a Wilcoxon rank sum test. Statistical tests
on the distance distributions from SPADs and SEs were
done by quantifying the number of integration sites in each
sample within ± 5 Mb or ± 3 Mb, respectively. Samples
were compared to random using the chi-squared test of in-
dependence. Calculated P-values were corrected using the
Benjamini-Hochberg procedure and a false discovery rate
(FDR) of 0.05. Significance levels denoted in figures are as
follows: * denotes 5 × 10−2 > P ≥ 10−2; ** denotes 10−2 >
P ≥ 10−3; *** denotes P < 10−3, ns denotes P ≥ 5 × 10−2.

Gene ontology (GO) analysis. GO analysis was per-
formed using Panther DB (http://www.pantherdb.org/)
(59). Unique gene lists for RIGs, RAGs, non-outliers, and
patient-derived integration sites were compared to H. sapi-
ens reference genome for statistical overrepresentation us-
ing the Panther GO-Slim Biological Process annotation set.
P-values were calculated using Fisher’s exact test and cor-
rected for multiple comparisons using an FDR of 0.05.
Complete lists of all statistically significant overrepresented
and underrepresented GO categories for each gene list are
reported in Supplementary Table S4.

Identification of overrepresented genes in patient-derived
samples. For comparison of integration targeting frequen-
cies in patient-derived genes to genes derived from in vitro
infection, the in vitro integration frequencies were averaged
across all 10 datasets. For this calculation, genes present in
vitro were stratified into RIG and non-RIG populations,
with the non-RIG population comprised of both RAG and
non-outlier genes. In vitro samples in which a gene was ab-
sent were considered to have an integration frequency value
of 0. To determine overrepresentation in patient-derived
samples, the expected number of integration events into a
given gene was calculated given the in vitro mean integra-
tion frequency and the patient-derived dataset sample size.
The expected number of integration events was then com-
pared to the observed number of integration events and sta-
tistical significance was assessed using Fisher’s exact test.
Calculated P-values were corrected using the Benjamini-
Hochberg procedure and an FDR of 0.05.

Orientation bias of genic integration sites was deter-
mined by first counting the number of integration events
in the same versus opposite transcriptional orientation as
the gene. Statistical significance of the differences between
the two numbers for each gene was determined using a bi-
nomial test. The clustering of integration sites within over-
represented genes was assessed by first calculating the rel-

ative positions of each integration site within a given gene
with respect to gene length. The position of each integra-
tion site was expressed as a value between 0 and 1, which
corresponded to transcription start and end sites, respec-
tively. To compare the patient-derived position distributions
to in vitro position distributions, a bootstrapping routine
was used. For each overrepresented patient gene, the in vitro
position distribution was randomly sampled to extract the
same number of integration sites as present in the patient-
derived data. This sampling routine was repeated 100 times.
For each gene, the shapes of the position distributions in
each random sample of the in vitro data were then com-
pared to the shape of the patient-derived distribution us-
ing a Kolmogorov-Smirnov test. The mean P-value from
the 100 individual comparisons for each gene is reported
in Supplemental Table S5.

RESULTS

Model generation

An unbiased model of random integration must accurately
describe the mean integration frequency per gene and the
range of possible integration frequency values per gene
for a given dataset. For general applicability, the model
should also account for how these values change across
integration site datasets of various sizes. Here, we derived
phenomenological models of random integration based
on distinct master collections of >7 million unique com-
putational integration sites generated by simulating com-
mon genome fragmentation strategies. Our models de-
scribe both random fragmentation (e.g. sonication) (60) and
pattern-based fragmentation according to specific restric-
tion endonuclease combinations including MseI/BglII and
NheI/AvrII/SpeI/BamHI (40,41,61) (Supplementary Ta-
ble S2). Model construction is described at-length in Mate-
rials and Methods. To assess the ability of our models to ac-
curately describe random integration, each master file was
iteratively resampled to generate new random datasets con-
taining 15 individual integration site files each. The num-
ber of outliers observed above and below upper and lower
model boundaries, respectively, were quantified for each file
in each dataset. False positive rate (FPR) and outlier num-
ber distributions are presented in Supplementary Figure S4
as box plots overlayed with the associated data points. For
dataset sizes of ≤∼100,000 sites, the FPRs of upper out-
liers were greater than corresponding lower outliers, which
is likely a combined effect of 1) the lower limit of the lower
boundary being strictly defined as 0, while there is no strict
upper limit, and 2) a larger fraction of genes harboring zero
integration events in smaller as compared to larger datasets
(see Supplementary Figure S2B). Even with this disparity,
the median FPR for all datasets was <1.6 × 10−3, demon-
strating that our approach works well to minimize the in-
troduction of type I errors over a wide range of sample sizes
(Supplementary Figure S4).

Application to experimentally-derived data

Analysis of integration sites from cells infected with HIV-1
in vitro has indicated that targeting preferences are largely
conserved between transformed and primary cell types (12),

https://www.r-project.org/
http://www.pantherdb.org/
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though this has not been formally quantified. Accordingly,
we used our models to categorize genic integration sites
from ten in vitro datasets that were generated by infecting
commonly used transformed and primary cell types includ-
ing HEK293T cells, Jurkat T cells, PBMCs, CD4+ T cells
and MDM. These datasets harbored between 18,806 and
960,641 unique intragenic and intergenic integration sites,
for a total of 1,736,842 sites across datasets (see Supplemen-
tary Table S2 for a study-wide summary of integration site
datasets).

Our models comprehensively identified genic integration
targeting frequencies that were greater than random (Figure
1A-J, blue data points), less than random (red data points),
and indistinguishable from random (non-outlier genes; grey
data points). Qualitatively, the overall pattern of genic inte-
gration targeting was strikingly similar across all 10 sam-
ples, with smaller genes (≤0.5 Mb) comprising the major-
ity of RIGs across samples (blue data points). Recurrent
avoided genes (RAGs; red data points) of various sizes were
additionally observed across all samples. Overall, the ma-
jority of RIGs and RAGs (≥ 80% of total) were identi-
fied as such in two or more of the samples (Figure 1K, L).
Genes identified as a RIG or RAG in 6 or more samples
represented 39% and 19% of each respective gene popula-
tion (Figure 1K, L).

As expected (62), genes were predominantly targeted for
integration across all datasets (Figure 1M). In some sam-
ples (293T #3, Jurkat #3, PBMC and EC CD4+ T), RIGs
were the predominant genic fraction and across all sam-
ples, RIG fractions significantly outnumbered correspond-
ing RAG fractions. Examination of total cross-sample oc-
currence (i.e. the total number of samples containing a given
gene independent of RIG/RAG classification) further high-
lighted the targeting bias towards RIGs (Figure 2A). Nearly
half of all RIGs (45%) were present in all 10 samples, with
92% present in six or more samples. Cross-sample occur-
rence of non-outlier genes, by contrast, was less than ran-
dom. From this we conclude that genic integration target-
ing preferences during HIV-1 infection in vitro are well rep-
resented across transformed and primary cell types. In to-
tal, we identified 3718 RIGs, 2150 RAGs and 15,560 non-
outlier genes; see Supplementary Table S3 for respective
gene lists.

To estimate the total numbers of RIGs and RAGs in the
human genome, cumulative gene numbers in each subpop-
ulation were plotted against cumulative number of genic in-
tegration sites. The shapes of these curves leveled off as a
function of integration site number, indicating that the num-
ber of identified RIGs and RAGs were approaching maxi-
mum values (Figure 2B). Fitting these data to rectangular
hyperbolae, we estimated maximum RIG and RAG values
of 4421 and 4815, respectively (dotted lines in Figure 2B).
Based on these fitted values, our analyses identified approx-
imately 84% of all RIGs and 45% of all RAGs. RIGs and
RAGs comprise just 13% and 14% of the annotated human
genes included in this study, respectively, with non-outliers
comprising the remaining 73% (Figure 2C).

Having established similar genic integration targeting
and avoidance profiles across in vitro integration datasets,
we next investigated the relative contribution of integra-
tion into RIGs, RAGs, and non-outliers in samples derived

from human patients. Patient data were stratified on the ba-
sis of ART treatment. Data derived from patients prior to
the start of ART treatment encompassed 13,311 integration
sites (11,456 genic sites) (37). Data from ART-treated pa-
tients contained 33,451 integration sites (28,085 genic sites)
(13,37,50). See Supplementary Table S2 for a summary of
integration site datasets and Supplementary Table S3 for
gene lists.

To facilitate comparisons between in vitro and patient
datasets, the fraction of genic integration sites in RIGs,
RAGs, and non-outliers from the 10 in vitro datasets were
averaged. Averaged in vitro, untreated patient, and ART-
suppressed patient datasets revealed statistically indistin-
guishable targeting distributions with respect to RIGs,
RAGs, and non-outlier genes (Figure 2D). Quantifying
numbers of integration events into RIG-matched versus un-
matched genes revealed that RIGs were also the predomi-
nant targets of recurrent integration in vivo (Figure 2E, F).

To ascertain the types of genes present in the different
populations, we performed gene ontology (GO) analysis
on RIG, RAG, non-outlier, untreated patient, and ART-
suppressed patient genes. In general, RIGs and patient-
derived genes were enriched for similar gene types, includ-
ing genes involved in mRNA synthesis and processing, cell
division, and protein modification (Supplementary Table
S4). In contrast, RAGs were generally enriched for genes
involved in neuronal processes (Supplementary Table S4).

The nuclear landscape of genic integration in vitro and in vivo

Previous studies have shown that HIV-1 integration is
biased towards highly expressed genes in gene-dense
chromatin regions and biased against heterochromatin
(23,62,63). Consistent with these results, we found RIGs
and patient-derived genes enriched relative to random in
both highly transcribed genes and in gene-dense regions
(Figure 3A, B). RAGs showed the opposite phenotype (Fig-
ure 3A, B). Non-outlier genes were not significantly differ-
ent from random with respect to gene expression but were
slightly biased towards gene-dense regions (Figure 3A, B).

Prior studies have shown that SEs tracked significantly
with RIGs, although not with bulk sites of HIV-1 integra-
tion (21,33). By analyzing the relatively small number of
46 RIGs, we previously concluded that RIGs more closely
tracked with SPADs than with SEs (21). To more compre-
hensively assess the roles of SEs and SPADs in HIV-1 in-
tegration targeting, we next analyzed the expanded gene
sets determined above. As shown in Supplementary Figure
S5A and B, we found that RIGs, non-outlier genes, as well
as genes from untreated and ART-suppressed patients sig-
nificantly tracked with SEs and SPADs, while the associ-
ation of RAGs with these genomic markers was less than
random. Because SPADs are enriched for SEs (53), we hy-
pothesized that these apparent similarities could be due to
the convolution of genomic features and that one might be
the dominant marker with respect to genic integration tar-
geting. To test this hypothesis, we took the SE annotations
from CD4+ T cells and removed all of the annotated regions
that overlapped with SPADs. We then repeated the calcula-
tions described above with respect to the nearest SPAD-free
SE region, which revealed that the previously observed en-
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Figure 1. Identification of genic subpopulations from in vitro integration site datasets. (A–J) Genic integration frequencies vs. gene length for the indicated
samples; total sites include intergenic and intragenic integrations. Upper outliers (RIGs) are depicted in blue, lower outliers (RAGs) are depicted in red,
and non-outliers are depicted in gray; data are superimposed onto corresponding random models that are depicted as light gray shaded regions. See
Supplementary Table S2 for previously published as well as de novo integration datasets used in this study. (K) Quantification of RIG and (L) RAG cross-
sample occurrence (CSO). The boxes in each bar represent the fraction of identified RIGs or RAGs in that sample that were similarly identified as RIGs
and RAGs in N other samples. (M) Genic integration targeting frequencies. Bar height represents the total fraction of genic integration, with colored
subsections representing relative RIG (light blue), RAG (medium blue), and non-outlier (dark blue) proportions.

richments of RIGs and patient-derived genes for SEs were
lost (Supplementary Figure S5A, C). In contrast, the re-
verse analysis––the distance from each integration site to
the nearest SE-free SPAD region––showed the same trends
as the original SPAD analysis (Supplementary Figure S5B,
D). These data suggest that of the two annotated features,
SPADs are the dominant predictive marker for genic HIV-
1 integration and that the observed correlation with SEs is
likely the result of SE proximity to SPADs.

Along with SPADs, prior studies have additionally high-
lighted LADs as highly predictive genomic markers of bulk
HIV-1 integration site selection (20,21,40). Combined with
results of viral imaging (20,21,26), these findings informed
the spatial pattern of HIV-1 integration targeting. However,
SPADs and LADs provide but two genomic markers for
nuclear interior versus peripheral regions, respectively. The
spatial positioning inference of the nuclear genome (SPIN)
study recently improved spatial resolution of nuclear com-
partmentalization by incorporating genomic markers for
10 regions, which span from Lamina and Lamina-like at
the nuclear periphery to Interior Active regions and Speck-
les in the nuclear interior (34). To assess the relevance of
SPIN markers for HIV-1 integration targeting studies, we
first mapped known positive and negative correlates such

as gene-density and centromeric repeats, respectively (Sup-
plementary Figure S6) (20–23,27,31,33,40,62–65). As ex-
pected, gene density, gene expression, RNA polymerase II
occupancy, DNase hypersensitivity, CpG islands, SPADs,
and SEs generally correlated with Speckles and Interior
Active regions 1–3, while LADs and centromeric repeats
mapped to peripheral regions Near Lamina 1, Near Lamina
2, Lamina-like, and Lamina (Supplementary Figure S6A–
G). Given these results, we next employed SPIN annota-
tions to define the genomic landscape of genic integration
targeting. Integration into RIGs was strongly biased to-
wards interior regions (Speckles and Interior Active region
1) while integration into RAGs was most biased towards the
peripheral Near Lamina and Lamina regions (Figure 3C).
Integration in non-outlier genes also showed bias towards
interior regions, most strongly towards Interior Active re-
gion 3, and showed stronger bias than RIGs towards Near
Lamina regions 1 and 2. Untreated and ART-suppressed
genic integration sites from patients, like RIGs and non-
outlier sites, were enriched in Speckle and Interior Active
genomic regions (Figure 3C).

To facilitate interpretation, we performed a principal
component analysis, the results of which are presented as
a single 2D plot. The first two components accounted for
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Figure 2. Genic subpopulations in the human genome. (A) Total cross-sample occurrence (CSO) of RIGs, RAGs, and non-outlier (NO) genes. (B) Plots of
cumulative RIGs (blue datapoints) and RAGs (red points) versus cumulative genic integration sites. Solid lines depict the fit of each dataset to a rectangular
hyperbola; dotted lines depict respective best-fit m parameters, interpreted as theoretical maximum numbers of RIGs or RAGs in the human genome. (C)
Estimated fractions of RIGs (13%), RAGs (14%) and NO genes (73%) in the human genome based on the fits shown in (B). (D) Fractions of genic
integration events in RIGs, RAGs, and NO genes in averaged in vitro, untreated patient-derived, and ART-treated datasets. The degree of integration into
each gene category is the same across all three samples. (E, F) The number of integration events into RIG-matched or unmatched genes in (E) untreated
patient-derived or (F) ART-treated integration datasets. Unmatched histograms (light blue) abut RIG-matched histograms (dark blue).

97.4% of the total variance in the SPIN mapped data (Fig-
ure 3D). Unsurprisingly, the first principal component was
defined primarily by integration frequencies into chromatin
near Speckles and near Lamina, respectively, while the sec-
ond principal component was defined primarily by integra-
tion frequencies in Interior Active regions 2–3 and Inte-
rior Repressive region 1 (Figure 3D). Notably, the patient-
derived data segregated very similarly to the in vitro pooled
dataset, further highlighting the similarities in integration
targeting in vitro and in vivo (Figure 3D).

Identification of overrepresented genes in patient samples

Previous studies have analyzed integration sites that arose
in vivo before the initiation of ART (16,37) and then dur-
ing ART treatment (12–14,16,37,48,66). Critically, however,
the precise interplay among genic integration sites that arise
during the initial wave of HIV-1 infection, which was mod-
eled herein using in vitro datasets, with these patient-derived
populations is not clearly understood. Several prior studies
identified integrations in BACH2, MKL2 and STAT5B that
facilitated cell survival in vivo (12–14,35,36). A more recent
study additionally highlighted proviral insertions in MKL1,
IL2RB, MYB and POU2F1 that likely contributed to cell
survival in vivo (37).

Genic proviruses that may confer cell survival in vivo have
been defined using the following metrics: (i) overrepresenta-
tion of integration frequency relative to in vitro datasets, (ii)
a strong bias towards integration in the same transcriptional
orientation as the gene and (iii) integration site clustering
at particular locations within the gene (12,35,37). Here, we
devised a robust method to systematically compare patient-
derived and in vitro data with respect to these features. Over-
representation was determined by comparing the observed
number of integration events per gene in patient-derived
data to the expected number of integration events in an
equally sized dataset based on in vitro data. Gene names,
mean integration frequency values, and standard deviations
calculated from the in vitro data are provided in Supplemen-
tary Table S5.

BACH2, one of the three genes initially reported to confer
growth advantage in vivo, was the only gene from untreated
patient samples that scored as overrepresented relative to
in vitro data (Figure 4A). Importantly, MKL2 and STAT5
additionally scored in ART-treated samples as significantly
overrepresented (Figure 4A, Supplemental Table S5). Seven
other genes from the ART-treated dataset were additionally
significantly overrepresented relative to in vitro data (Fig-
ure 4A, Supplemental Table S5). Of these, CEACAM21,
KANSL1, PACS1 and STAT3 failed the tests for orienta-



Nucleic Acids Research, 2021, Vol. 49, No. 13 7339

Figure 3. Comparison of genic integration sites with genomic features. (A) Gene expression distributions for in vitro RIGs, RAGs, and non-outlier (NO)
genes, as well as untreated and ART-treated patient-derived genes. (B) Gene density distributions for the same samples used in (A). Significance values
in panels A and B were determined relative to random. (C) Overlap of integration sites from RIG, RAG, NO gene, pooled in vitro, untreated patient,
ART-treated patient and random datasets with respect to 10 SPIN genomic regions (34). The degree of overlap with each genomic region is reported as
the fraction of total integration in each dataset. Significance signifiers are reported in either light or dark gray to denote significantly less than random or
significantly more than random, respectively. (D) Principal component analysis of the data presented in (C). The first two principal components are shown
on the X- and Y-axes with the percentage total variance explained by these principal components indicated in the axis titles. Loadings are shown as gray
arrows and labeled with their respective feature. In panels A–C, * denotes 5 × 10−2 > P ≥ 10−2; ** denotes 10−2 > P ≥ 10−3; *** denotes P < 10−3; ns
denotes non-significant.

tion bias and integration site clustering, suggesting that in-
tegrations into these four genes are unlikely to confer cell
survival in patients (Figure 4B-C, Supplemental Table S5).
In contrast, IL2RB, MKL1 and MDC1 genic proviruses all
showed strong orientation bias in patient samples (Figure
4B, Supplemental Table S5). Integration sites in MKL1 and
MDC1 were additionally significantly clustered relative to
in vitro distributions (Figure 4C, Supplemental Table S5).
While the distribution of integration sites in IL2RB in pa-
tients did not score as significantly clustered (P = 0.065),
this trend was nevertheless evident via visual inspection
(Figure 4C). IL2RB harbored comparatively low numbers
of in vitro and patient-derived integration sites, indicating
that deeper integration site datasets might potentially un-
veil significant clustering of IL2RB resident proviruses in
patient samples as well.

Roles of HIV-1 integration targeting cofactors on the genic
integration landscape

One of the principal benefits of our methodology is that
RIGs and RAGs can be readily identified from a lim-
ited number of laboratory-based or clinical integration site

databases. Previously, we characterized the top 100 RIGs
that arose from infecting HEK293T cells as well as a set of
isogenic LEDGF/p75 (LKO), CPSF6 (CKO), and double
LEDGF/p75 + CPSF6 (DKO) knockout cells in vitro (20).
Here, we used our methodology to expand the depth of RIG
calling under these infection conditions and to identify as-
sociated RAGs. We moreover included a second cell type,
Jurkat T cells, as well as two associated LKO derivatives
(40). Unlike our experience with HEK293T cells, we failed
to identify Jurkat CKO cell clones despite extensive effort.
We therefore transiently knocked down CPSF6 in Jurkat
T cells using siRNA. Western blot analyses confirming the
CPSF6 knockdown (CKD) phenotype and associated levels
of HIV-1 infection are provided in Supplementary Figure
S7.

Plots of genic integration frequency versus gene length
for WT HEK293T and Jurkat cells alongside factor-
depleted cells are shown in Figures 5A–K. Loss of
LEDGF/p75 yielded ∼85–90% reductions in recurrent in-
tegration (compare Figures 5A to B and I to J and K; Figure
5L), while the extent of recurrent integration in CKO/CKD
samples was more similar to WT than the LKO samples
(compare Figures 5A–C, E–F and G–H; Figure 5L; Sup-
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Figure 4. Identification of genes that can confer cell survival in patients. (A) Plot depicting genes that were found to harbor more integration events than
expected based on in vitro integration frequencies. The plot shows –log10(adjusted P-value) for each gene in the ART-treated and untreated patient-derived
datasets. The dashed line denotes P = 0.05. RIGs and non-RIGs are colored in dark and light blue, respectively. Overrepresented genes are indicated. (B)
Plot depicting the fraction of integration sites in the same transcriptional orientation versus opposite orientation as the indicated gene. (C) Plots showing
relative position of every integration site in the indicated gene for both in vitro and patient-derived datasets. Positions are reported relative to gene length,
with 0 corresponding to the 5′ end of the gene and 1 corresponding to the 3′ end. For plots with significance indicators, * denotes 5 × 10−2 > P ≥ 10−2;
** denotes 10−2 > P ≥ 10−3; *** denotes P < 10−3; ns denotes non-significant.

plementary Table S3). Consistent with our prior report (20),
a fraction of HEK293T CKO RIGs were noticeably larger
than RIGs observed in WT cells. This trend was also evi-
dent in the Jurkat CKD samples, though to a lesser extent.
The degree of recurrent integration in DKO HEK293T cells
was decreased relative to both WT and CKO cells (compare
Figure 5A and C to D; Figure 5L; Supplementary Table S3).
Altogether, these data indicate that LEDGF/p75 is a key
driver of recurrent integration.

To assess host factor roles independent of cell type, the
data was combined into master CKO/CKD and LKO sam-
ple files; previously-called RIGs, RAGs, and non-outlier
genes (provided in Supplementary Table S3) were consid-
ered as representative WT cell data. Despite the low overall
number of RIGs in LKO cells, the RIGs that were identified
extensively overlapped with WT RIGs (83%, Figure 5M).
CKO/CKD and DKO cell RIGs overlapped comparatively
less well with WT RIGs (52% and 34%, respectively; Figure
5M). CKO/CKD RIGs showed much greater cross-sample
occurrence than LKO RIGs, with 55% of CKO/CKD RIGs
appearing in two or more of the three samples and 21% in
all three (Figure 5N). In contrast, only 29% of LKO RIGs
appeared in two or more samples and just 1% appeared in
all three (Figure 5M). In stark contrast to RIGs, we found
substantial overlap with WT RAGs across all three LKO,
CKO/CKD and DKO datasets (Figure 5O).

Previous studies have shown that bulk HIV-1 integra-
tion site patterns in DKO cells represent a hybrid between
CKO and LKO cell phenotypes (20,27,40). Integration in
DKO cells is biased towards transcription start sites, simi-
lar to LKO cells, but is additionally biased towards LADs
and gene sparse regions, as in CKO/CKD cells (20,27,40).
Moreover, the fraction of genic integration in DKO cells
is near-random and lower than in either CKO or LKO
HEK293T cells (Figure 5L) (20,27,40). As shown in Fig-
ures 5D and L, however, there is still a non-negligible de-
gree of genic targeting bias in DKO cells. To better un-
derstand the differences in targeting biases between WT,
LKO, CKO/CKD, and DKO cells, we next analyzed the
nuclear compartmentalization of integration site selection
and its relationship to LEDGF/p75 chromatin occupancy.

Although the total number of LKO cell RIGs and RAGs
was comparatively small compared to other cell types, LKO
cell nuclear compartmentalization trends largely mirrored
those of WT samples, especially for respective RIG and
non-outlier genic integration sites (Figure 6A; see Figure
6B for associated principal component analysis). While
CKO/CKD RIGs largely mapped to Lamina-proximal re-
gions, CKO/CKD non-outlier sites, like WT and LKO sam-
ple non-outliers, favored Interior Active regions (Figure 6A,
B). Overall, integration events in non-outlier genes from all
infection conditions were highly enriched in the Interior Ac-
tive 3 genomic region (Figure 6A, B). DKO cell RIGs were
enriched in Near Lamina 2 and Lamina genomic regions
(Figure 6A). RAGs from all cell types showed strong bias
towards Lamina regions (Figure 6A).

Analysis of integration frequencies per gene across cell
types indicated that LEDGF/p75 was a principal driver
of recurrent integration. To better understand the role
of chromatin-bound LEDGF/p75 in integration target-
ing and recurrent integration, we quantified the occupancy
of LEDGF/p75 in each of the 10 SPIN compartments.
To our surprise, we found that LEDGF/p75 occupancy
in Speckle regions – the nuclear compartment most pre-
ferred for integration targeting in vitro and in vivo – was
the lowest across all nuclear compartments (Figure 6C).
LEDGF/p75 occupancy was highest in Interior Active
3 and Near Lamina 2 regions (Figure 6C, Supplemental
Figure S8A). Normalizing LEDGF/p75 occupancies on
per gene bases across nuclear compartments revealed a
largely compartmental-independent distribution, including
Speckle regions (Supplemental Figure S8B, C). To further
investigate the relationship between LEDGF/p75 chro-
matin binding and integration site selection, we compared
integration site locations in RIGs to LEDGF/p75-occupied
regions in RIGs. Overall, just 1,339 RIGs (36% of all RIGs)
contained annotated LEDGF/p75-occupied regions. This
RIG subset was found to contain a median value of two
LEDGF/p75-occupied regions per gene (Figure 6D). The
median distance from a given integration site to the nearest
LEDGF/p75-occupied region in the same gene was ∼10 kb
(Figure 6E). This finding is consistent with the observation
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Figure 5. A dominant role for LEDGF/p75 in recurrent HIV-1 integration targeting. (A–K) Genic integration frequencies vs. gene length for the indicated
samples. Upper outliers (RIGs) are depicted in blue, lower outliers (RAGs) are depicted in red, non-outliers (NOs) are depicted in gray. The data are
superimposed onto corresponding random models that are depicted as light gray shaded regions. See Supplementary Table S2 for previously published
as well as de novo integration datasets used in this study. (L) Sample genic integration targeting frequencies. The bar height represents the total fraction
of genic integration, with subsections representing relative proportions of RIGs (light blue), RAGs (medium blue), and NOs (dark blue). Random genic
integration targeting is ∼51% (Supplementary Table S2). (M) Relative overlaps of LKO, CKO/CKD, and DKO RIGs with WT RIGs. The RIG-matched
fraction of each dataset is depicted in dark blue and the unmatched fraction is depicted in light blue. (N) Cross-sample occurrence (CSO) of CKO/CKD
RIGs and LKO RIGs. The percentage of CKO/CKD RIGs with CSO values of 1, 2 and 3 are 43%, 34% and 23%, respectively. In contrast, the percentage
of LKO RIGs with CSO values of 1, 2, and 3 are 73%, 26% and 1%, respectively. (O) The relative overlap of LKO, CKO/CKD, and DKO RAGs with WT
RAGs. The RAG-matched fraction of each dataset is depicted in dark blue and the unmatched fraction is depicted in light blue. All LKO and CKO/CKD
RAGs and 99% of DKO RAGs overlapped with WT RAGs.

that the overall integration site distribution across genes
does not strongly correlate with the overall distribution of
LEDGF/p75-occupied regions (Supplemental Figure S8D,
E). It should be noted, however, that 3.1% of integration
sites in RIGs did overlap with LEDGF/p75-occupied re-
gions of chromatin (Figure 6E).

DISCUSSION

Gene targeting biases in vitro and in vivo

The introduction of the concept of RIGs into the field
of HIV-1 integration site mapping has provided a frame-
work for the explicit characterization of repeatedly tar-
geted genes. This is of obvious utility because HIV-1 prefers

genes overall for integration and a fraction of initial genic
proviruses can persist and clonally expand in patients on
ART [reviewed in (67) and (68), (8–12,14,16,66,69)]. In this
report, we greatly expand on this idea and explicitly cate-
gorized individual genes according to the extent to which
they were targeted for integration. We provide a nearly com-
prehensive list of recurrently targeted genes, as well as ap-
proximately half of all genes recurrently avoided for inte-
gration. We additionally provide a list of genes consistently
targeted for integration at levels indistinguishable from ran-
dom. Moreover, we demonstrated that the overwhelming
majority of genic integration events from both in vitro and
in vivo infections take place in the genes that we identify
as being recurrently targeted. These results clearly support
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Figure 6. Sites of LEDGF/p75 occupancy negatively correlate with RIG nuclear compartmentalization. (A) Overlap of integration sites in each of the
indicated datasets with SPIN genomic regions (34). The degree of overlap with each genomic region is reported as the fraction of total integration in each
dataset. Significance values were determined relative to random. Significance signifiers are reported in either light or dark gray to denote significantly
less than random or significantly more than random, respectively. (B) Principal component analysis of the data presented in (A). The first two principal
components are shown on the X- and Y-axes with the percentage total variance explained by these principal components indicated in the axis titles.
Loadings are shown as gray arrows and labeled with their respective feature. (C) LEDGF/p75 occupancy across SPIN nuclear compartments. (D) The
number of annotated LEDGF/p75 regions per RIG. Only RIGs with at least 1 annotated LEDGF/p75 region were included. (E) Absolute distance (in
bp) from each integration site in a given RIG to the closest LEDGF/p75-occupied region in the same gene.

the idea that not only is HIV-1 integration biased towards
genes, but that a specific subset of genes is significantly more
likely to be targeted for integration than others. Impor-
tantly, we also established operational links between inte-
gration targeting biases stemming from initial infection and
biases that are present at more advanced phases of infection.
In this regard, BACH2 was the only gene from patients prior
to ART treatment that harbored more integrations than ex-
pected based on in vitro targeting frequency (Figure 4A).
As expected (12,13,35,37), BACH2 integrations were fur-
ther enriched in ART-treated patient samples.

In all, we identified just 6 genes as likely drivers of in-
fected cell survival in vivo. Five of these six genes––STAT5B,
BACH2, MKL1, MKL2 and IL2RB––were similarly iden-
tified by Coffin et al. (37). That study also reported MYB
and POU2F1 as genes linked to cell survival (37). Accord-
ing to our method, MYB was not overrepresented after P-
value adjustment for multiple comparisons, and patient in-
tegration sites did not significantly cluster relative to the dis-
tribution of genic proviruses in vitro (Supplemental Table
S5). Integrations in MYB in patients did, however, display
pronounced orientation bias (Supplemental Table S5). Po-
tentially, the comparatively small number of patient-derived
integration events in MYB contributed to our findings, in-
dicating that deeper integration site datasets could reveal
MYB as a significant hit. By contrast, POU2F1 in our hands
failed all three tests, including overrepresentation before P-
value adjustment (Supplemental Table S5). MDC1, which
was uniquely called by our methodology, plays a key role in

DNA damage response and can negatively regulate apopto-
sis (70,71). In this way, MDC1 is similar to STAT5B, whose
constitutive expression in peripheral T cell lymphoma has
been linked to anti-apoptotic phenotypes (72).

HIV-1 preferentially targets cancer-related genes for in-
tegration in vitro (31) and cells harboring proviruses in
cancer-related genes can persist and clonally expand in
ART-suppressed patients (13). Proviral-mediated deregula-
tion of cellular proto-oncogene expression, which is known
to occur in animal cancer models (1–3), has accordingly
been proposed to play an important role in homeostasis and
expansion of HIV-1-infected reservoir cells (13,73). How-
ever, based on our data, it follows that the vast majority of
genic proviruses in patients do not directly drive cell sur-
vival. Consistent with this interpretation, two recent stud-
ies found that clonal expansion of infected cells in vivo is
predominantly antigen-driven, rather than driven by genic
proviruses (74,75). How many more genes may meet the cri-
teria for integration-linked cell survival is unclear. However,
considering our results alongside the recent results from
Coffin and colleagues (37), it seems unlikely that the ulti-
mate number will rise significantly above the six or seven
genes identified in these studies. Deeper in vitro and patient-
derived integration datasets are required to definitively ad-
dress this issue.

RIG, RAG, and non-outlier genes were strikingly sim-
ilar between in vitro, untreated, and ART-treated integra-
tion site datasets (Figure 2D–F). By applying recently re-
leased SPIN annotations, which stratify chromatin into 10
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compartmentalized regions, we determined that integration
sites in RIGs were predominantly in speckle and speckle-
adjacent chromatin regions (Figure 3C, D). Other actively
transcribed chromatin regions showed substantially less en-
richment for integration sites in RIGs relative to non-outlier
genes (compare interior active 2–3 regions to speckle and
interior active 1 regions in Figure 3C). We additionally
showed that integration site localization in patients very
closely resembled the trends observed in vitro (Figure 3C,
D). A remaining point of interest is how nuclear compart-
mentalization might relate to and possibly influence provi-
ral gene expression.

Host factors in integration site targeting

Our analyses of HEK293T and Jurkat T cells depleted
for LEDGF/p75 or CPSF6 indicated a dominant role for
LEDGF/p75 in recurrent integration. LEDGF/p75 knock-
out HEK293T cells showed a marked decrease in recurrent
integration relative to WT cells. Similarly, HEK293T cells
doubly knocked out for both LEDGF/p75 and CPSF6 sup-
ported significantly less recurrent integration than both WT
and CKO cells. It is notable, however, that DKO cells still
supported some degree of recurrent integration despite hav-
ing near-random levels of overall genic integration.

Current models for the roles of LEDGF/p75 and CPSF6
in HIV-1 integration targeting invoke that the interaction
of capsid with CPSF6 licenses the PIC to move beyond
the nuclear periphery to interior regions of the nucleus,
where the interaction of integrase with LEDGF/p75 helps
to guide integration into the interior regions of gene bodies
(20,21,26,31,40,76). The strong degree of overlap between
RIGs in WT cells and RIGs in LKO cells suggests that in
LKO cells, PICs are shuttled to the same general region of
the nucleus as in WT cells, which is consistent with results
of prior imaging studies (20,77). It is currently unclear why
loss of the integrase-LEDGF/p75 interaction would dra-
matically reduce recurrent integration. LEDGF/p75 can
significantly stimulate the strand transfer activity of recom-
binant HIV-1 integrase protein in vitro (78,79), and we envi-
sion this same principle likely applies in cells. In the absence
of LEDGF/p75, this stimulatory effect is missing, yielding
overall reduced numbers of integration events and hence im-
paired recurrent integration.

Our analysis of LEDGF/p75 occupancy per nuclear
compartment showed lower overall occupancy in Speckle
regions relative to all other nuclear compartments. When
normalized for gene content, this trend was largely lost,
indicating that genic LEDGF/p75 occupancy is relatively
constant across nuclear regions. Despite this, RIG targets
in WT cells and in LKO cells were highly compartmental-
ized to Speckles (Figure 6A, B). In addition, integration
sites in RIGs predominantly existed several kb away from
the closest LEDGF/p75-occupied region (Figure 6E). Our
findings appear at least partially consistent with an earlier
DamID study that found that not all LEDGF/p75 chro-
matin binding regions overlapped with sites of HIV-1 inte-
gration, and that integration occurred within a ‘wide win-
dow’ around sites of chromatin-bound LEDGF/p75 (64).
That study additionally reported that 4.65% of 861 ana-
lyzed integration sites directly overlapped with ‘LEDGF

islands’ and that 30% of integration sites were within 3.5
kb of the center of LEDGF/p75 islands (64). We simi-
larly found that 3.1% of ∼473,000 integration sites over-
lapped with LEDGF/p75-occupied regions and that 27%
were within a 3.5 kb window (Figure 6E). Minimally, these
observations suggest that chromatin-bound LEDGF/p75
alone, as identified by either ChIP-seq or DamID, is in-
sufficient to completely account for the well-established
roles of LEDGF/p75 in genic integration targeting and re-
current integration. A minor fraction of chromatin-bound
LEDGF/p75 does however closely correlate with HIV-1 in-
tegration, as evidenced by the 3.1% overlap of integration
sites in LEDGF/p75-occupied regions. We note that our
conclusions regarding LEDGF/p75 are primarily drawn
from a single ChIP-seq dataset published by a different lab-
oratory (32). More rigorous conclusions would likely re-
quire additional LEDGF/p75 chromatin binding data.

LEDGF/p75 has long been thought to tether HIV-1 in-
tegrase to chromatin via its chromatin-reader PWWP do-
main and AT-hooks (28,80–84). However, LEDGF/p75
harbors a so-called extended AT-hook, and thus might dis-
play binding affinity for RNA as well (85). LEDGF/p75
has additionally been shown to interact with various splic-
ing factors (31). It is possible that in addition to tethering
HIV-1 integrase as a statically-bound chromatin element,
LEDGF/p75 works as a dynamic RNA and/or splicing
factor-bound species to drive recurrent integration into the
interior regions of gene bodies. Further investigations are
warranted to differentiate the potential roles of primarily
static versus dynamic LEDGF/p75 populations in HIV-1
integration targeting.

Genes avoided for integration appeared independent of
cellular LEDGF/p75 or CPSF6 content, indicating that
RAGs are operationally ‘invisible’ to HIV-1 PICs under
these infection conditions. RAGs from various cell types
were moreover enriched in Lamina regions of chromatin.
Because HIV-1 preferentially targets active genes for inte-
gration (62), it seems likely that the comparatively low ex-
pression levels of RAGs additionally contributed to their
apparent inaccessibility. Due to the predominance of neu-
ronal GO terms among these genes, it is of interest to test if
infection of neuronal-specific cell types such as microglia or
astrocytes (86) shifts the balance of RIG/RAG targeting.

Integration into non-outlier genes was interestingly en-
riched in Interior Active 3 region regardless of cellular
CPSF6 and LEDGF/p75 content (Figure 6A). Although
this region was also enriched for LEDGF/p75 occupancy,
the statistical enrichment of integration in non-outlier genes
in LKO and DKO cells indicates that LEDGF/p75 occu-
pancy is unlikely to drive this phenotype. Plausibly, Interior
Active 3 region is open chromatin between the nuclear pore
and preferentially targeted Speckle and Interior Active 1 re-
gions that the PIC can readily target (34).
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