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Abstract

Diffusion MRI (dMRI) is widely used to measure microstructural features of brain white matter, but commonly used dMRI
measures have limited capacity to resolve the orientation structure of complex fiber architectures. While several promising
new approaches have been proposed, direct quantitative validation of these methods against relevant histological
architectures remains missing. In this study, we quantitatively compare neuronal fiber orientation distributions (FODs)
derived from ex vivo dMRI data against histological measurements of rat brain myeloarchitecture using manual recordings
of individual myelin stained fiber orientations. We show that accurate FOD estimates can be obtained from dMRI data, even
in regions with complex architectures of crossing fibers with an intrinsic orientation error of approximately 5–6 degrees in
these regions. The reported findings have implications for both clinical and research studies based on dMRI FOD measures,
and provide an important biological benchmark for improved FOD reconstruction and fiber tracking methods.
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Introduction

Diffusion magnetic resonance imaging (dMRI) [1,2] is a

powerful tool increasingly applied in clinical and research settings

for investigating structural properties of biological tissue in vivo

[3,4]. The basic concept of dMRI is to quantify the microscopic

self diffusion of water along prescribed directions in three-

dimensional (3D) space using a series of diffusion sensitive MR

images [5]. In biological tissue, the diffusion-driven displacements

of water molecules are impeded by intra- and extra-cellular tissue

components [6], and therefore their measured displacement

distributions provide unique microstructural and architectural

information in both normal and pathologic brain tissue [7].

The standard dMRI method is diffusion tensor imaging (DTI)

[8], which uses a single 3D Gaussian distribution model for the

measured apparent diffusion coefficient (ADC) in each imaging

voxel. The shape and orientation of the Gaussian distribution is

fully specified by its covariance matrix, or diffusion tensor (DT). In

coherent, densely packed, white matter fiber bundles, the direction

of fastest diffusion, given by the principal axis (or primary

eigenvector) of DT, points along the main axis of the fiber bundle

and is commonly used to map the trajectory of white matter fiber

tracts in the brain [9–11]. However, while the orientation of the

DT has been validated in large fiber bundles with coherent fiber

orientations in brain [12–14] and myocardial tissues [15–17], the

tensor model cannot be used to resolve multiple fiber bundles

within voxels containing more than one principal direction [18].

Such complex fiber architectures frequently occur both in gray

and white matter regions containing crossing or branching fiber

tracks, and as a consequence of partial volume effects when

different neighboring tissue architectures are included in the same

voxel. In both cases, the ADC will have multiple diffusion peaks

and the DT no longer provides an accurate mathematical

description of the apparent diffusion patterns.

This limitation of DTI has prompted numerous efforts to

develop dMRI techniques capable of resolving complex fiber

architectures within voxels. Diffusion spectrum imaging (DSI) [19]

is a popular model-free method that applies the classical formalism

of ‘‘q-space’’ theory [20,21] to recover the three-dimensional (3D)

diffusion propagator, or displacement spectrum in each voxel. The

orientation structure of the diffusion propagator can be revealed

by summing the propagator in the radial direction, yielding a

measure that quantifies the overall likelihood of water diffusion in

a given direction in 3D space. This derived function, called the

water diffusion orientation distribution function (ODF) can be

used as a surrogate measure of complex fiber orientations within

voxels [19,22]. A related model-free method called q-ball imaging

(QBI) [23] provides an alternative approach for recovering the

diffusion ODF in each voxel using less time intensive and reduced

encoding (spherical) diffusion acquisition protocols.
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While DSI and QBI are established model-free techniques for

recovering important aspects of the water diffusion function in

tissue (through measurement of the diffusion propagator or ODF),

they do not provide a direct quantitative description of the

underlying distribution of fibers or the intrinsic diffusion properties

of these fibers [24]. This additional level of inference requires a

biophysical model for the diffusion properties of the tissue fibers.

One popular model-based method is to model the diffusion

function of the neuronal fibers with a single diffusion tensor, where

the parallel and perpendicular diffusivity of the tensor is fixed for

all fibers within the voxel. Under this model, the intrinsic neuronal

fiber orientation distribution (FOD) can be estimated via spherical

deconvolution of the diffusion signal with a tensor response

function [24–29] or using more sophisticated Bayesian methods

[30,31]. Similar to the water diffusion ODF, the peaks of the FOD

can reveal the orientation structure of complex fiber architectures

within voxels and is gaining popularity for use in fiber tracking

applications [25,32]. Yet another model-based approach is to

impart a composite model for the restricted and hindered water

inside and outside the myelinated axons to obtain estimates of

white matter fiber orientations [33] and diameter distributions

[34,35] within voxels.

To date, validation of the orientation structure of both the water

diffusion ODF and underlying FOD have primarily involved

numerical simulations in conjunction with qualitative comparison

with known anatomical features [25–29,36–38], and comparisons

with ex vivo biological [19,39–41] and non-biological [39,42–44]

diffusion phantoms. Thus, there is a lack of direct quantitative

validation against realistic biological fiber architectures, and this

poses an important limitation to the further development of

improved FOD methods and studies which seek to apply these

methods for research and clinical purposes.

To amend this, we here quantitatively compare FOD measures

derived from ex vivo dMRI data against histological measures of rat

brain myeloarchitecture. We conclude that FOD measures derived

from tomographic dMRI data provide an accurate characteriza-

tion of underlying myelinated fiber orientation distributions, even

in regions with complex fibers architectures where the application

of DTI is limited.

Results

High b-value q-space imaging (QSI) data were acquired from

fixed adult rat brains that had been immersed in a contrast

enhancing gadolinium solution (MagnevistH [45]). Following

tomographic imaging, coronal histological sections of the tissue

were obtained and stained for myelin and high resolution digital

images acquired. Tomographic and histological images from

corresponding regions-of-interest (ROIs) were co-registered using

affine transformations and quantitatively compared.

ROI specification
Our first objective was to identify suitable ROIs in which 3D

FODs can be compared to inherently 2D, coronally sectioned

histological data. We focused our analysis on two ROIs with little

or no through-plane (anterioposteriorly oriented) fiber orientations

containing 1) coherently oriented fibers, or 2) more complex

crossing fiber architectures where the DT model is known to be

insufficient. The ROIs were selected on the basis of color-coded

DT maps, 3D reconstructions of the DT and FOD, and visual

inspection of myelin stained histological sections (Figs. 1, 2). The

first region selected (ROI-1) was a 164 voxel grid within an area of

the anterior part (genu) of the corpus callosum containing high

densities of within-plane, mediolaterally oriented commissural

Figure 1. Selection of regions-of-interest. Anatomical ROIs containing coherent or crossing fiber orientations without anterior-to-posteriorly
orientated fibers were identified using red-green-blue (RGB) maps of the preferred (A,A9,C,C9) and non-preferred (B,B9,D,D9) diffusion direction,
indicated by the first and third eigenvector of the DT, respectively. Voxel colors indicate the direction of the respective eigenvectors (cf. color code
insert, bottom left), while the voxel brightness is given by the degree of linear and planar diffusion anisotropy for the preferred and non-preferred
maps, respectively. (A,B) Coronal RGB maps through the genu of the corpus callosum, and (C,D) coronal RGB maps through the brain stem at level of
the superior colliculus (position indicated on the 3D rat brain insert). (A9–D9) Overlay of RGB maps and corresponding myelin stained section images.
The bright red color in (A,A9) indicates a high degree of linear anisotropy with left-right orientation, consistent with coherent mediolaterally oriented
commissural fibers in this region (see, also Fig. 2C). In the corresponding non-preferred map (B,B9), the same voxels are dark, indicating a lack of
planar diffusion anisotropy. The bright blue color of the non-preferred map in (D,D9) indicates a high degree of planar anisotropy (typical of crossing
fibers, see, also Fig. 2D) within the coronal plane. In the corresponding preferred map (C,C9) these voxels are dark, consistent with a lack of uniformly
oriented fibers. For our quantitative analysis, we selected four voxels in a 164 grid in the bright red region in the corpus callosum (ROI-1; dotted
white frame in A,A9,B,B9) and twelve voxels in a 364 grid in the bright blue region in the tectum (ROI-2; dotted white frame in C,C9, D,D9). dpg, deep
gray layer of the superior colliculus; dpwh, deep white layer of the superior colliculus; gcc, genu of the corpus callosum. Scale bars, 1 mm.
doi:10.1371/journal.pone.0008595.g001
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fibers [46–48]. These orientations are apparent from red colored

voxels in the color-coded DT maps (Figs. 1A,B). Because the DT

model has previously been validated in regions with uniform

fiber orientations [12–15], this region was used primarily as a

benchmark to confirm that both the DT and FOD provided

accurate assays of myeloarchitecture in this region. The second

region selected (ROI-2) was a 364 voxel grid within an area of the

deep gray and white layers of the superior colliculus containing

transversely oriented bundles of intratectal and tectal afferent and

efferent projection fibers [49,50] (Figs. 1C,D; 2D). Here the color-

coded DT maps showed planar ‘‘disk-like’’ diffusion profiles

indicative of crossing fibers oriented within in the coronal plane

(Fig. 1D. blue color). In both ROIs assessment of the (coronal)

histological sections confirmed presence of predominantly in-plane

oriented myelinated fibers (Fig. 2C,D), suitable for two-dimen-

sional histological analysis of fiber orientations.

Qualitative comparison of DT, FOD and
myeloarchitecture

Our second objective was to assess the resemblance of DT and

FOD measurements with histological visualizations of myeloarch-

itecture in the selected ROIs. In ROI-1, 3D DT and FOD

reconstructions across all six animals showed the expected ‘‘cigar-

like’’ profiles with left-right orientation (Fig. 2E). In ROI-2, 3D

DT reconstructions in all six animals confirmed the ‘‘disk-like’’

shape of the DT, and 3D FOD reconstructions indicated the

expected crossing fiber patterns (Fig. 2E). The orientation of the

FOD reconstructions were highly consistent across animals in both

ROIs and with the morphology evidenced in the myelin stained

sections (Fig. 2C,D). Taken together, these results demonstrate a

high qualitative resemblance between 3D FOD measures and

histological observations of crossing fibers which is highly

consistent across several animals. To provide a more rigorous

quantitative histological validation of this relationship, we

continued to perform a detailed voxel-wise quantitative compar-

ison between these measures in ROI-1 and -2 in one of the animal

specimens (animal 1).

Quantitative histological validation of FOD estimates
Our third objective was to quantitatively evaluate the

correspondence between high b-value QSI-derived FOD measures

(QSI-FODs) and myeloarchitecture in both ROI-1 and 2. As

a benchmark for the comparisons we also included DT fiber

orientation estimates (DT-FOD) in both regions (see also

Figure 2. Three-dimensional DT and FOD reconstructions in brain regions with parallel and crossing fiber orientations. (A–D)
Detailed visualization of the parallel (A,C) and crossing (B,D) myeloarchitecture in ROI-1 and -2. (E) Comparison of 3D DT and FOD reconstructions
from ROI-1 and -2 across all six animal specimens. Reconstructions are overlaid on a gray scale map of the fractional anisotropy (FA) index [55] derived
from the DT eigenvalues and quantifying the overall degree of diffusion anisotropy on a 0–1 scale (1 being highly anisotropic and 0 being isotropic).
The high FA values and elongated DT and FOD profiles in ROI-1 are characteristic of coherent (parallel) fiber orientations, while the low FA values and
disk-like DT profiles in ROI-2 are characteristic of crossing fibers, which is further evidenced by the FOD reconstructions and myeloarchitecture. All DT
and FOD reconstructions are shown min-max normalized for reasons discussed in the main text. Scale bars, 1 mm (A,C) and 100 mm (C,D).
doi:10.1371/journal.pone.0008595.g002
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‘‘Computation of DT-FODs’’ in the ‘‘Materials and Methods’’

section).

To validate the QSI-FODs, we used a voxel-wise stereological

sampling approach to manually record several hundred myelin

stained fiber orientations from multiple registered myelin stained

histological images (Fig. 3A,B). The angular histogram of all fiber

samples (or fiber counts in a given angular bin) within each voxel

constitutes the empirical histology-derived FOD (HIST-FOD;

Fig. 3C) used as the validation standard to compare against

the DT- and QSI-FOD estimates. Prior to comparison, all

fiber models were min-max normalized to remove the isotropic

component and normalize the maximum amplitude of the

respective distributions. The isotropic component was removed

because in conventional QSI-FOD measures there is no way to

separate the isotropic fiber orientation from the isotropic ADC,

and thus if not removed, the QSI-FODs would have a (biased)

larger isotropic component compared with the HIST-FODs.

We found that in ROI-1, which contained fibers with relatively

homogeneous fiber orientations, both the QSI-FOD and DT-

FODs correlated well with the HIST-FODs (average Pearson

correlation coefficients r = 0.98; SD = 0.02 for QSI-FODs, and

0.99; SD = 0.01 for DT-FODs, n = 4 voxels; Fig. 4E,F). By

contrast, in ROI-2, which contained crossing fibers, the DT-

FODs correlated poorly with HIST-FODs (average Pearson

correlation coefficients r = 0.16; SD = 0.38; n = 12 voxels), while

QSI-FODs correlated substantially better (average Pearson

correlation coefficients r = 0.86; SD = 0.07; Fig. 4GH). A non-

parametric permutation-based 2-sample t-test revealed that the

difference in correlation between the DT-FODs and QSI-FODs

were not significant in ROI-1 (p&0.05), but highly significant in

ROI-2 (p,0.0001). These results quantitatively confirm that QSI-

FODs provide accurate assays of the underlying myeloarchitecture

in regions of both uniform and complex crossing fiber orientations.

We also quantitatively evaluated the orientation error of the

QSI-FOD peaks in ROI-2 (Fig 5). We found that the peak

orientations of the QSI-FODs closely matched the peaks of the

HIST-FODs, with an average angular error (across all 12 voxels)

of 5.7u; SD 3.8u (Fig 5). The average (acute) intersection angle of

the HIST-FOD peaks was h= 73u; SD = 8u (Fig 5). It should be

noted that these results were obtained using a radial-basis function

parameterization of the QSI-FODs with a width of s= 10 (see

‘‘Materials and Methods’’), which maximized the correlation with

the HIST-FODs in ROI-2. However, further testing revealed that

the angular error and correlation were relatively robust to

variations in s. When testing a range of s between 1 and 20,

the average angular error and correlation coefficient only varied

between 5.4u–6.2u and 0.83 and 0.86, respectively (data not

shown).

Discussion

While methods for estimating neuronal fiber orientation

distributions (FODs) in dMRI are becoming increasingly popular,

the correspondence between FOD measures and realistic

biological fiber architectures has been unclear. Using detailed

manual recordings of individual myelin stained fiber orientations

in ex vivo rat brain tissue we have shown that tomographic dMRI

FOD estimates provide accurate assays of the underlying

myeloarchitecture, even in regions with complex multi-directional

crossing fiber architectures.

In this study, FODs were quantitatively validated using a voxel-

wise approach against empirical FOD estimates derived from

registered myelin stained images. As evident in Figure 4F,E, QSI-

FODs provided an accurate characterization of the underlying

myelinated fiber orientation distribution in regions of both

uniform (r.0.9) and crossing fiber (r.0.8) architectures. A

subsequent evaluation of the angular error of the QSI-FOD peaks

in ROI-2 demonstrated an average angular error of approximately

5–6u, with an average (acute) fiber crossing angle of approximately

73u (Fig. 5). Because it seems reasonable to assume that some of

this error is likely due to image registration and stereological errors

(e.g., through-plane fiber contributions and sampling limitations),

the actual intrinsic angular error of the QSI-FOD peaks is

probably even less than 5–6u.
It should be noted that the FODs in this paper were computed

from QSI data with high b-values and a large number of diffusion

measurements (b-max = 30452 sec/mm2, 515 diffusion measure-

ments, see ‘‘Materials and Methods’’). Thus, it remains to be

determined to what extent similarly accurate assays of myeloarch-

itecture can be derived using more conservative spherical

acquisition protocols as often employed on clinical 1.5T and

Figure 3. Computation of a single HIST-FOD from multiple myelin stained section images. (A) Myelin fiber orientations were manually
traced as vector lines within 53653 mm sample grids positioned above high-resolution images of myelin stained sections. (B) For each histological
section, 4 sample grids were systematically positioned within a voxel domain. (C) For each QSI voxel, myelin fiber orientations were estimated from
vector data collected from 8 sample grids across two histological sections spaced at 100 mm. This procedure was repeated for all voxels in both ROI-1
and 2. Scale bar, 50 mm.
doi:10.1371/journal.pone.0008595.g003
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Figure 5. Quantitative comparison of fiber orientation distributions in ROI-2. (A) Superimposed HIST-FODs (red) and QSI-FODs (blue) are
shown for each of the 12 voxels in ROI-2, together with peak orientations (black lines) for the respective fiber orientation distributions. Purple color
indicates FOD overlap. (B) For quantitative analysis, the acute intersection angle of the HIST-FODs (h), and the angular error of both FOD peaks (e1

and e2) are given for each of the 12 voxels together with the Pearson correlation coefficients (r) between the HIST- and QSI-FODs. The average
Pearson correlation was r = 0.86; SD = 0.07, average intersection angle was h= 73u; SD = 8u, average angular error (e1 and e2 combined) was 5.7u;
SD = 3.8u.
doi:10.1371/journal.pone.0008595.g005

Figure 4. Comparison of FOD estimates against myeloarchitecture. (A,B) High resolution images of myeloarchitecture corresponding to one
QSI voxel with overlay of 4 sample grids of manually-recorded fiber directions (yellow lines) used in part to compute HIST-FODs (8 total sample grids
were used, cf. Fig. 2). Purple and blue frames indicate corresponding voxel locations across panels. (C,D) Coronal myelin sections through the genu of
the corpus callosum (C) and superior colliculus (D) (levels indicated on 3D rat brain insert) showing the position of the 164 voxel ROI-1 and 364 voxel
ROI-2 (white frames, cf. Fig. 1). (E,F and G,H) Comparison of QSI-FODs and DT-FODs against corresponding HIST-FODs (E,F: ROI-1and G,H: ROI-2). gcc,
genu of the corpus callosum; dpg, deep gray layer of the superior colliculus; dpwh, deep white layer of the superior colliculus. Scale bar, 50 mm (B)
and 1mm (C,D).
doi:10.1371/journal.pone.0008595.g004
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3.0T scanners for in vivo applications. However, numerous

simulation studies [44,51] have demonstrated that FODs (with

the ability to resolve crossing fibers down to about 45u) can be

derived from spherical acquisition protocols using moderate

b-values (b,2000–4000 s/mm2) and reasonable scan times

(SNR,30, scan time,10 min). These simulation studies suggest

that accurate FODs can be achieved in regions with complex

architectures with use of reduced encoding spherical acquisition

protocols. Hence, the validation benchmarks established in this

paper will likely also have a high degree of translational value for

the clinical situation.

The histological FODs were based on manually traced myelin

fibers sampled from high-resolution digital images of 50 mm thick

sections using a systematic random approach. Sampling occurred

both within (using sampling bins) and across planes (one focal

plane in two sections spaced at 200 mm) to ensure that a

representative fraction of the myeloarchitecture was recorded

per voxel volume. It should also be noted that water diffusion is

influenced by the complete tissue microarchitecture and not only

myelinated fibers (for review, see Ref [6]), which will bias the

dMRI measurements relative to the histological measurements.

However, the high correlations measured suggest that the

contribution of other tissue elements is relatively small in the

regions investigated.

The QSI-FODs showed a remarkable consistency across animal

specimens (Fig. 2E). We thus chose to restrict the quantitative

validation to extensive, in depth anatomical analyses of fiber

architectures in one specimen. In these analyses, FOD estimates

within each voxel were derived from several hundred manually

traced histological measurements across multiple coronal sections

and several hundred QSI diffusion measurements. Thus, although

the total number of voxels compared was relatively small (4 for

ROI-1 and 12 for ROI-2), the statistical correlations were based

on measurements derived from extremely high dimensional

datasets. It should further be noted that the statistical correlations

were only used to provide a quantitative metric of similarity at

each voxel, and not as a statistical test of consistency or

generalizability across animal specimens.

The voxel-wise histological validations were conducted in

paraformaldehyde fixed tissue that had been immersed in contrast

enhancing MagnevistH liquid (see ‘‘Materials and Methods’’).

Because this treatment is known to reduce the ADC [45], some

care should be exercised when extrapolating these results to the in

vivo case. However, it has been shown that fixation has relatively

small effects on the overall amount of diffusion anisotropy, as the

ADC is reduced equally in all directions [45]. Therefore, the

fixation process itself is not likely to have influenced the general

orientation structure of the QSI-FOD measurements in this study.

We conclude that fiber orientation distributions derived from

high dimensional diffusion MRI data provide accurate assays of

the underlying myeloarchitecture, even in regions with complex

crossing fiber architectures. These results have important impli-

cations for both clinical and research studies investigating

structural aspects of biological tissues using estimates of the fiber

orientation distribution. Furthermore, this study provides an

important biological benchmark for further improvement of fiber

orientation reconstruction and tracking methods.

Materials and Methods

Ethics statement
Animal procedures were approved by the institutional animal

welfare committee at the Massachusetts General Hospital, and

were in compliance with National Institutes of Health guidelines

for the use and care of laboratory animals.

Material and data acquisition
Adult male Sprague-Dawley rats were anesthetized (ketamine

hydrochloride 50 mg/kg, and sodium pentobarbital 12 mg/kg, i.p.)

and euthanized by transcardial perfusion with 4% paraformalde-

hyde. The isolated brains were immersed for 4 weeks at 4uC in a

solution of 1mM Gd-DTPA (MagnevistH, Bayer HealthCare

Pharmaceuticals, Wayne, NJ, USA) in phosphate buffered saline,

and positioned in a sealed plastic tube filled with FomblinH LC8

liquid (Solvay Solexis, Thorofare, NJ, USA) [45]. High b-value QSI

data were acquired using a 2D spin echo planar imaging (EPI)

sequence on a 4.7T Bruker scanner equipped with a 3 cm solenoid

receiver coil. QSI data were collected using a conventional DSI

(Cartesian) acquisition scheme. Pulse-sequence parameters for the

QSI acquisition were: TR/TE = 650/49 msec, D/d= 23/12 msec,

515 q-space directions, |G|max = 380 mTm21, b-max = 30452

sec/mm2, matrix = 646646128, voxel size = 265 mm isotropic.

Following MR imaging, the brain was coronally sectioned at

50 mm on a freezing microtome, at an angle closely matching the

tomographic images. The right side of the brain was marked with a

shallow razor-blade cut in the tissue to ensure correct orientation of

the sections. One in four sections was stained for myelin using a

standard procedure modified from Woelcke [52], yielding an

effective through-plane spacing of 200 mm. High-resolution mosaic

images were obtained through UPlanApo 20/0.70 and 40/0.85

dry objectives using a motorized Olympus BX52 microscope

running the Neurolucida 7.0 software (Virtual Slice module, MBF

Bioscience, Inc, Williston, VT, USA).

Registration
As any voxel-wise quantitative comparison requires accurate

spatial registration of image data, several measures were taken to

minimize the potential error of misalignment. First, care was taken

during histological processing to ensure that the coronal sectioning

angle matched the tomographic slice orientation. Trigonometric

measurements of multiple corresponding anatomical landmarks

confirmed that the angle of the histological section plane and

tomographical slice orientation only differed by about 2 degrees

(rotation around the mediolateral axis), thus allowing direct

registration without resampling of the QSI slice orientation. Second,

the selected ROIs (procedure described below) were confirmed to

have 1) minimal nonlinear distortion in both the histological data

(due to histological processing) and QSI data, and 2) consistent

myeloarchitecture across multiple coronal (through-plane) sections.

Third, a careful and detailed manual registration protocol was

performed for both ROIs. Corresponding anatomical landmarks

(brain surface, genu and splenium of the corpus callosum, anterior

commissure, the ventricular system, the oculomotor nerve, and

several mesencephalic and brain stem nuclei) were identified on basis

of general gray and white contrast and used to assign relative

anterioposterior position coordinates across the whole brain for both

image modalities. Then, for each ROI (one in the forebrain at the

level of the genu of the corpus callosum, and the other in the brain

stem at level of the superior colliculus, see Fig. 1), histological images

were manually registered to corresponding QSI images. Groups of

corresponding tomographical and histological images from a volume

approximating a ,1 mm thick coronal brain section (corresponding

to 4 QSI and 20 histological slices) through both ROIs were

assembled as separate layers using the program Adobe Illustrator

CS3 (Adobe Systems Inc. San Jose, CA, USA). Each layer was scaled

appropriately depending upon the native voxel size. Finally, using

the QSI images as a reference, the histological images were

Quantitative dMRI Validation
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individually adjusted using affine transformations to match multiple

local gray and white matter landmarks. This final alignment

procedure was iterated until optimal spatial matching was achieved.

ROI selection
ROIs were selected on the basis of 1) color-coded DT maps, 2)

3D DT and FOD reconstructions, and 3) visual inspection of

myeloarchitecture. The first ROI (ROI-1) was selected to contain

relatively uniform white matter fiber orientations (Figs. 1A,B; 2A).

To help find this location, a red-green-blue (RGB) map was

created using the primary eigenvector e1 of the DT (‘‘preferred’’

direction), where each vector element defined the red, green, and

blue components of each voxel, respectively. The brightness of this

preferred RGB map was determined using a measure of the degree

of linear anisotropy, defined as Cl = (l12l2)/l1 [53], where l1, l2,

and l3 are the first, second, and third eigenvalues of DT,

respectively. Thus, a bright red color in the preferred RGB map

indicates a high degree of linear anisotropy with left-right

orientation (Fig. 1A,A9). The second ROI (ROI-2) was selected

to contain complex crossing fiber orientations (Figs. 1C,D; 2B). To

help find this location an RGB map of the third eigenvector e3

(‘‘non-preferred’’ direction) was created and the brightness of this

non-preferred RGB map was defined using a measure of the

degree of planar anisotropy, defined as Cp = (l22l3)/l1 [53].

Voxels with a bright blue color would thus indicate a ‘‘disk-like’’

DT (indicative of crossing fibers) within the image plane (e3 points

through-plane, Fig. 1D,D9). 3D DT and FOD reconstructions

provided additional confirmation of apparent crossing fiber

architectures that were highly consistent across animals. Finally,

the myeloarchitecture in ROI-1 and ROI-2 were microscopically

inspected in the original histological sections to confirm the

neuroarchitectural patterns suggested by the tomographic data.

Computation of HIST-FODs
The HIST-FODs in ROI-1 and 2 were derived using a

systematic random stereological approach adapted from [12].

High-resolution histological images from two consecutive myelin

stained sections (spaced at 200 mm) were assembled in separate

layers in the Adobe Illustrator file used for image registration (see

registration section above). A grid derived from the voxel matrix of

the spatially corresponding QSI slice was superimposed onto the

histological images. Each voxel domain was further subdivided

using a 565 rectangular sampling grid. In four systematically

positioned sample grids (Fig. 2A,B), individual myelin fiber

trajectories were traced as vector lines using Adobe Illustrator.

The vector coordinates were exported to Matlab (The Mathworks,

Inc. Natick, MA) and HIST-FODs were computed for each QSI

voxel by calculating the angular histogram of the line plots (fiber

vectors) with a bin size of 1u (360 points) from the four sub regions.

To further increase the robustness of the HIST-FODs, corre-

sponding angular histograms from two neighboring myelin

sections spaced 200 mm apart were averaged together and the

averaged histogram was smoothed with a Gaussian kernel with a

FWHM of 8u. In this way, our histological sampling included a

through-plane distance approximately corresponding to the depth

of a single 265 mm QSI voxel. To quantify the intrinsic degree of

fiber spreading within ROI-1 of the corpus callosum, Gaussian

distributions were fit to the final angular histograms of each voxel,

yielding an average FWHM of approximately 34u.

Computation of DT-FODs
Since the diffusion tensor (DT) is a model for the apparent

diffusion coefficient (ADC), a direct comparison with the HIST-

FODs would be misleading. Under the DT model, the fiber

orientation is given by a single delta function pointed in the

direction of the primary eigenvector. To generate DT equivalent

FODs (DT-FODs), the resultant delta functions were convolved

with a Gaussian smoothing kernel with a FWHM of 34u. This level

of smoothing was chosen to match the intrinsic angular dispersion

of fibers within the ROI-1 of the corpus callosum.

Computation of QSI-FODs
To estimate the QSI-FODs, we extend the traditional spherical

deconvolution method in Reference [29] to arbitrary (multi-b-

value) q-space acquisitions. An axially symmetric tensor model

[54] was chosen for the single fiber response function with

perpendicular (lH =l2 =l3 = 4.061025 mm2s21) and parallel

diffusivities (lI =l1 = 3.561024 mm2s21) estimated directly from

the QSI data in ROI-1, similar to the approach used in [29].

Tikhonov regularization was used to improve the conditioning of

the inversion. The FOD solution was parameterized using radial-

basis functions, as in Ref [26]. The radial-basis functions

themselves are parameterized by the desired FOD reconstruction

points and the radial-basis function width parameter s. For the

3D QSI-FOD reconstructions in Figure 2, a 3rd order icosahedral

tessellation of the sphere was chosen for the FOD reconstruction

points (642 vertices) and s was set to 20. For the 2D QSI-FOD

reconstructions in Figures 4 and 5, 360 equally spaced points on

the unit circle was chosen for the FOD reconstruction points, and

s was set to 10. This value of s was chosen because it optimized

the correlations with the HIST-FODs in ROI-2. However, we

tested a range of different values for s (from 1 to 20) and found

that the average correlations and angular error for the FOD peaks

were largely robust to variations in this parameter.

Statistical analyses
Data plotting and correlation analyses were performed using the

standard Matlab statistical toolkit. Correlations were given as

Pearson correlation coefficients and where appropriate standard

deviations are provided.

Illustrations
Graphical charts were generated using Matlab. Figures were

assembled using Adobe Photoshop (CS3) and Adobe Illustrator

(CS3).
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