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Despite the availability of advanced multimodal therapy, the prognosis of patients suffering
from glioblastoma (GBM) remains poor. We conducted a genome-wide integrative analysis
of mRNA expression profiles in 302 GBM tissues and 209 normal brain tissues from the
Gene Expression Omnibus (GEO), The Cancer Genome Atlas (TCGA), and the Genotype-
Tissue Expression (GTEx) project to examine the prognostic and predictive value of
specific mRNAs in GBM. A total of 26 mRNAs were identified to be closely related to
GBM patients’ OS (p < 0.05). Utilizing survival analysis and the Cox regression model, we
discovered a set of five mRNAs (PTPRN, ABCC3, MDK, NMB, and RALYL) from these
26 mRNAs that displayed the capacity to stratify patients into high- and low-risk groups
with statistically different overall survival in the training set. The model of the five-mRNA
biomarker signature was successfully verified on a testing set and independent sets.
Moreover, multivariate Cox regression analysis revealed that the five-mRNA biomarker
signature was a prognostic factor for the survival of patients with GBM independent of
clinical characteristics and molecular features (p < 0.05). Gene set enrichment analysis
indicated that the five-mRNA biomarker signature might be implicated in the incidence and
development of GBM through its roles in known cancer-related pathways, signaling
molecules, and the immune system. Moreover, consistent with the bioinformatics
analysis, NMB, ABCC3, and MDK mRNA expression was considerably higher in four
human GBM cells, and the expression of PTPRN and RALYL was decreased in GBM cells
(p < 0.05). Our study developed a novel candidate model that provides new prospective
prognostic biomarkers for GBM.
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BACKGROUND

Glioblastoma (GBM), also referred to as glioblastoma multiforme, is a grade IV glioma that is the most
aggressive type of brain cancer with a high morbidity and mortality rate, accounting for 15% of all brain
tumors (Batash et al., 2017; Ostrom et al., 2019). The prognosis and treatment of GBM are very poor
because many kinds of cell types are involved. Every year, a large number of people are affected, and the
survival duration ranges from 8 to 15months (Anjum et al., 2017). In patients who had surgery,
chemotherapy, and radiation treatment, the median survival period with GBM was 15–16months
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(Alifieris and Trafalis, 2015). Unfortunately, only a few minor
advances in the prognosis of GBM patients were made in the last
decade. Thereby, understanding the molecular mechanisms and
developing effective biomarkers to predict prognosis is critical for
GBM patients (Polivka et al., 2017; Sasmita et al., 2018).

GBM development is a complex process involving numerous
gene alterations. A thorough examination of the molecular
mechanisms underlying GBM is critical for the diagnosis and
treatment of GBM patients. High-throughput sequencing
technologies have been commonly applied with the rapid
development of genomics, and several data can be freely
accessed from public databases including the Gene Expression
Omnibus (GEO), The Cancer Genome Atlas (TCGA), the
Genotype-Tissue Expression (GTEx) project, and
ArrayExpress. Numerous research studies on brain gene
expression profiles have been conducted in recent years
utilizing these open database platforms, and these studies have
revealed hundreds of differentially expressed genes (DEGs) of
GBM that may be implicated in the formation and progression of
GBM (Fatai and Gamieldien, 2018; Han and Puri, 2018; Qian
et al., 2018). Several investigations utilizing high-throughput
sequencing revealed the results of gene expression signatures
in GBM. However, the common drawback of gene expression
profiling studies is batch effects with the combat function due to
many factors, including the application of different microarray
and sequencing platforms, different data processing methods,
small sample sizes, and different backgrounds of samples (Stein
et al., 2015; Yi et al., 2018). To overcome limitations resulting
from batch effects in a single-cohort study, we applied surrogate
variable analysis (SVA), which is an unbiased approach to
integrate multiple data sources and remove batch effects. It
has been demonstrated that removing batch effects and using
surrogate variables reduces dependence, stabilizes error rate
estimates, and improves reproducibility (Leek et al., 2012).

The development of accurate tools to predict the prognosis of
GBM patients is of crucial importance to clinical diagnosis and
treatment decisions. In this investigation, the integrated
bioinformatics strategy was employed to systematically examine the
prognostic value of mRNAs in GBM patients from the GEO, TCGA,
andGTEx databases. Cox regression analysis and the risk scoremodel
technique were used to develop a biologically relevant five-mRNA
signature capable of predicting the prognosis of GBM patients in the
training set. The prognostic value of the five-mRNA signaturewasfirst
confirmed in large GBM samples from different databases.
Furthermore, these five mRNA expressions were closely associated
with immunemicroenvironment regulation, ERBB signaling pathway,
and MAPK signaling pathway in the development of GBM. These
findings not only provide reliable independent prognostic factors but
also expand our knowledge of the function of these fivemRNAs in the
development and progression of GBM.

METHODS

Microarray Datasets
The GEO database was used to obtain gene expression profiles of
GSE4290, GSE50161, GSE15824, and GSE66354 from GBM and

normal brain tissue. These four series, which included 142 GBM
tissues and 51 normal brain tissues, were built using the
GPL570 platform (Affymetrix Human Genome U133 Plus
2 Array, Affymetrix, Santa Clara, CA, United States). These
four datasets were selected for integrated analysis since they
share the same platform, which is essential for merging data
frommultiple datasets. The downloaded files of raw data from the
four gene chips were processed using the R software package.
Calibration, standardization, and log2 transformation were
performed on the data. The gene expression profiles of these
four datasets were combined for the analysis, and the robust
multiarray average was utilized to preprocess the CEL files
(Bolstad et al., 2003). To eliminate the batch effects of these
four datasets, the combat function in the SVA package was used
(Leek et al., 2012). Table 1 displays the data information, and
Figure 1 depicts the flow chart of our investigation.

GTEx RNA Sequencing Dataset
The GTEx (release V7) project provided the RNA expression
profiles of 1,426 normal brain tissue samples (https://www.
gtexportal.org/home/). The expression data of 153 brain
samples were randomly chosen and quantified as raw read
counts.

TCGA RNA Sequencing and Clinical
Datasets
The RNA expression profiles (RNA-Seq2 level 3 data, platform:
Illumina HiSeq2000 RNA sequencing, through August 2019) of
160 GBM tissues and five normal brain tissues were extracted
from the TCGA data repository (https://portal.gdc.cancer.gov).
Meanwhile, clinical data from those 160 GBM patients were
extracted. Verhaak et al.’s (2010) study provided information
on the molecular features and subtypes of GBM patients. Using
the ‘sample’ function from the R package, the 160 GBM patients
from the TCGA database were randomly assigned to a training set
(n = 80) and a testing set (n = 80).Table 2 lists the detailed clinical
features of all GBM sets. The gene expression profiles from GTEx
and TCGA were integrated using the robust multiarray average
and normalized by DESeq2. The SVA package was used to
remove the batch effect.

Identification of DEGs
The DEGs in GBM and normal brain tissue samples from the four
integrated microarray datasets, GTEx data, and TCGA data, were
assessed by the limma package (p ≤ 0.05, log2 fold change

TABLE 1 | Information for GBM data.

Sample Database Platform GBM Normal

Brain GSE4290 GPL570 77 23
Brain GSE50161 GPL570 34 13
Brain GSE15824 GPL570 12 2
Brain GSE66354 GPL570 19 13
Brain TCGA_GBM Illumina HiSeq 2000 160 5
Brain GTEx Illumina HiSeq 2000 0 153
Total 302 209
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(logFC) ≥ 2, false discovery rate (FDR) ≤ 0.01). Afterward, the
intersections of DEGs from the four integrated microarray
datasets and GTEx-TCGA data were identified and used for
further bioinformatics analyses.

Functional Enrichment Analysis
Metascape was used to conduct Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) analysis on the DEGs
(http://www.metascape.org/). GO was utilized to describe gene
function from three aspects: molecular functions (MFs), cellular
components (CCs), and biological processes (BPs). KEGG analysis
was employed to examine the signaling pathways involved in the
DEGs. In addition, gene set enrichment analysis (GSEA) was
performed to evaluate the correlation between DEG expression
and cancer-related pathways. The GSEA protocol is detailed on
the Broad Institute Gene Set Enrichment Analysis website (http://
www.broad.mit.edu/gsea).

Survival Analysis
Univariate Cox proportional hazards regression analysis was
conducted to determine the DEGs and clinical features that were
closely related to overall survival (OS). The genes and clinical
characteristics with log-rank p-values less than 0.05 were then
employed in a multivariate Cox proportional hazards regression
analysis to identify prognosis-related genes. In addition, the least
absolute shrinkage and selection operator (LASSO) estimation-based
Cox-PH model was applied to determine the specific prognosis-
related genes by the penalized package in the R language.

A risk score model for predicting the prognosis of GBM
patients was developed by incorporating the expression level

of each optimal prognostic mRNA weighted by their
regression coefficient from the multivariate Cox regression
model (Li et al., 2021) shown as follows:

Risk score (patient) � ∑
i

coefficient(mRNAi) × expression(mRNAi),

where mRNA i is the candidate of the ith selected mRNA. The
risk score model is a measure of the prognostic risk for each GBM
patient. All samples in the training set were separated into two
groups: high-risk (risk score greater than the median) and low-
risk (risk score less than the median). Moreover, the reliability
and validity of the risk score model were verified in independent
sets, including the REMBRANDT study, Chinese Glioma
Genome Atlas (CGGA) database, and GSE7696. The log-rank
test and Kaplan–Meier survival analysis were used to compare the
OS times of the high-risk and low-risk groups. Hazard ratios
(HRs) and 95% confidence intervals (CIs) were assessed. The
sensitivity and specificity of the prognostic prediction model were
compared using receiver operating characteristic (ROC) curve
analysis. The area under the curve (AUC) was also determined.

Cell Culture and Quantitative Real-
Time PCR
Human normal glial cell line HEB and human glioblastoma cell
lines (A172, LN299, U118, and U138) were cultured in DMEM
medium with 10% FBS at 37°C in a humidified incubator with 5%
CO2. The cells were harvested during their logarithmic growth
phase and their total RNA was extracted using the Trizol reagent

FIGURE 1 | Flow chart of the study.
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(Invitrogen, Carlsbad, CA, United States). To extract cDNA,
reverse transcription was conducted using a reverse
transcription kit (TaKaRa, Dalian, China) following the
manufacturer’s instructions. The relative levels of mRNA were
measured by qRT-PCR. The sequences of the specific primers
utilized in this study are shown in Supplementary Table S1.
Comparative quantification was performed using the 2−ΔΔCt

method, with target gene expression normalized to GAPDH.

Statistical Analysis
R studio (version 3.5.1) and SPSS 20.0 were used for statistical
analysis (SPSS Inc., Chicago, IL, United States). Differentially
expressedmRNAs were determined using the limma package in R
studio. Student’s t-test (two-tailed) and the Kruskal–Wallis test
were used to compare the difference between two groups or more
than two groups, respectively. When the p-value was less than
0.05, differences were deemed statistically significant.

RESULTS

Identification of DEGs in the Four
Microarray Datasets and TCGA Dataset
The raw data from the four microarray datasets were integrated
for analysis. The data information is shown in Table 1. The
robust multiarray average algorithm and combat function of the
SVA package was employed to preprocess and eliminate the batch

effects of these integrated data. When the integrated data was
evaluated using the limma package (p ≤ 0.05, logFC ≥ 2, FDR ≤
0.01), 1,043 DEGs were detected, comprising 327 upregulated
genes and 716 downregulated genes. To further study whether
these genes are differentially expressed between normal brain
tissue and GBM tissue, we analyzed the DEGs in 318 brain tissue
samples from the TCGA and GTEx databases, including
160 GBM samples and 158 normal brain tissue samples. We
identified 794 significantly upregulated mRNAs and
1,022 downregulated mRNAs. The DEGs are shown on the
heat map in Figures 2A,B based on the |logFC| value.
Afterward, we detected 462 intersecting mRNAs from the
integrated microarray data and GTEx-TCGA data
(171 upregulated and 291 downregulated), as shown in
Figures 2C,D. We used Metascape to conduct GO and KEGG
pathway enrichment analysis to investigate the potential roles of
these dysregulated mRNAs. The GO terms in which the
upregulated genes were enriched were mostly extracellular
matrix, mitotic cell cycle phase transition, and developmental
growth (Figure 3A), while the primary roles of the downregulated
mRNAs involved pre-synapse, chemical synaptic transmission,
and regulation of neuronal synaptic plasticity (Figure 3B). The
p53 signaling pathway, HIF-1 signaling route, and NF-kappa B
signaling pathway were the most significant KEGG pathways in
which the elevated genes were enriched (Figure 3C). The
GABAergic synapse, synaptic vesicle cycle, and apelin
signaling pathway were all related to the downregulated

TABLE 2 | Clinical and molecular features of GBM patients.

Characteristic Training
set (n = 80)

Testing set (n = 80) TCGA set (n = 160)

Age
≤60 39 43 82
>60 41 37 78

Gender
Male 46 58 104
Female 34 22 56

Vital status
Alive 13 17 30
Dead 67 63 130

KPS
≤70 40 34 74
>70 40 46 86

Subtype
Classical 21 18 39
Mesenchymal 24 28 52
Neural 20 8 28
Proneural 14 24 38
Unknown 1 2 3

IDH status
Mutant 4 5 9
Wild type 72 71 143
Unknown 4 4 8

MGMT status
Methylated 30 26 56
Unmethylated 31 36 67
Unkown 19 18 37
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mRNAs (Figure 3D). These results indicate that most of the
dysregulated mRNAs participate in carcinogenesis and the
development of GBM through modulating BPs and critical
pathways.

Identification of Prognosis-Related Genes
From the TCGA Training Set
The 160 GBM patients from the TCGA database were assigned
randomly to the training sample set (n = 80) and the testing
sample set (n = 80), as shown in Table 2. To determine the
prognosis-related genes, the expression data of the DEGs were
analyzed by univariate Cox proportional hazards regression
analysis in the training set. A total of 26 mRNAs were
identified to be closely related to GBM patients’ OS (p < 0.05)
and were thus involved in the candidate pool for further
multivariate Cox proportional hazards regression analysis to

analyze their independent prognostic value. According to the
Cox model, five of the 26 candidate genes were discovered to be
independent biomarkers for prognosis in GBM. Among the five
prognostic mRNAs, three mRNAs (NMB, ABCC3, and MDK)
with positive coefficients may be prognostic risk factors, and their
high expression was correlated with shorter survival, while the
remaining two mRNAs (PTPRN and RALYL) with negative
coefficients tended to be protective factors, and their high
expression was correlated with longer survival (Table 3).

The Five-mRNA Prognostic Risk Model and
Predictability Assessment
Given the significant and independent association between the
expression of the five prognosis-associated mRNAs and OS, the
five prognosis-associated mRNAs were combined to construct a
five-mRNA biomarker signature to predict the prognosis of the

FIGURE 2 | The differentially expressed genes (DEGs) from multiple datasets are analyzed. The DEGs in glioblastoma (GBM) and normal brain tissue samples from
the four integrated microarray datasets (A) and Genotype-Tissue Expression (GTEx)-The Cancer Genome Atlas (TCGA) datasets (B) were analyzed by the limma
package and are shown in the hierarchical clustering heatmap. Venn diagram analysis of the intersections of the upregulated genes (C) and downregulated genes (D)
from four microarray datasets and the GTEx-TCGA datasets.
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patients. The risk score model was constructed according to the
regression coefficients from the multivariate Cox regression
model as follows: risk score= (−0.1793×PTPRN expression) +
(0.3340×NMB expression) + (−0.3547×RALYL expression) +

(0.1849×ABCC3 expression) + (0.4231×MDK expression).
Based on the risk score model, the five-mRNA prognostic risk
score for each GBM patient in the training set was calculated.
According to the median risk score, all patients in the training set

FIGURE 3 | Gene Ontology (GO) term and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis for DEGs. GO results of the intersecting
upregulated genes (A) and downregulated genes (B). KEGG results of the intersecting upregulated genes (C) and downregulated genes (D). The relationships among
the enriched clusters from the GO and KEGG analyses were visualized with Metascape (http://www.metascape.org/).
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TABLE 3 | Five mRNAs selected as prognosis-associated factors in GBM.

Gene symbol Ensembl ID Coefficient HR 95% CI of HR p value Gene expression
associated with
poor prognosis

Lower Upper

PTPRN ENSG00000054356 0.3340 1.397 1.099 1.775 0.006 High
NMB ENSG00000197696 -0.1793 0.836 0.671 1.041 0.110 Low
RALYL ENSG00000184672 -0.3547 0.701 0.498 0.988 0.042 Low
ABCC3 ENSG00000108846 0.1849 1.203 0.975 1.485 0.085 High
MDK ENSG00000110492 0.4231 1.527 1.101 2.117 0.011 High

FIGURE 4 | Prognostic evaluation of the five-mRNA signature in the training set. (A) Kaplan–Meier survival curve for patient overall survival (OS) in the training set.
(B) Receiver operating characteristic (ROC) curve analysis to compare the sensitivity and specificity of the prognosis prediction model. The mRNA expression patterns
(C), risk score distribution (D), and survival status of patients (E) in the high- and low-risk groups by the five-mRNA signature. Green dot, alive; red dot, dead.
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were divided into two groups: high risk (n = 40) and low risk (n =
40). Kaplan–Meier survival analysis was performed to compare
the OS of the two risk groups of patients in the training set
(Figure 4A). The median survival time for the high-risk group
was shorter than that of the low-risk group (0.8219 years vs.
1.4575 years, p = 3.099e-05, log-rank test). The high-risk group
had lower 2-year survival rates than those in the low-risk group
(3.630% vs. 36.48%, p < 0.001). The prognostic power of the five-
mRNA biomarker signature was assessed by computing the AUC

of the ROC curve. The ROC curve analysis revealed an AUC of
0.749, indicating that the five-mRNA biomarker signature model
has good sensitivity and specificity in predicting GBM patient
survival risk (Figure 4B). The heat map showed the expression
patterns of the five prognosis-associated mRNAs between the
high-risk group and low-risk group. For patients with low-risk
scores, the expression levels of the two protective mRNAs were
upregulated and those of the three risk mRNAs were
downregulated. The expression of the five prognosis-associated

FIGURE 5 | Prognostic evaluation of the five-mRNA signature in the testing set. (A) Kaplan–Meier survival curve for patient overall survival (OS) in the testing set. (B)
Receiver operating characteristic (ROC) curve analysis to compare the sensitivity and specificity of the prognosis prediction model. The mRNA expression patterns (C),
risk score distribution (D), and survival status of patients (E) in the high- and low-risk groups by the five-mRNA signature. Green dot, alive; red dot, dead.
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mRNAs, on the other hand, showed the reverse patterns in
patients with high-risk scores (Figure 4C). The risk score
distribution and the survival status of the GBM patients in the
training set are marked on the dot plot shown in Figures 4D, E,
respectively.

To verify the predictive power of the biomarker signature, we
computed the five-mRNA signature-based risk scores of
80 patients in the testing set. The patients from the testing set

were also divided into high-risk groups and low-risk based on the
same median cutoff point obtained from the training set (median
survival: 0.9370 years vs. 1.2466 years, p = 2.305e-02, log-rank
test). The high-risk group had 2-year survival rates of
approximately 11.95% vs. 17.68% in the low-risk group (p <
0.001) (Figure 5A). The AUC value was 0.702 (Figure 5B). The
expression patterns of the five prognosis-associated mRNAs
(Figure 5C) were similar to the results of the training set.

FIGURE 6 | Prognostic evaluation of the five-mRNA signature in The Cancer Genome Atlas (TCGA) set. (A) Kaplan–Meier survival curve for patient overall survival
(OS) in the entire TCGA set. (B) Receiver operating characteristic (ROC) curve analysis to compare the sensitivity and specificity of the prognosis prediction model. The
mRNA expression patterns (C), risk score distribution (D), and survival status of patients (E) in the high- and low-risk groups by the five-mRNA signature. Green dot,
alive; red dot, dead.
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Figures 5D,E demonstrate the distribution of risk scores and the
survival status of GBM patients. In the overall TCGA set, the
performance of predicting patient prognosis by the five-mRNA
signature was consistent with the aforementioned results.
Kaplan–Meier analysis showed that the median survival times
of the high-risk group and the low-risk group were 0.9123 and
1.3863 years (p = 4.612e-05), respectively. The 2-year survival
rates for the high-risk and low-risk groups were 8.14% and
27.65% (p < 0.001), respectively (Figure 6A). The AUC value
was 0.728 (Figure 6B). Figures 6C–E depict the expression
patterns of the five prognosis-associated mRNAs, the risk
score distribution, and the survival status of GBM patients.

The prognostic value of the five-mRNA signature was
confirmed using independent sets, including the
REMBRANDT study, CGGA database, and GSE7696, to
further evaluate its robustness. By comparing the patient’s risk
score to the cutoff determined from the training set, each patient
in the independent sets was also categorized as a high-risk or low-
risk case. The log-rank test demonstrated that there was a
statistically different OS between the low-risk group and the
high-risk group in these independent sets (p < 0.05). Consistent
with the findings of the training set described earlier, the five-
mRNA biomarker signature model was found to be a predictive
factor for the prognosis of GBM (Figures 7A–C).

Independence of the Prognostic Value of
the Five-mRNA Signature From Clinical
Variables and Molecular Features
To determine if the five-mRNA signature was a prognostic factor
independent of other clinical features, we conducted univariable
and multivariable Cox regression analyses using the five-mRNA
signature risk score and clinical features as covariates (age,
gender, Karnofsky performance score (KPS)) (Figures 8A, B).
Multivariable Cox regression analysis results demonstrated that
the five-mRNA signature was closely correlated with OS in each
set (training set, testing set, and entire TCGA set) when adjusting
for other clinical features (Figure 8B). We also found that age was
an independent predictor of OS in GBM patients. As a result,
stratification analysis was carried out to investigate the age

dependence of the five-mRNA signature. Using the five-
mRNA signature, patients of each age group (young patient
group: age ≤ 60, n = 82; old patient group: age > 60, n = 78)
were categorized into two groups: low-risk and high-risk. The
log-rank test demonstrated that there was a statistically different
OS between the low-risk group and the high-risk group (p =
3.205e-05 for the young patient group and p = 3.941e-02 for the
old patient group) in each age group (Figures 8C, D).

Furthermore, we used univariable Cox regression (Figure 9A)
and multivariable Cox regression (Figure 9B) analyses to
investigate if the predictive power of the five-mRNA signature
for survival was independent of other observed prognostic
factors, including IDH1 mutation and MGMT promoter
methylation status. The results showed that the five-mRNA
signature was substantially linked with survival when adjusted
for IDH1 mutation and MGMT promoter methylation status,
indicating that the five-mRNA signature’s predictive potential for
GBM survival is also independent of these two molecular features
(Figure 9B). Interestingly, we also discovered that IDH1 status
was closely related to the OS. Therefore, we classified the GBM
patients in this study into two groups (IDH1 wild-type group, n =
143; IDH1 mutation group, n = 8) and investigated whether the
five-mRNA signature was able to predict the survival of patients.
The results indicated that there was a significantly different OS
between the low-risk group and the high-risk group (p = 1.69e-
04) in the IDH1 wild-type patients (Figure 9C), suggesting that
the five-mRNA signature could determine a subgroup of
IDH1 wild-type patients who had a better prognosis. Although
the multivariable Cox regression analysis results indicated that
MGMT status (methylated MGMT group, n = 56; unmethylated
MGMT, n = 67) was not significantly correlated with OS (p >
0.05), the five-mRNA signature was also able to determine a
subgroup of methylated MGMT patients who had a higher
chance of survival (Figure 9D).

The Expression Levels of the Five-mRNA
Signature in the Subtypes of GBM
Next, we investigated the expression levels of the five-mRNA
signature in four GBM subtypes (classical, mesenchymal, neural,

FIGURE 7 | Survival prediction of the five-mRNA signature in the independent sets. Kaplan–Meier survival curve of overall survival (OS) between high- and low-risk
patients in the REMBRANDT study (A), Chinese Glioma Genome Atlas (CGGA) datasets (B), and GSE7696 dataset (C).
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FIGURE 8 | The independence of the prognostic value of the five-mRNA signature from clinical characteristics. Univariate (A) and multivariate (B) Cox regression
analyses of the correlation between GBM patient overall survival (OS) and clinical characteristics (age, gender, and Karnofsky Performance Score (KPS)). Kaplan–Meier
survival curve analysis of OS in the high- and low-risk groups for young patients (≤ 60 years old) (C) and old patients (> 60 years old) (D).
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and proneural). The findings demonstrated a significant
difference in the distribution of all five mRNA expression
levels across the four GBM subtypes, demonstrating that the
five-mRNA signature is also a subtype-specific marker
(Supplementary Figure S1). The Kaplan–Meier survival
analysis of OS revealed a substantial difference between the
high-risk and low-risk groups of patients with three different
subtypes (classical, neural, and proneural). These findings suggest
that the five-mRNA signature is an independent prognostic factor
for OS in GBM patients of various subtypes (Figure 10).

Functional Characterization of the
Five-mRNA Signature in GBM
Using the TCGA GBM data, we conducted GSEA to provide new
insights into the functions of the five-mRNA signature. The
subjects were sorted from low to high according to the
expression level of the five mRNAs, and the TCGA GBM data
were loaded into R studio and analyzed with the GSEA package.
Stratified expression levels of the five-mRNA signature were
closely related to genes associated with the occurrence and
development of GBM, such as the regulation of cell cycle and
cell apoptosis, brain development, immune response, MAPK
signaling pathway, and ERBB signaling pathway (Figure 11A).
Next, we performed a co-expression network analysis following

the Pearson correlation coefficient (|cor| ≥ 0.55, p < 0.01) in the
entire TCGA dataset to further reveal the potential biological
functions of the five-mRNA signature in GBM. A total of
762 protein-coding genes (PCGs) were found to be strongly
associated with at least one mRNA in the five-mRNA
signature. The potential function of all PCGs associated with
the five-mRNA signature was then predicted using enrichment
analysis based on GO terms and KEGG pathways. Consistent
with the GSEA results, the results from GO and KEGG analyses
revealed that the five-mRNA signature may be involved in cell
morphogenesis involved in neuron differentiation, brain
development, the apoptosis pathway, the MAPK signaling
pathway, the Ras signaling pathway, and the ERBB signaling
pathway (Table 4).

Experimental Verification of Expression
Levels of the Five-mRNA Signature in GBM
Cell Lines
Finally, we validated the expression of the five-mRNA signature
in four human GBM cell lines (A172, LN299, U118, and U138)
and human normal glial cell line HEB using qRT-PCR. As
revealed in Figure 11B, NMB, ABCC3, and MDK mRNA
expression were considerably higher in GBM cells than in the
control group (HEB cells). Conversely, the expression of PTPRN

FIGURE 9 | The independence of the prognostic value of the five-mRNA signature from molecular features. Univariate (A) and multivariate (B) Cox regression
analyses of the correlation between GBM patient overall survival (OS) and clinical characteristics (IDH1 mutation and MGMT promoter methylation status). Kaplan–Meier
survival curve analysis of OS in the high- and low-risk groups for patients with IDH wild type (C) and methylated MGMT status (D).
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and RALYL was decreased in GBM cells (p < 0.05). The findings
were consistent with the bioinformatics analysis outlined earlier.

DISCUSSION

In this article, we gathered four series from the GEO database and
integrated datasets from the TCGA and GTEx databases to
conduct an integrative analysis in order to thoroughly examine
the data and identify relevant gene markers. In the DEG analysis,
we found 171 upregulated and 291 downregulated DEGs after
combining the data from the four GEO datasets and GTEx-
TCGA datasets. The GO and KEGG pathway analyses of the
362 aberrantly expressed mRNAs revealed the crucial BPs and
pathways in GBM, most of which were classic pathways and BPs
that play important roles in GBM, such as extracellular matrix,
regulation of the mitotic cell cycle, the p53 signaling pathway, the
HIF-1 signaling pathway, and the NF-kappa B signaling pathway.
Interestingly, some novel BPs and pathways involved in GBM

progression and development, including chemical synaptic
transmission, regulation of neuronal synaptic plasticity, GABA
receptor activity, and the apelin signaling pathway. Following
that, we investigated the relationship between these
362 aberrantly expressed mRNAs and prognosis in GBM
patients by performing a genome-wide analysis of the
362 aberrantly expressed mRNAs in 80 patients in the training
set and discovered 26 mRNAs that were strongly associated with
GBM patients’ OS. We created a five-mRNA signature using
multivariate Cox, LASSO estimation, and risk scoring techniques
that were able to categorize GBM patients into a low-risk and
high-risk group with significantly different OS. Since there is still
the possibility of false positives from the development of the five-
mRNA signature, we verified its predictive value using
independent sets of different sample sizes (testing set,
REMBRANDT study, CGGA datasets, and GSE7696). The
results with the independent sets demonstrated that the five-
mRNA signature has good reproducibility and robustness in
predicting prognosis for GBM patients. Further analysis

FIGURE 10 | The prognostic value of the five-mRNA signature in the subtypes of GBM. Kaplan–Meier survival curve analysis of OS in the high- and low-risk groups
for patients with the four subtypes. Kruskal–Wallis test was used to compare the expression levels of each mRNA in the four subtypes of GBM.
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showed that the five-mRNA signature is independent of
conventional clinical factors (age, gender, and KPS) and
molecular features (IDH1 mutation and MGMT promoter
methylation status). When we conducted a subgroup stratified

analysis to test the signature’s independence, we discovered that
the five-mRNA signature could clearly distinguish patients at low
risk from those at high risk based on age, IDH1 wild-type, and
methylated MGMT. Subsequently, we assessed the expression

FIGURE 11 | The potential biological function of the five-mRNA signature in GBM. (A) Gene set enrichment analysis (GSEA) using stratified five-mRNA signature
expression levels for genes downregulated or upregulated in GBM. The GSEA results showed the correlation between the five-mRNA levels and potential biological
functions in the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. (B) The relative expression levels of the five-mRNA signature
were determined by qRT-PCR in four human GBM cell lines.
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patterns of the mRNAs in the signature in specific subtypes of
GBM (classical, mesenchymal, neural, and proneural) and
discovered that there were significantly different expression
patterns for all five prognostic mRNAs across the four GBM
subtypes. These results indicated that the five-mRNA signature
might help clinicians identify and select patients at high risk from
those with identical clinical or molecular characteristics in order
to rationalize treatment decisions.

Previous research has found that these five mRNAs are closely
connected to the incidence and progression of tumors. Protein
tyrosine phosphatase receptor type N (PTPRN), also recognized
as IA-2, is a part of the protein tyrosine phosphatase (PTP)
family, which includes signalingmolecules that regulate a number
of cellular processes such as cell growth, differentiation, the
mitotic cycle, and oncogenic transformation (Alonso et al.,
2016). Many members of this family have been reported to be
closely related to tumors (Duś-Szachniewicz et al., 2015; Zhang
et al., 2018; Bloch et al., 2019). PTPRN has been identified as an
autoantigen that reacts with insulin-dependent diabetes mellitus
(IDDM) patient sera (Lan et al., 1994; Acevedo-Calado et al.,
2019). Only a few studies have reported a relationship with
tumors, such as human midgut carcinoids and small cell lung
cancer (Cunningham et al., 2000; Xu et al., 2016). Neuromedin B
(NMB) is a member of the bombesin-like family of neuropeptides
(Jensen et al., 2008). NMB functions by attaching to its high-
affinity cell surface receptor, therefore activating multiple
intracellular signaling pathways associated with cell
proliferation, several anti-apoptotic genes, long-term memory,
and learning. Park et al. (2016) reported that NMB receptor
antagonism could inhibit the migration, invasion, and epithelial-
mesenchymal transition of breast cancer cells. NMB also
functions as an autocrine growth factor in lung cancer cells.
The capacity of NMB to promote transactivation of the epidermal
growth factor (EGF) receptor in lung cancer cells was observed by
Moody et al. (2010). RALY RNA-binding protein-like (RALYL) is
a protein-coding gene that may be involved in pre-mRNA
splicing and embryonic development. Cui et al. (2012)
discovered that low RALYL expression is linked to a poor
prognosis in clear cell renal cell carcinoma. ATP-binding

cassette subfamily C member 3 (ABCC3) is a member of the
superfamily of ATP-binding cassette (ABC) transporters, which
is implicated in multidrug resistance. ABCC3 knockdown may
improve the retention of chemotherapeutic agents in breast
cancer cells, making them more chemosensitive (Balaji et al.,
2016). According to Liu et al. (2016), overexpression of
ABCC3 enhances cell proliferation, drug resistance, and
aerobic glycolysis, and is linked with a poor prognosis in
patients with urinary bladder cancer. Midkine (MDK), also
termed neurite growth-promoting factor 2, is a heparin-
binding growth factor that is highly activated during
oncogenesis, inflammation, and tissue repair. Recent studies
indicate that serum MDK is a biomarker for malignancy,
prognosis, and chemosensitivity in head and neck squamous
cell carcinoma (Yamashita et al., 2016). Luo et al. (2015)
showed that the transcriptional factor specificity protein 1
(SP1) enhances glioma cell proliferation by upregulating
MDK. However, only a few reports have examined the
correlation between GBM and the expression of the
aforementioned mRNAs. Thus, we further investigated the
potential functions of these five mRNAs in GBM using GSEA.
The results showed that these five mRNAs may serve as
oncogenes in GBM by regulating the cell cycle and cell
apoptosis, brain development, immune response, MAPK
signaling pathway, and ERBB signaling pathway. Moreover, we
conducted GO and KEGG enrichment analyses of the encoded
proteins that were co-expressed with these five mRNAs to
investigate the roles of the five mRNAs. These five mRNAs’
potential protein targets were shown to play roles in neuron
differentiation, brain development, the apoptosis pathway, the
MAPK signaling pathway, the Ras signaling pathway, and the
ERBB signaling pathway, according to GO and KEGG analyses.
Based on the aforementioned bioinformatics analysis, we will pay
more attention to the effects of immune microenvironment
regulation, ERBB signaling pathway, and MAPK signaling
pathway on the occurrence and development of GBM.

However, this study has a few limitations. Although we
performed Cox proportional hazards regression analysis to
explore the effect of age on the prognosis of GBM patients, we
have not considered the influence of the age span. MGMT
promote methylation and IDH-1 mutation were critical role in
the prognosis of GMB patients (Zhou et al., 2019). However, there
was still a lack of those research in the current studies. In order to
further verify our bioinformatics predictions, there is a need for
in-depth research on the five-mRNA signature and molecular
mechanisms.

CONCLUSION

In summary, we discovered a five-mRNA signature (PTPRN, NMB,
RALYL, ABCC3, and MDK) among hundreds of potential mRNAs
in large-scale GBM samples that can be employed as an independent
prognostic marker in stratifying risk subgroups for GBM survival.
This signature might also assist the researcher in better
understanding the molecular mechanisms that contribute to the
development of GBM. We will conduct further clinical trials to

TABLE 4 | GO and KEGG analyses of the protein targets of the five-mRNA
signature.

Items Category ID Log10P
GO
Cell morphogenesis involved in neuron differentiation GO:0048667 −12.85
Brain development GO:0007420 −8.10
Acute inflammatory response GO:0002526 −5.12
Humoral immune response GO:0006959 −2.97
Astrocyte cell migration GO:0043615 −3.00
Apoptotic signaling pathway GO:0097190 −2.80

KEGG
MAPK signaling pathway hsa04010 −6.23
Neuroactive ligand–receptor interaction hsa04080 −10.20
Ras signaling pathway hsa04014 −4.95
TNF signaling pathway hsa04668 −4.45
ERRB signaling pathway hsa04012 −3.43
ECM-receptor interaction hsa04512 −2.37

GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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evaluate the signature’s predictive efficacy, and experimental
research to examine the roles of the prognostic mRNAs.
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